JPH0959026A - Production of lithium nickelate - Google Patents

Production of lithium nickelate

Info

Publication number
JPH0959026A
JPH0959026A JP7211461A JP21146195A JPH0959026A JP H0959026 A JPH0959026 A JP H0959026A JP 7211461 A JP7211461 A JP 7211461A JP 21146195 A JP21146195 A JP 21146195A JP H0959026 A JPH0959026 A JP H0959026A
Authority
JP
Japan
Prior art keywords
oxygen
lithium
carbonate
temperature
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7211461A
Other languages
Japanese (ja)
Inventor
Masaki Watanabe
政喜 渡辺
Tsutomu Toida
努 戸井田
Makoto Maeda
誠 前田
Susumu Yokono
進 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Nikki Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Kagaku KK filed Critical Nikki Kagaku KK
Priority to JP7211461A priority Critical patent/JPH0959026A/en
Publication of JPH0959026A publication Critical patent/JPH0959026A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain lithium nickelate practicable as an anodic agent for lithium ion cells by a single baking process. SOLUTION: Basic nickel carbonate powder is intimately mixed with a water- soluble lithium compound powder at the virtual molar ratio Ni/Li of (1:1), and the mixture is preliminarily baked in the presence of an inert gas or an oxygen- contg. gas at 250-550 deg.C to virtually terminate the generation of carbon dioxide followed by conducting the final baking in the presence of an oxygen gas or oxygen-enriched air at 700-900 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル酸リチウムの
製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing lithium nickelate.

【0002】[0002]

【従来の技術】リチウムイオン電池は、ニッカド電池や
ニッケル水素に比べて体積エネルギー密度、質量エネル
ギー密度が高いので、携帯電話、カメラ一体型VTR、
ノート型パソコンなどの携帯機器の電源としての発展が
期待されている。リチウムイオン電池の正極剤としては
コバルト酸リチウム(LiCoO2 )が広く使用されて
いるが、高価であるので、これに代わる安価な正極剤が
望まれており、ニッケル酸リチウム(LiNiO2 )が
最有力候補として挙げられている。酸化ニッケル又は水
酸化ニッケルと炭酸リチウム又は水酸化リチウムとを乾
式混合/擂潰し、粉末のまま焼成、又は成型後焼成して
ニッケル酸リチウムを得ている報告はあるが、一回では
ニッケル酸リチウム結晶が十分に成長しないので、粉砕
/混合/焼成を数回繰り返す必要がある。第33回電池
討論会(1992年9月16日〜18日:東京)におい
て同和鉱業株式会社は、コバルト酸リチウムの製法とし
て塩基性炭酸コバルトと炭酸リチウムとからの製法を開
示し、その特性について発表しているが、有機物存在下
で湿式混合してから乾燥、600℃での一次焼成、粉砕
後二次焼成(750〜900℃)をしており、塩基性炭
酸コバルトを塩基性炭酸ニッケルと読み替えても、有機
物の存在下で混合し、焼成を2回も繰り返して行うので
は安価な製造法にはならない。
2. Description of the Related Art Lithium-ion batteries have higher volume energy density and mass energy density than nickel-cadmium batteries and nickel-metal hydride batteries.
It is expected to develop as a power source for portable devices such as laptop computers. Lithium cobalt oxide (LiCoO 2 ) is widely used as a positive electrode agent for lithium ion batteries, but since it is expensive, an inexpensive positive electrode agent to replace it is desired, and lithium nickel oxide (LiNiO 2 ) is the most suitable. Listed as a strong candidate. Although there is a report that lithium nickelate is obtained by dry-mixing / crushing nickel oxide or nickel hydroxide and lithium carbonate or lithium hydroxide and firing as powder or firing after molding, lithium nickelate is used once. Since the crystals do not grow sufficiently, it is necessary to repeat grinding / mixing / firing several times. At the 33rd Battery Symposium (September 16-18, 1992: Tokyo), Dowa Mining Co., Ltd. disclosed a method for producing lithium cobalt oxide from basic cobalt carbonate and lithium carbonate and its characteristics. Although it has been announced, it is wet-mixed in the presence of organic substances, then dried, first baked at 600 ° C, and then secondly baked (750-900 ° C) after crushing. Basic cobalt carbonate is converted to basic nickel carbonate. Even if it is reread, it is not an inexpensive manufacturing method if it is mixed in the presence of an organic substance and the firing is repeated twice.

【0003】ニッケル酸リチウムの結晶成長度を示す目
安としてはX線回折測定による方法が知られている。試
料のX線回折測定を行ない、特定波長におけるピーク強
度と他の特定波長におけるピーク強度を比較する方法で
ある。例えば銅ターゲットのKα線を用い、2θで1
8.7°(003)と44.3°(104)のピーク度
比(003)/(104)で示す方法である。この強度
比が大きいほどニッケル酸リチウムの結晶成長が進んで
いることを示す。リチウムイオン電池の正極剤として実
用性があるニッケル酸リチウムは、上記強度比が1以上
である必要があると言われている。
A method based on X-ray diffraction measurement is known as a measure of the crystal growth degree of lithium nickelate. This is a method of performing X-ray diffraction measurement of a sample and comparing the peak intensity at a specific wavelength with the peak intensity at another specific wavelength. For example, using Kα ray of copper target, 1 in 2θ
This is a method indicated by a peak degree ratio (003) / (104) of 8.7 ° (003) and 44.3 ° (104). The larger the strength ratio, the more the crystal growth of lithium nickelate is progressing. It is said that lithium nickelate, which is practical as a positive electrode material for lithium-ion batteries, needs to have the strength ratio of 1 or more.

【0004】[0004]

【発明が解決しようとする課題】本発明は、リチウムイ
オン電池の正極剤として実用性があるニッケル酸リチウ
ムを一回の焼成で製造できる方法を提供することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method capable of producing lithium nickelate, which is practical as a positive electrode material for a lithium ion battery, by a single firing.

【0005】[0005]

【課題を解決するための手段】本発明に関わるニッケル
酸リチウムの製造方法は、塩基性炭酸ニッケルの粉末と
水溶性リチウム化合物の粉末をNiとLiが実質的に
1:1モルになる比率で緊密に混合し、不活性ガス又は
酸素含有ガスの存在下で250〜550℃の範囲の温度
で予備焼成して炭酸ガスの発生を実質的に終了させたの
ち、引き続き酸素ガス又は酸素富化空気の存在下で70
0〜900℃の範囲の温度で最終焼成することを特徴と
する。
The method for producing lithium nickel oxide according to the present invention comprises a powder of basic nickel carbonate and a powder of a water-soluble lithium compound at a ratio of Ni and Li of substantially 1: 1 mol. After intimately mixing and precalcining in the presence of an inert gas or an oxygen-containing gas at a temperature in the range of 250 to 550 ° C. to substantially end the generation of carbon dioxide gas, then continue to oxygen gas or oxygen-enriched air. 70 in the presence of
The final firing is performed at a temperature in the range of 0 to 900 ° C.

【0006】本発明の骨子は、ニッケル源として塩基性
炭酸ニッケルを使用すること、焼成を温度領域の異なる
2段階で引き続き行うこと、及び最終焼成を酸素ガス又
は酸素富化空気の存在下で行うことである。塩基性炭酸
ニッケルは多孔性物質であるが、約200℃で分解を開
始し、300℃を越えると分解が活発になり、450℃
では分解が完了する。分解したNiOの融点は1950
℃である。 Ni3 (OH)4 CO3 →3NiO+2H2 O+CO2 (1) 一方、炭酸リチウムは600℃でも安定で、更に高温に
すると分解しつつ融解(融点618℃)する。分解した
酸化リチウムの融点は1700℃以上である。 Li2 CO3 → Li2 O+CO2 (2) 従って、塩基性炭酸ニッケルの粉末と水溶性リチウム化
合物の粉末の混合物を先ず250〜550℃、好ましく
は300〜500℃に加熱すると、塩基性炭酸ニッケル
の分解のみが進行し、結晶構造中の炭酸ガスが離脱す
る。炭酸ガスの発生を実質的に終了させた後、即ち塩基
性炭酸ニッケルがすべて微細な孔を多数有する酸化ニッ
ケルになった後、さらに昇温すると、溶融した炭酸リチ
ウム及び分解した酸化リチウムは酸化ニッケルの微細孔
中に侵入し、極めて密接な接触状態になるものと推定さ
れる。ここで酸素ガス又は酸素富化空気の存在下で70
0〜900℃の温度で焼成すると、Niは2価から3価
になり、ニッケル酸リチウムが生成する。推定される反
応式は下記の通りである。 4Ni3 (OH)4 CO3 →12NiO+8H2 O+4CO2 (1’) 12NiO+6Li2 CO3 +3O2 →12LiNiO2 +6CO2 (3)
The gist of the present invention is to use basic nickel carbonate as a nickel source, to carry out firing in two stages having different temperature ranges, and to carry out final firing in the presence of oxygen gas or oxygen-enriched air. That is. Although basic nickel carbonate is a porous substance, it starts to decompose at about 200 ° C, and when it exceeds 300 ° C, the decomposition becomes vigorous.
Then the disassembly is completed. The melting point of decomposed NiO is 1950.
° C. Ni 3 (OH) 4 CO 3 → 3NiO + 2H 2 O + CO 2 (1) On the other hand, lithium carbonate is stable even at 600 ° C. and melts (melting point 618 ° C.) while decomposing at higher temperatures. The melting point of decomposed lithium oxide is 1700 ° C. or higher. Li 2 CO 3 → Li 2 O + CO 2 (2) Therefore, when the mixture of the basic nickel carbonate powder and the water-soluble lithium compound powder is first heated to 250 to 550 ° C., preferably 300 to 500 ° C., the basic nickel carbonate is The decomposition of carbon dioxide only proceeds, and carbon dioxide gas in the crystal structure is released. After the generation of carbon dioxide gas is substantially terminated, that is, after the basic nickel carbonate has become nickel oxide having many fine pores, when the temperature is further increased, the molten lithium carbonate and the decomposed lithium oxide become nickel oxide. It is presumed that it will penetrate into the micropores of and will be in an extremely close contact state. Here, in the presence of oxygen gas or oxygen-enriched air, 70
When fired at a temperature of 0 to 900 ° C., Ni changes from divalent to trivalent and lithium nickel oxide is produced. The estimated reaction formula is as follows. 4Ni 3 (OH) 4 CO 3 → 12NiO + 8H 2 O + 4CO 2 (1 ′) 12NiO + 6Li 2 CO 3 + 3O 2 → 12LiNiO 2 + 6CO 2 (3)

【0007】最終焼成温度の下限を700℃とするの
は、これ以下の温度ではニッケル酸リチウムの結晶成長
が遅く、工業的に許容し得る以上の焼成時間を必要とす
るからである。最終焼成温度の上限を900℃とするの
は、これ以上の温度ではリチウムの揮散が起こり易くな
るからである。目的物であるニッケル酸リチウムにおけ
るNiとLiの比率が1:1モルであるから、NiとL
iが実質的に1:1モルになる比率で塩基性炭酸ニッケ
ルの粉末と水溶性リチウム化合物の粉末を混合するのは
当然であるが、最終焼成段階におけるリチウムの揮散を
考慮して、リチウムのモル比を若干大目にしても良い。
250〜550℃の予備焼成期間は塩基性炭酸ニッケル
を分解して炭酸ガスを放出することが目的であるから不
活性ガス又は酸素含有ガスの流通下で良いが、700〜
900℃での焼成ではNiを2価から3価にする必要が
あるので、酸素ガス又は酸素富化空気の存在下で実施す
る必要がある。酸素富化空気は酸素含有量50%以上の
ものが好ましい。後述の比較例に見るように、空気の存
在下での焼成ではX線回折測定による前記強度比が1以
上の製品は得難い。
The lower limit of the final calcination temperature is 700 ° C. because the crystal growth of lithium nickelate is slow at a temperature lower than this and a calcination time longer than industrially allowable is required. The reason why the upper limit of the final firing temperature is 900 ° C. is that the vaporization of lithium is likely to occur at a temperature higher than this. Since the ratio of Ni to Li in the target lithium nickelate is 1: 1 mol, Ni and L
It is natural to mix the powder of the basic nickel carbonate and the powder of the water-soluble lithium compound in a ratio that i is substantially 1: 1 mol, but in consideration of the volatilization of lithium in the final firing step, the lithium The molar ratio may be slightly increased.
During the pre-baking period of 250 to 550 ° C., the purpose is to decompose basic nickel carbonate and release carbon dioxide gas, so that an inert gas or an oxygen-containing gas may be flowed, but 700 to
Since calcination at 900 ° C. requires Ni to be trivalent to trivalent, it needs to be carried out in the presence of oxygen gas or oxygen-enriched air. The oxygen-enriched air preferably has an oxygen content of 50% or more. As seen in Comparative Examples described later, it is difficult to obtain a product having the above-mentioned intensity ratio of 1 or more by X-ray diffraction measurement by firing in the presence of air.

【0008】塩基性炭酸ニッケルは、水溶性ニッケル化
合物と炭酸アルカリ、重炭酸アルカリ、炭酸アンモニウ
ム及び重炭酸アンモニウムからなる群から選ばれる化合
物を水中で反応させて得られる沈澱物を濾過、乾燥する
ことにより得られる。また塩基性炭酸ニッケルは、水溶
性ニッケル化合物と炭酸アルカリ、重炭酸アルカリ、炭
酸アンモニウム及び重炭酸アンモニウムからなる群から
選ばれる化合物と水酸化ナトリウムとの組み合わせから
なる混合物を水中で反応させて得られる沈澱物を濾過、
乾燥することによっても得られる。水酸化ナトリウムの
比率を変えることにより、塩基性炭酸ニッケルの水酸基
と炭酸根の比率を変えることができる。水溶性ニッケル
化合物としては、硝酸ニッケル、硫酸ニッケル、塩化ニ
ッケルなどが挙げられる。塩基性炭酸ニッケルを沈殿さ
せるには、炭酸根が若干過剰、即ちNi1モルに対しC
3 根が約1.2モル以上の割合で上記炭酸塩又は重炭
酸塩を使用するのが良い。塩基性炭酸ニッケルは、比表
面積が大きなものほど好ましいと考えられる。
The basic nickel carbonate is obtained by reacting a water-soluble nickel compound with a compound selected from the group consisting of alkali carbonate, alkali bicarbonate, ammonium carbonate and ammonium bicarbonate in water, and filtering and drying a precipitate. Is obtained by The basic nickel carbonate can be obtained by reacting a mixture of a water-soluble nickel compound, a compound selected from the group consisting of alkali carbonate, alkali bicarbonate, ammonium carbonate and ammonium bicarbonate and sodium hydroxide in water. Filter the precipitate,
It can also be obtained by drying. By changing the ratio of sodium hydroxide, the ratio of hydroxyl groups and carbonate groups of basic nickel carbonate can be changed. Examples of the water-soluble nickel compound include nickel nitrate, nickel sulfate, nickel chloride and the like. To precipitate the basic nickel carbonate, there is a slight excess of carbonate radical, that is, C per 1 mol of Ni.
It is preferable to use the carbonate or bicarbonate in a ratio of O 3 root of about 1.2 mol or more. It is considered that basic nickel carbonate having a larger specific surface area is more preferable.

【0009】水溶性リチウム化合物としては、炭酸リチ
ウムのほか、水酸化リチウムを使用できる。
As the water-soluble lithium compound, lithium hydroxide can be used in addition to lithium carbonate.

【0010】塩基性炭酸ニッケルの粉末と水溶性リチウ
ム化合物の粉末を緊密に混合した粉末は、粉末のまま2
段階の焼成(250〜550℃の温度での予備焼成及び
700〜900℃の温度での最終焼成)を行っても良い
し、混合粉末を成形物にした状態で2段階の焼成を行っ
ても良い。成形物にする場合、炭酸ガスの放散と酸素の
侵入を著しく阻害することがないように、長さ、幅、厚
さのうちの少なくとも一つは2mm以下とすることが望
ましい。
The powder obtained by intimately mixing the powder of basic nickel carbonate and the powder of the water-soluble lithium compound remains as powder.
The firing may be performed in two steps (preliminary firing at a temperature of 250 to 550 ° C. and final firing at a temperature of 700 to 900 ° C.), or two-step firing may be performed in the state where the mixed powder is formed into a molded product. good. In the case of forming a molded product, it is desirable that at least one of the length, the width and the thickness is 2 mm or less so that the emission of carbon dioxide gas and the invasion of oxygen are not significantly hindered.

【0011】以下実施例により本発明を具体的に説明す
るが、本発明は下記の実施例に限定されるものではな
い。実施例及び比較例で使用した原料は表1の通りであ
る。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. The raw materials used in Examples and Comparative Examples are shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【塩基性炭酸ニッケル調製例1】硝酸ニッケル581.
4g(2モル)を水に溶解し、2Lの硝酸ニッケル水溶
液とした。炭酸ナトリウム254.4g(2.4モル;
Ni:CO3 モル比=1:1.2)を水に溶解し1.8
Lの炭酸ナトリウム水溶液とした。70℃の熱水1Lに
前記硝酸ニッケル水溶液と炭酸ナトリウム水溶液を80
分かけて同時に一定速度で注加し反応させた。この際温
度は70℃を維持し、良好な撹拌状態を保った。注加終
了後、更にこの状態を30分間保持し、熟成を行った。
このようにして得られた沈澱を濾過し、水洗後120℃
で16時間乾燥した。このようにして得られた塩基性炭
酸ニッケル粉末のニッケル含量は53.7%で、比表面
積はBET法によれば250m2 /gであった。
[Basic Nickel Carbonate Preparation Example 1] Nickel nitrate 581.
4 g (2 mol) was dissolved in water to give a 2 L nickel nitrate aqueous solution. 254.4 g (2.4 mol; sodium carbonate)
Ni: CO 3 molar ratio = 1: 1.2) was dissolved in water to obtain 1.8
L aqueous solution of sodium carbonate was used. 80 liters of the nickel nitrate aqueous solution and the sodium carbonate aqueous solution are added to 1 L of hot water at 70 ° C.
The mixture was added at a constant rate and reacted at the same time over a period of minutes. At this time, the temperature was maintained at 70 ° C. and a good stirring state was maintained. After the completion of pouring, this state was maintained for 30 minutes for aging.
The precipitate thus obtained is filtered, washed with water and then at 120 ° C.
For 16 hours. The basic nickel carbonate powder thus obtained had a nickel content of 53.7% and a specific surface area of 250 m 2 / g according to the BET method.

【0014】[0014]

【実施例1】調製例1で得られた塩基性炭酸ニッケル5
0.0gと炭酸リチウム17.1g(Ni:Liモル比
=1:1)を乳鉢で良く粉砕混合した。これを空気の流
通下400℃まで昇温し、炭酸ガス発生が認められなく
なる迄約2時間この温度に維持して予備焼成した。その
後酸素流通に切り替えて800℃で18時間最終焼成し
た。昇温時間及び降温時間を含めた加熱処理時間は合計
24時間であった。得られた試料のX線回折測定は銅タ
ーゲットのKα線を用い粉末測定法で行った。2θで1
8.7°(003)と44.3°(104)のピーク強
度比(003)/(104)は1.45で、リチウムイ
オン電池の正極剤として実用性があると言われる強度比
1以上であった。
Example 1 Basic Nickel Carbonate 5 Obtained in Preparation Example 1
0.0 g of lithium carbonate and 17.1 g of lithium carbonate (Ni: Li molar ratio = 1: 1) were well pulverized and mixed in a mortar. This was heated to 400 ° C. under the flow of air, and maintained at this temperature for about 2 hours until the generation of carbon dioxide gas was not observed, and pre-baking was performed. After that, the flow was switched to oxygen flow and final firing was performed at 800 ° C. for 18 hours. The heat treatment time including the temperature raising time and the temperature lowering time was 24 hours in total. The X-ray diffraction measurement of the obtained sample was performed by the powder measurement method using the Kα ray of the copper target. 1 in 2θ
The peak intensity ratio (003) / (104) of 8.7 ° (003) and 44.3 ° (104) is 1.45, which is 1 or more, which is said to be practical as a positive electrode agent for lithium ion batteries. Met.

【0015】[0015]

【実施例2】400℃で予備焼成後酸素流通に切り替え
て850℃で最終焼成した以外は実施例1と同様な操作
を行った。得られた試料のX線回折測定によるピーク強
度比は1.47であった。
Example 2 The same operation as in Example 1 was performed, except that after pre-baking at 400 ° C., the flow of oxygen was changed to final baking at 850 ° C. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 1.47.

【0016】[0016]

【比較例1】400℃で予備焼成後空気流通のまま80
0℃で最終焼成した以外は実施例1と同様な操作を行っ
た。得られた試料のX線回折測定によるピーク強度比は
0.81であった。800℃での焼成時間を延長しても
ピーク強度比の向上は認められなかった。
[Comparative Example 1] 80 after pre-baking at 400 ° C with air flowing
The same operation as in Example 1 was performed except that the final firing was performed at 0 ° C. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 0.81. No improvement in the peak intensity ratio was observed even if the firing time at 800 ° C. was extended.

【0017】[0017]

【比較例2】400℃で予備焼成後空気流通のまま85
0℃で最終焼成した以外は実施例1と同様な操作を行っ
た。得られた試料のX線回折測定によるピーク強度比は
0.91であった。850℃での焼成時間を延長しても
ピーク強度比の向上は認められなかった。
[Comparative Example 2] 85 after pre-baking at 400 ° C with air flowing
The same operation as in Example 1 was performed except that the final firing was performed at 0 ° C. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 0.91. No improvement in peak intensity ratio was observed even if the firing time at 850 ° C. was extended.

【0018】実施例1、実施例2、比較例1及び比較例
2の結果をまとめて表2に示す。X線回折測定によるピ
ーク強度比1.0以上のニッケル酸リチウムを得るに
は、最終焼成は酸素ガス又は酸素富化空気の存在下で行
う必要があることがわかる。
The results of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 are summarized in Table 2. It can be seen that the final firing needs to be performed in the presence of oxygen gas or oxygen-enriched air in order to obtain lithium nickel oxide having a peak intensity ratio of 1.0 or more by X-ray diffraction measurement.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【実施例3】調製例1で得られた塩基性炭酸ニッケル5
0.0gと炭酸リチウム17.1g(Ni:Liモル比
=1:1)に更に水35.0gを加え、混合し、擂潰器
でよく練り合わせた。さらに適量の水を加えつつ練った
のち、孔径(貫通孔の相当直径)0.8mmのサイズに
押出成型し長さ2〜5mmの円柱状チップにし、120
℃で16時間乾燥後、これを空気の流通下400℃まで
昇温し、炭酸ガスの発生が認められなくなるまで約2時
間この温度に維持して予備焼成した。その後酸素流通に
切り替えて800℃で18時間最終焼成した。昇温時間
及び降温時間を含めた加熱処理時間は合計24時間であ
った。得られた試料のX線回折測定によるピーク強度比
は1.43であった。
Example 3 Basic Nickel Carbonate 5 Obtained in Preparation Example 1
Water (35.0 g) was further added to 0.0 g and lithium carbonate (17.1 g) (Ni: Li molar ratio = 1: 1), mixed and kneaded well with a grinder. Further, after kneading while adding an appropriate amount of water, extrusion molding was performed to a hole diameter (equivalent diameter of the through hole) of 0.8 mm to form a cylindrical chip having a length of 2 to 5 mm.
After drying at 16 ° C. for 16 hours, the temperature was raised to 400 ° C. under the flow of air, and the temperature was maintained at this temperature for about 2 hours until the generation of carbon dioxide gas was not observed, and pre-baking was performed. After that, the flow was switched to oxygen flow and final firing was performed at 800 ° C. for 18 hours. The heat treatment time including the temperature raising time and the temperature lowering time was 24 hours in total. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 1.43.

【0021】[0021]

【実施例4】400℃で予備焼成した後、酸素流通に切
り替えて850℃で最終焼成した以外は実施例3と同様
な操作を行った。得られた試料のX線回折測定によるピ
ーク強度比は1.43であった。
Example 4 The same operation as in Example 3 was carried out except that after pre-baking at 400 ° C., the flow of oxygen was changed to final baking at 850 ° C. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 1.43.

【0022】[0022]

【比較例3】400℃で予備焼成した後、空気流通のま
ま800℃で最終焼成した以外は実施例3と同様な操作
を行った。得られた試料のX線回折測定によるピーク強
度比は0.85であった。800℃での焼成時間を延長
してもピーク強度比の向上は認められなかった。
Comparative Example 3 The same operation as in Example 3 was carried out except that after pre-baking at 400 ° C., final baking was carried out at 800 ° C. with air flowing. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 0.85. No improvement in the peak intensity ratio was observed even if the firing time at 800 ° C. was extended.

【0023】[0023]

【比較例4】400℃で予備焼成した後、空気流通のま
ま850℃で最終焼成した以外は実施例3と同様な操作
を行った。得られた試料のX線回折測定によるピーク強
度比は0.91であった。850℃での焼成時間を延長
してもピーク強度比の向上は認められなかった。
[Comparative Example 4] The same operation as in Example 3 was carried out except that after pre-baking at 400 ° C, final baking was carried out at 850 ° C with air flowing. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 0.91. No improvement in peak intensity ratio was observed even if the firing time at 850 ° C. was extended.

【0024】実施例3、実施例4、比較例3及び比較例
4の結果をまとめて表3に示す。塩基性炭酸ニッケルの
粉末と水溶性リチウム化合物の粉末を緊密に混合した粉
末を成形物にした状態で焼成(予備焼成及び最終焼成)
しても良いこと及びX線回折測定によるピーク強度比
1.0以上のニッケル酸リチウムを得るには、最終焼成
はやはり酸素ガス又は酸素富化空気の存在下で行う必要
があることがわかる。
The results of Example 3, Example 4, Comparative Example 3 and Comparative Example 4 are summarized in Table 3. Firing the powder of intimately mixing the powder of basic nickel carbonate and the powder of water-soluble lithium compound into a molded product (pre-baking and final baking)
It is understood that the final calcination still needs to be performed in the presence of oxygen gas or oxygen-enriched air in order to obtain lithium nickel oxide having a peak intensity ratio of 1.0 or more by X-ray diffraction measurement.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【実施例5】調製例1で得られた塩基性炭酸ニッケル5
0.0gと炭酸リチウム17.1g(Ni:Liモル比
=1:1)に更に水35.0gを加え、混合し、擂潰器
でよく練り合わせた。更に適量の水を加えつつ練った
後、孔径(貫通孔の相当直径)0.8mmのサイズに押
出成型し長さ2〜5mmの円柱状チップにし、120℃
で16時間乾燥後、これを空気の流通下400℃まで昇
温し、炭酸ガスの発生が認められなくなるまで約2時間
この温度に維持して予備焼成した。その後酸素流通に切
り替えて800℃で6時間最終焼成した。昇温時間及び
降温時間を含めた加熱処理時間は合計12時間であっ
た。得られた試料のX線回折測定によるピーク強度比は
1.16であった。実施例3(成型0.8mm 品焼成)と比
べた場合、最終焼成時間を3分の1(全加熱処理時間は
2分の1)にしても、リチウムイオン電池の正極剤とし
て実用性があるピーク強度比1以上のニッケル酸リチウ
ムを一回の焼成で製造できた。
Example 5 Basic Nickel Carbonate 5 Obtained in Preparation Example 1
Water (35.0 g) was further added to 0.0 g and lithium carbonate (17.1 g) (Ni: Li molar ratio = 1: 1), mixed and kneaded well with a grinder. After further kneading while adding an appropriate amount of water, extrusion molding was performed to a hole diameter (equivalent diameter of the through hole) of 0.8 mm to form a cylindrical chip having a length of 2 to 5 mm, and 120 ° C.
After being dried for 16 hours, the temperature was raised to 400 ° C. under the flow of air, and the temperature was maintained at this temperature for about 2 hours until the generation of carbon dioxide was not observed, and pre-baking was performed. After that, the flow of oxygen was switched to the final firing at 800 ° C. for 6 hours. The heat treatment time including the temperature raising time and the temperature lowering time was 12 hours in total. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 1.16. When compared with Example 3 (molding 0.8 mm product firing), even if the final firing time is 1/3 (total heat treatment time is 1/2), it is a peak that is practical as a positive electrode agent for lithium ion batteries. It was possible to manufacture lithium nickel oxide having a strength ratio of 1 or more by a single firing.

【0027】[0027]

【実施例6】調製例1で得られた塩基性炭酸ニッケル5
0.0gと炭酸リチウム17.1g(Ni:Liモル比
=1:1)に更に水35.0gを加え、混合し、擂潰器
でよく練り合わせた。更に適量の水を加えつつ練った
後、孔径(貫通孔の相当直径)0.8mmのサイズに押
出成型し長さ2〜5mmの円柱状チップにし、120℃
で16時間乾燥後、これを空気の流通下300℃まで昇
温し、炭酸ガスの発生が認められなくなるまで約2時間
この温度に維持して予備焼成した。その後酸素流通に切
り替えて800℃で6時間最終焼成した。昇温時間及び
降温時間を含めた加熱処理時間は合計12時間であっ
た。得られた試料のX線回折測定によるピーク強度比は
1.37であった。
Example 6 Basic Nickel Carbonate 5 Obtained in Preparation Example 1
Water (35.0 g) was further added to 0.0 g and lithium carbonate (17.1 g) (Ni: Li molar ratio = 1: 1), mixed and kneaded well with a grinder. After further kneading while adding an appropriate amount of water, extrusion molding was performed to a hole diameter (equivalent diameter of the through hole) of 0.8 mm to form a cylindrical chip having a length of 2 to 5 mm, and 120 ° C.
After drying for 16 hours, the temperature was raised to 300 ° C. under the flow of air, and the temperature was maintained at this temperature for about 2 hours until the generation of carbon dioxide gas was not observed, and pre-baking was performed. After that, the flow of oxygen was switched to the final firing at 800 ° C. for 6 hours. The heat treatment time including the temperature raising time and the temperature lowering time was 12 hours in total. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 1.37.

【0028】[0028]

【実施例7】調製例1で得られた塩基性炭酸ニッケル5
0.0gと炭酸リチウム17.1g(Ni:Liモル比
=1:1)に更に水35.0gを加え、混合し、擂潰器
でよく練り合わせた。更に適量の水を加えつつ練った
後、孔径(貫通孔の相当直径)0.8mmのサイズに押
出成型し長さ2〜5mmの円柱状チップにし、120℃
で16時間乾燥後、これを空気の流通下500℃まで昇
温し、炭酸ガスの発生が認められなくなるまで約2時間
この温度に維持して予備焼成した。その後酸素流通に切
り替えて800℃で6時間最終焼成した。昇温時間及び
降温時間を含めた加熱処理時間は合計12時間であっ
た。得られた試料のX線回折測定によるピーク強度比は
1.19であった。
Example 7 Basic Nickel Carbonate 5 Obtained in Preparation Example 1
Water (35.0 g) was further added to 0.0 g and lithium carbonate (17.1 g) (Ni: Li molar ratio = 1: 1), mixed and kneaded well with a grinder. After further kneading while adding an appropriate amount of water, extrusion molding was performed to a hole diameter (equivalent diameter of the through hole) of 0.8 mm to form a cylindrical chip having a length of 2 to 5 mm, and 120 ° C.
After being dried for 16 hours, the temperature was raised to 500 ° C. under the flow of air, and the temperature was maintained at this temperature for about 2 hours until the generation of carbon dioxide was not observed, and pre-baking was performed. After that, the flow of oxygen was switched to the final firing at 800 ° C. for 6 hours. The heat treatment time including the temperature raising time and the temperature lowering time was 12 hours in total. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 1.19.

【0029】[0029]

【比較例5】調製例1で得られた塩基性炭酸ニッケル5
0.0gと炭酸リチウム17.1g(Ni:Liモル比
=1:1)に更に水35.0gを加え、混合し、擂潰器
でよく練り合わせた。更に適量の水を加えつつ練った
後、孔径(貫通孔の相当直径)0.8mmのサイズに押
出成型し長さ2〜5mmの円柱状チップにし、120℃
で16時間乾燥後、これを空気の流通下200℃まで昇
温し、炭酸ガスの発生が認められなくなるまで約2時間
この温度に維持して予備焼成した。その後酸素流通に切
り替えて800℃で6時間最終焼成した。昇温時間及び
降温時間を含めた加熱処理時間は合計12時間であっ
た。得られた試料のX線回折測定によるピーク強度比は
0.95であった。
Comparative Example 5 Basic Nickel Carbonate 5 Obtained in Preparation Example 1
Water (35.0 g) was further added to 0.0 g and lithium carbonate (17.1 g) (Ni: Li molar ratio = 1: 1), mixed and kneaded well with a grinder. After further kneading while adding an appropriate amount of water, extrusion molding was performed to a hole diameter (equivalent diameter of the through hole) of 0.8 mm to form a cylindrical chip having a length of 2 to 5 mm, and 120 ° C.
After drying for 16 hours, the temperature was raised to 200 ° C. under the flow of air, and the temperature was maintained at this temperature for about 2 hours until the generation of carbon dioxide was not observed, and pre-baking was performed. After that, the flow of oxygen was switched to the final firing at 800 ° C. for 6 hours. The heat treatment time including the temperature raising time and the temperature lowering time was 12 hours in total. The peak intensity ratio by X-ray diffraction measurement of the obtained sample was 0.95.

【0030】実施例5、実施例6、実施例7及び比較例
4の結果をまとめて表4に示す。予備焼成温度は250
〜550℃、好ましくは300〜500℃の範囲で実施
するのが適当であることがわかる。
The results of Example 5, Example 6, Example 7 and Comparative Example 4 are summarized in Table 4. Pre-baking temperature is 250
It can be seen that it is suitable to carry out in the range of ~ 550 ° C, preferably 300-500 ° C.

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【実施例8】調製例1で得られた塩基性炭酸ニッケル5
0.0gと炭酸リチウム17.1g(Ni:Liモル比
=1:1)を乳鉢で良く粉砕混合した。これを空気の流
通下400℃まで昇温し、炭酸ガスの発生が認められな
くなるまで約2時間この温度に維持して予備焼成した。
その後酸素流通に切り替えて800℃で6時間最終焼成
した。昇温時間及び降温時間を含めた加熱処理時間は合
計12時間であった。得られた試料のX線回折測定によ
るピーク強度比は1.27であった。実施例1(混合粉
末焼成)と比べた場合、最終焼成時間を3分の1(全加
熱処理時間は2分の1)にしても、リチウムイオン電池
の正極剤として実用性があるピーク強度比1以上のニッ
ケル酸リチウムを一回の焼成で製造できた。
Example 8 Basic Nickel Carbonate 5 Obtained in Preparation Example 1
0.0 g of lithium carbonate and 17.1 g of lithium carbonate (Ni: Li molar ratio = 1: 1) were well pulverized and mixed in a mortar. This was heated to 400 ° C. under the flow of air and maintained at this temperature for about 2 hours until the generation of carbon dioxide gas was not observed, and pre-baking was performed.
After that, the flow of oxygen was switched to the final firing at 800 ° C. for 6 hours. The heat treatment time including the temperature raising time and the temperature lowering time was 12 hours in total. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 1.27. When compared with Example 1 (mixed powder firing), even if the final firing time is 1/3 (total heat treatment time is 1/2), the peak intensity ratio is practical as a positive electrode agent for lithium ion batteries. One or more lithium nickelates could be produced in a single firing.

【0033】[0033]

【比較例7】調製例1で得られた塩基性炭酸ニッケル5
0.0gと炭酸リチウム17.1g(Ni:Liモル比
=1:1)に更に水35.0gを加え、混合し、擂潰器
でよく練り合わせた。更に適量の水を加えつつ練った
後、孔径(貫通孔の相当直径)0.8mmのサイズに押
出成型し長さ2〜5mmの円柱状チップにし、120℃
で16時間乾燥後、これを酸素の流通下(予備焼成を行
うことなく)一気に800℃まで加熱してこの温度で6
時間最終焼成した。得られた試料のX線回折測定による
ピーク強度比は0.84であった。実施例5と比較例7
を比べてみると、表5に示すように、400℃での予備
焼成の有無によって得られた試料のX線回折測定による
ピーク強度比が大きく異なることがわかる。
Comparative Example 7 Basic Nickel Carbonate 5 Obtained in Preparation Example 1
Water (35.0 g) was further added to 0.0 g and lithium carbonate (17.1 g) (Ni: Li molar ratio = 1: 1), mixed and kneaded well with a grinder. After further kneading while adding an appropriate amount of water, extrusion molding was performed to a hole diameter (equivalent diameter of the through hole) of 0.8 mm to form a cylindrical chip having a length of 2 to 5 mm, and 120 ° C.
After being dried for 16 hours at 80 ° C., it is heated up to 800 ° C. at a stretch under oxygen flow (without pre-baking), and at this temperature, 6
Final firing for an hour. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 0.84. Example 5 and Comparative Example 7
As shown in Table 5, the peak intensity ratios of the samples obtained by X-ray diffraction measurement differ greatly depending on the presence or absence of pre-baking at 400 ° C.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【実施例9】調製例1で得られた塩基性炭酸ニッケル5
0.0gと水酸化リチウム19.6g(Ni:Liモル
比=1:1)を乳鉢で良く粉砕混合した。これを空気の
流通下400℃まで昇温し、炭酸ガス発生が認められな
くなるまで約2時間この温度に維持して予備焼成した。
その後酸素流通に切り替えて800℃で6時間最終焼成
した。昇温時間及び降温時間を含めた加熱処理時間は合
計12時間であった。得られた試料のX線回折測定によ
るピーク強度比は1.19であった。
Example 9 Basic Nickel Carbonate 5 Obtained in Preparation Example 1
0.0g and 19.6g of lithium hydroxide (Ni: Li molar ratio = 1: 1) were well pulverized and mixed in a mortar. This was heated to 400 ° C. under the flow of air, and maintained at this temperature for about 2 hours until carbon dioxide generation was no longer observed, and pre-baking was performed.
After that, the flow of oxygen was switched to the final firing at 800 ° C. for 6 hours. The heat treatment time including the temperature raising time and the temperature lowering time was 12 hours in total. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 1.19.

【0036】[0036]

【実施例10】400℃で予備焼成後、酸素流通に切り
替えて850℃で最終焼成した以外は実施例1と同様な
操作を行った。得られた試料のX線回折測定によるピー
ク強度比は1.20であった。
Example 10 The same operation as in Example 1 was performed, except that after pre-baking at 400 ° C., the flow of oxygen was changed to final baking at 850 ° C. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 1.20.

【0037】実施例9及び10の結果より、水溶性リチ
ウム化合物として水酸化リチウムを使用しても良いこと
がわかる。
The results of Examples 9 and 10 show that lithium hydroxide may be used as the water-soluble lithium compound.

【0038】[0038]

【比較例8】水酸化ニッケル50.0gと炭酸リチウム
19.1g(Ni:Liモル比=1:1)を乳鉢で良く
粉砕混合した。これを空気の流通下400℃まで昇温
し、約2時間この温度に維持して予備焼成した。その後
酸素流通に切り替えて800℃で6時間最終焼成した。
昇温時間及び降温時間を含めた加熱処理時間は合計12
時間であった。得られた試料のX線回折測定によるピー
ク強度比は0.98であった。ニッケル源として塩基性
炭酸ニッケルの代りに水酸化ニッケルを使用した場合
は、焼成を温度領域の異なる2段階で引き続き行っても
リチウムイオン電池の正極剤として実用性があるピーク
強度比1以上のニッケル酸リチウムは得られない。
Comparative Example 8 50.0 g of nickel hydroxide and 19.1 g of lithium carbonate (Ni: Li molar ratio = 1: 1) were well pulverized and mixed in a mortar. This was heated to 400 ° C. under the flow of air and maintained at this temperature for about 2 hours for preliminary firing. After that, the flow of oxygen was switched to the final firing at 800 ° C. for 6 hours.
The total heat treatment time including the temperature rise time and temperature fall time is 12
It was time. The peak intensity ratio of the obtained sample by X-ray diffraction measurement was 0.98. When nickel hydroxide is used instead of basic nickel carbonate as a nickel source, nickel having a peak intensity ratio of 1 or more is practical as a positive electrode material for lithium ion batteries even if firing is continuously performed in two stages having different temperature regions. Lithium oxide cannot be obtained.

【0039】[0039]

【発明の効果】リチウムイオン電池の正極剤として実用
性があるニッケル酸リチウムを一回の焼成で製造でき
る。
INDUSTRIAL APPLICABILITY Lithium nickel oxide, which is practical as a positive electrode material for a lithium ion battery, can be produced by firing once.

フロントページの続き (72)発明者 横野 進 新潟県新津市滝谷本町1−26日揮化学株式 会社中央研究所内Front Page Continuation (72) Inventor Susumu Yokono 1-26 Takitaya Honcho, Niitsu City, Niigata Prefecture JGC Chemicals Co., Ltd. Central Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 塩基性炭酸ニッケルの粉末と水溶性リチ
ウム化合物の粉末をNiとLiが実質的に1:1モルに
なる比率で緊密に混合し、不活性ガス又は酸素含有ガス
の存在下で250〜550℃の範囲の温度で予備焼成し
て炭酸ガスの発生を実質的に終了させたのち、引き続き
酸素ガス又は酸素富化空気の存在下で700〜900℃
の範囲の温度で最終焼成することを特徴とするニッケル
酸リチウムの製造方法。
1. A powder of a basic nickel carbonate and a powder of a water-soluble lithium compound are intimately mixed at a ratio of Ni and Li being substantially 1: 1 mol, and in the presence of an inert gas or an oxygen-containing gas. After pre-firing at a temperature in the range of 250 to 550 ° C. to substantially end the generation of carbon dioxide gas, subsequently 700 to 900 ° C. in the presence of oxygen gas or oxygen-enriched air.
The method for producing lithium nickel oxide is characterized in that final firing is performed at a temperature in the range.
【請求項2】 予備焼成温度が300〜500℃の範囲
である請求項1に記載のニッケル酸リチウムの製造方
法。
2. The method for producing lithium nickelate according to claim 1, wherein the pre-baking temperature is in the range of 300 to 500 ° C.
【請求項3】 塩基性炭酸ニッケルが、水溶性ニッケル
化合物と炭酸アルカリ、重炭酸アルカリ、炭酸アンモニ
ウム及び重炭酸アンモニウムからなる群から選ばれる化
合物を水中で反応させて得られる沈澱物を濾過、乾燥し
たものである請求項1に記載のニッケル酸リチウムの製
造方法。
3. A precipitate obtained by reacting a basic nickel carbonate with a water-soluble nickel compound and a compound selected from the group consisting of alkali carbonate, alkali bicarbonate, ammonium carbonate and ammonium bicarbonate in water, and filtering and drying. The method for producing lithium nickelate according to claim 1, wherein
【請求項4】 水溶性ニッケル化合物が硝酸ニッケル、
硫酸ニッケル及び塩化ニッケルからなる群から選ばれる
化合物である請求項3に記載のニッケル酸リチウムの製
造方法。
4. The water-soluble nickel compound is nickel nitrate,
The method for producing lithium nickelate according to claim 3, which is a compound selected from the group consisting of nickel sulfate and nickel chloride.
【請求項5】 水溶性リチウム化合物が炭酸リチウム又
は水酸化リチウムである請求項1に記載のニッケル酸リ
チウムの製造方法。
5. The method for producing lithium nickelate according to claim 1, wherein the water-soluble lithium compound is lithium carbonate or lithium hydroxide.
【請求項6】 塩基性炭酸ニッケルの粉末と水溶性リチ
ウム化合物の粉末を緊密に混合した粉末を成形物にした
状態で不活性ガス又は酸素含有ガスの存在下で250〜
550℃の範囲の温度で予備焼成して炭酸ガスの発生を
実質的に終了させたのち、引き続き酸素ガス又は酸素富
化空気の存在下で700〜900℃の範囲の温度で最終
焼成する請求項1に記載のニッケル酸リチウムの製造方
法。
6. A powder obtained by intimately mixing a powder of basic nickel carbonate and a powder of a water-soluble lithium compound in the form of a molded product in the presence of an inert gas or an oxygen-containing gas at 250 to 250.degree.
A preliminary calcination at a temperature in the range of 550 ° C. to substantially end the generation of carbon dioxide gas, followed by a final calcination at a temperature in the range of 700 to 900 ° C. in the presence of oxygen gas or oxygen-enriched air. 1. The method for producing lithium nickelate according to 1.
【請求項7】 予備焼成温度が300〜500℃の範囲
である請求項6に記載のニッケル酸リチウムの製造方
法。
7. The method for producing lithium nickelate according to claim 6, wherein the pre-baking temperature is in the range of 300 to 500 ° C.
JP7211461A 1995-08-21 1995-08-21 Production of lithium nickelate Pending JPH0959026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7211461A JPH0959026A (en) 1995-08-21 1995-08-21 Production of lithium nickelate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7211461A JPH0959026A (en) 1995-08-21 1995-08-21 Production of lithium nickelate

Publications (1)

Publication Number Publication Date
JPH0959026A true JPH0959026A (en) 1997-03-04

Family

ID=16606329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7211461A Pending JPH0959026A (en) 1995-08-21 1995-08-21 Production of lithium nickelate

Country Status (1)

Country Link
JP (1) JPH0959026A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264636A (en) * 1999-03-17 2000-09-26 Toda Kogyo Corp Lithium manganese spinel oxide particle powder and its production
JP2002020124A (en) * 2000-06-30 2002-01-23 Dowa Mining Co Ltd Method for producing lithium double oxide and positive pole active material
EP1675208A2 (en) * 2000-04-04 2006-06-28 Sony Corporation Non-aqueous electrolyte secondary battery
JP5819199B2 (en) * 2010-02-05 2015-11-18 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5819200B2 (en) * 2010-02-05 2015-11-18 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2018067524A (en) * 2016-10-14 2018-04-26 Basf戸田バッテリーマテリアルズ合同会社 Method for reducing amount of lithium remaining in positive electrode active material particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264636A (en) * 1999-03-17 2000-09-26 Toda Kogyo Corp Lithium manganese spinel oxide particle powder and its production
EP1675208A2 (en) * 2000-04-04 2006-06-28 Sony Corporation Non-aqueous electrolyte secondary battery
EP1675208A3 (en) * 2000-04-04 2007-04-11 Sony Corporation Non-aqueous electrolyte secondary battery
JP2002020124A (en) * 2000-06-30 2002-01-23 Dowa Mining Co Ltd Method for producing lithium double oxide and positive pole active material
JP5819199B2 (en) * 2010-02-05 2015-11-18 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5819200B2 (en) * 2010-02-05 2015-11-18 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2018067524A (en) * 2016-10-14 2018-04-26 Basf戸田バッテリーマテリアルズ合同会社 Method for reducing amount of lithium remaining in positive electrode active material particles

Similar Documents

Publication Publication Date Title
KR100651156B1 (en) Method for making a lithium mixed metal compound
KR101382386B1 (en) Preparation method of lithium-metal composite oxides
EP2557068A1 (en) Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery
JPH08130013A (en) Manufacture of lim3+o2 or limn2o4, and lini3+o2 for secondary battery positive electrode material
JP5021892B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
CN1706056A (en) Method for preparing positive electrode material for lithium cell, and lithium cell
JPH08277118A (en) Preparation of lithium interlayer compound
JP2000515478A (en) Synthesis of lithium nickel cobalt dioxide
EP2615672A2 (en) Positive electrode active material for a lithium secondary battery, and method for preparing same
JP5069007B2 (en) Method for producing lithium / transition metal composite oxide
JP2003292322A (en) Method for manufacturing active substance for positive electrode of lithium ion secondary battery
JP2002506560A (en) Method for producing lithium manganese mixed oxide and use thereof
KR100536957B1 (en) Honeycomb-shaped ion-exchange type lithium manganese oxide adsorbent and method for preparing the same
JPH0959026A (en) Production of lithium nickelate
JPH11149926A (en) Lithium manganese oxide fine powder, production lithium manganese fine powder, and lithium ion secondary battery employing positive electrode containing lithium manganese fine powder as active material
JP2001220145A (en) Method for manufacturing lithium manganese oxide powder for lithium secondary battery
JP2001114521A (en) Trimanganese tetraoxide and method for its production
WO2001047814A1 (en) Method for producing lithium manganate and lithium cell using said lithium manganate
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
KR20220117907A (en) Cathode Materials and Methods
JPH09156931A (en) Production of lithium nickelate
JP4177760B2 (en) Manufacturing process of cathode material for lithium battery
JP3655737B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2003080517A1 (en) Solid state thermal synthesis of lithium cobaltate
JP2002338246A (en) Method for manufacturing lithium/manganese compound oxide and lithium cell formed using lithium/manganese compound oxide