JPH095551A - Production of quartz glass waveguide element - Google Patents

Production of quartz glass waveguide element

Info

Publication number
JPH095551A
JPH095551A JP15464495A JP15464495A JPH095551A JP H095551 A JPH095551 A JP H095551A JP 15464495 A JP15464495 A JP 15464495A JP 15464495 A JP15464495 A JP 15464495A JP H095551 A JPH095551 A JP H095551A
Authority
JP
Japan
Prior art keywords
glass
quartz glass
silica
core
waveguide element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15464495A
Other languages
Japanese (ja)
Other versions
JP3293411B2 (en
Inventor
Haruyasu Komano
晴保 駒野
Hiroaki Okano
広明 岡野
Keiichi Higuchi
恵一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15464495A priority Critical patent/JP3293411B2/en
Publication of JPH095551A publication Critical patent/JPH095551A/en
Application granted granted Critical
Publication of JP3293411B2 publication Critical patent/JP3293411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE: To provide a process for producing a quartz glass waveguide element which is extremely little in the deformation and warpage of a quartz glass substrate even if the substrate is subjected to a high-temp. heat treatment. CONSTITUTION: This process comprises the production of the quartz glass waveguide element by forming a core glass film 2 on the quartz glass substrate 1 and subjecting the core glass film 2 to photolithography and etching to form core waveguides 3, then forming a porous glass layer 4 around these waveguides and subjecting the porous glass layer 4 to the high-temp. heat treatment to vitrify the layer to transparent glass by sintering. The quartz glass substrate 1 is placed on an SiC plate 6 having plural grooves 7 on the surface in the case of subjecting the substrate to the high-temp. heat treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石英系ガラス導波路素
子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a silica glass waveguide device.

【0002】[0002]

【従来の技術】石英系ガラス導波路素子は、石英ガラス
基板に、屈折率の高いコア(導波路)を所望の形状に形
成し、その上に屈折率の低いクラッドを形成したもので
あり、薄膜形成、フォトリソグラフィ、エッチング等の
技術を応用して製造されている。
2. Description of the Related Art A silica-based glass waveguide element is one in which a core (waveguide) having a high refractive index is formed in a desired shape on a silica glass substrate, and a clad having a low refractive index is formed thereon. It is manufactured by applying techniques such as thin film formation, photolithography, and etching.

【0003】また、石英系ガラス導波路素子は、光を伝
搬するコアを任意形状に形成できるため、光通信分野に
おいて広範囲に応用されている。
Further, the silica-based glass waveguide device is widely applied in the field of optical communication since the core for propagating light can be formed in an arbitrary shape.

【0004】従来より、石英系ガラス導波路素子の製造
方法として、図6に示すような方法が採用されている。
Conventionally, a method shown in FIG. 6 has been adopted as a method of manufacturing a silica glass waveguide element.

【0005】まず、石英ガラス基板10上に、電子ビー
ム蒸着法により組成SiO2 −TiO2 のコアガラス膜
11を形成する。次に、コアガラス膜11をフォトリソ
グラフィー及び反応性イオンエッチング(RIE)によ
りコア導波路12を形成させ、火炎堆積法によりSiO
2 −B2 3 −P2 5 系多孔質ガラス層13を300
〜400μmの膜厚で堆積させる。
First, a core glass film 11 having a composition SiO 2 —TiO 2 is formed on a quartz glass substrate 10 by an electron beam evaporation method. Next, a core waveguide 12 is formed on the core glass film 11 by photolithography and reactive ion etching (RIE), and SiO 2 is formed by a flame deposition method.
The 2- B 2 O 3 -P 2 O 5 based porous glass layer 13 is set to 300.
Deposit to a film thickness of ˜400 μm.

【0006】その後、電気炉(図示せず)内にSiCか
らなる板15を載置して、その上に上記石英ガラス基板
10を乗せて1330℃の高温熱処理を施し、多孔質ガ
ラス層13を、焼結・透明ガラス化させてクラッド層1
4を形成していた。
Thereafter, a plate 15 made of SiC is placed in an electric furnace (not shown), the quartz glass substrate 10 is placed on the plate 15 and subjected to a high temperature heat treatment at 1330 ° C. to form a porous glass layer 13. , Sintered / transparent vitrified clad layer 1
4 was formed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
方法では、石英ガラス基板20は図7に示すように高温
熱処理による変形、すなわち反りLが生じていた。反り
Lは最大で100μmに達する場合もあり、設計寸法通
りの導波路コアが得られないという問題があった。
However, in the above-mentioned method, the quartz glass substrate 20 is deformed by the high temperature heat treatment, that is, the warp L is generated as shown in FIG. The warpage L may reach 100 μm at the maximum, and there is a problem in that a waveguide core having a design dimension cannot be obtained.

【0008】例えば、石英系ガラス導波路素子の中に、
複数の光ファイバを一定の間隔で載置しテープ状に加工
したテープファイバと接続するものがあるが、この種の
ガラス導波路素子は、コア導波路が各光ファイバに接続
するよう、導波路間隔が所定の設計値で製造されている
ため、石英ガラス基板が熱処理により反ってしまうと、
導波路のピッチがずれてしまい、テープファイバと接続
させると接続損失及び光損失が増大してしまうという問
題があった。
For example, in a silica glass waveguide element,
There is one that connects a plurality of optical fibers placed at a fixed interval and processed into a tape-shaped tape fiber, but this kind of glass waveguide element is a waveguide so that the core waveguide is connected to each optical fiber. Since the spacing is manufactured with a predetermined design value, if the quartz glass substrate warps due to heat treatment,
There is a problem that the pitch of the waveguide is displaced and the connection loss and the optical loss are increased when the waveguide is connected to the tape fiber.

【0009】そこで、本発明の目的は、高温熱処理を施
しても石英ガラス基板の変形及び反り量が極めて小さい
石英系ガラス導波路素子の製造方法を提供することにあ
る。
Therefore, an object of the present invention is to provide a method of manufacturing a silica-based glass waveguide device in which the deformation and warpage of the silica glass substrate are extremely small even when subjected to high temperature heat treatment.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、石英ガラス基板にコアガラス膜を形成し、
該コアガラス膜にフォトリソグラフィ及びエッチングを
施してコア導波路を形成した後、この周囲に多孔質ガラ
ス層を形成し、該多孔質ガラス層を焼結して透明ガラス
化するために高温熱処理を施して石英系ガラス導波路素
子を製造する方法において、上記高温熱処理を施す際
に、上記石英ガラス基板を、表面に複数の溝を有するS
iC板に載置するものである。
In order to achieve the above object, the present invention provides a core glass film on a quartz glass substrate,
After the core glass film is subjected to photolithography and etching to form a core waveguide, a porous glass layer is formed around this, and a high-temperature heat treatment is performed to sinter the porous glass layer into a transparent glass. In the method of manufacturing a silica-based glass waveguide device by applying the above-mentioned quartz glass substrate, the quartz glass substrate is provided with
It is placed on the iC plate.

【0011】また、上記SiC板の溝は格子状に設けら
れ、上記溝の幅が0.1mm〜2.0mmであることが
望ましい。
Further, it is desirable that the grooves of the SiC plate are provided in a grid pattern and the width of the grooves is 0.1 mm to 2.0 mm.

【0012】更に、上記SiC板の少なくとも表面に薄
膜のSiO2 がコーティングされていてもよく、溝の格
子角が、辺長4mm〜9mmとしたものでもよい。
Furthermore, at least the surface of the SiC plate may be coated with a thin film of SiO 2 , and the lattice angle of the groove may be a side length of 4 mm to 9 mm.

【0013】[0013]

【作用】上記構成によれば、石英系ガラス導波路素子の
高温熱処理工程において、複数の溝を有するSiC板を
用いることにより、石英ガラス基板の変形及び反り量を
極めて小さくすることができる。
According to the above construction, the deformation and warpage of the quartz glass substrate can be made extremely small by using the SiC plate having a plurality of grooves in the high temperature heat treatment step of the quartz glass waveguide element.

【0014】本発明において、SiC板に溝を設けた理
由を以下に述べる。
In the present invention, the reason why the groove is provided in the SiC plate will be described below.

【0015】SiC板の溝部分は、SiC板と石英ガラ
ス基板との間の間隙となるため、高温熱処理時に断熱層
となり、石英ガラス基板とSiC板が接する部分は熱が
伝導して電気炉と同等の温度になるが、溝部分に接する
石英ガラス基板は、SiC板が接する部分より若干低い
温度つまり電気炉内の雰囲気ガスとほぼ同じ温度にな
る。
Since the groove portion of the SiC plate serves as a gap between the SiC plate and the quartz glass substrate, it serves as a heat insulating layer during high temperature heat treatment, and heat is conducted to a portion where the quartz glass substrate and the SiC plate are in contact with each other to form an electric furnace. Although the temperature is the same, the temperature of the quartz glass substrate in contact with the groove is slightly lower than the temperature of the part in contact with the SiC plate, that is, almost the same temperature as the atmospheric gas in the electric furnace.

【0016】従って、高温熱処理を施す際に、高温部
分、つまり粘性が高い部分の面積が減少するため、石英
ガラス基板上に形成された多孔質ガラス層を焼結・透明
ガラス化させた後、冷却させる過程で生じる石英ガラス
基板の変形及び反り部分の面積を減少させることがで
き、よって、石英ガラス基板の変形及び反り量を極めて
小さくすることができる。
Therefore, when the high temperature heat treatment is performed, the area of the high temperature portion, that is, the portion having high viscosity is reduced. Therefore, after the porous glass layer formed on the quartz glass substrate is sintered and made into a transparent glass, It is possible to reduce the deformation and the area of the warp portion of the quartz glass substrate that occurs during the cooling process, and thus it is possible to make the deformation and the warp amount of the quartz glass substrate extremely small.

【0017】また、本発明においてSiC板にSiO2
膜をコーティングしたのは、高温熱処理の際に、石英ガ
ラス基板の裏面にSiC板の微小の凹凸を転写するのを
防ぐことができるからである。
In the present invention, the SiC plate is coated with SiO 2
The reason why the film is coated is that it is possible to prevent the transfer of the minute irregularities of the SiC plate to the back surface of the quartz glass substrate during the high temperature heat treatment.

【0018】[0018]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0019】(実施例1)図1に示すように本発明の方
法は、まず、外径3インチ、厚さ1mmの石英ガラス基
板1上に、電子ビーム蒸着法により組成SiO2 −Ti
2 のコアガラス膜2を厚さ8μmまで蒸着させる。こ
こで石英ガラス基板1の屈折率はn0 =1.4576コ
アガラス膜の屈折率はn1 =1.4620であり、比屈
折率差はΔ=0.30%である。尚、屈折率はMetr
ion社製のプリズム・カプラ(PC−2010)で測
定した。
Example 1 As shown in FIG. 1, according to the method of the present invention, first, a composition SiO 2 —Ti is formed on a quartz glass substrate 1 having an outer diameter of 3 inches and a thickness of 1 mm by an electron beam evaporation method.
A core glass film 2 of O 2 is deposited to a thickness of 8 μm. Here, the refractive index of the quartz glass substrate 1 is n 0 = 1.4576, and the refractive index of the core glass film is n 1 = 1.4620, and the relative refractive index difference is Δ = 0.30%. The refractive index is Metr
It was measured with a prism coupler (PC-2010) manufactured by Ion.

【0020】次に、コアガラス膜2上に、マグネトロン
・スパッタリング法によりWSi膜を1μm形成し、こ
の上にレジストを塗布し、マスクアライナーでコアパタ
ーンを露光後、反応性イオンエッチングによりエッチン
グを施してコア導波路3を形成する。
Next, a WSi film having a thickness of 1 μm is formed on the core glass film 2 by a magnetron sputtering method, a resist is applied on the WSi film, the core pattern is exposed by a mask aligner, and etching is performed by reactive ion etching. To form the core waveguide 3.

【0021】コア導波路3が形成された上記石英ガラス
基板1を、膜形成装置(図示せず)内の加熱されたター
ンテーブル(図示せず)に載置して、SiCl4 とBC
3 を酸水素バーナに供給して、膜厚290μmのSi
2 −B2 3 系多孔質ガラス層41を形成する。その
後、酸水素バーナにPCl3 を添加して、上記SiO2
−B2 3 系多孔質ガラス層41上に、膜厚15μmの
SiO2 −B2 3 −P2 5 系多孔質ガラス42を形
成し、多孔質ガラス41及び42からなる多孔質ガラス
4を形成する。
The silica glass substrate 1 on which the core waveguide 3 is formed is placed on a heated turntable (not shown) in a film forming apparatus (not shown) to obtain SiCl 4 and BC.
supplies l 3 in oxyhydrogen burner, a thickness of 290 [mu] m Si
The O 2 —B 2 O 3 based porous glass layer 41 is formed. After that, PCl 3 is added to the oxyhydrogen burner to remove the SiO 2
A porous glass formed by forming a SiO 2 —B 2 O 3 —P 2 O 5 -based porous glass 42 having a film thickness of 15 μm on the —B 2 O 3 -based porous glass layer 41 and forming the porous glass 41 and 42. 4 is formed.

【0022】ここで、多孔質ガラス層4にB2 3 、P
2 5 のドーパントを添加したのは、透明ガラスの溶融
温度を下げるためであり、屈折率を石英ガラス基板1と
同等にするためである。
Here, B 2 O 3 and P are added to the porous glass layer 4.
The reason for adding the dopant of 2 O 5 is to lower the melting temperature of the transparent glass and to make the refractive index equal to that of the quartz glass substrate 1.

【0023】その後、SiCからなり表面にSiO2
ーティングが施され、図2に示すような、幅1mm、一
辺の長さが5mmの正方形(5mm角)の格子状に溝7
を形成したSiC板6を、電気炉(図示せず)の石英ガ
ラス炉芯管内に載置し、その上に上記石英ガラス基板1
を載せ、Heガス雰囲気で1330℃で1時間加熱し、
多孔質ガラス層4を焼結・透明ガラス化させて、SiO
2 −B2 3 −P2 5 系クラッド層5を形成する。
尚、透明ガラス化後のクラッド層5の膜厚は30μmで
あり、屈折率は石英ガラス基板と同じn3 =1.457
6である。
After that, SiO 2 coating is applied to the surface of SiC, and the grooves 7 are formed in a square (5 mm square) grid having a width of 1 mm and a side length of 5 mm as shown in FIG.
The SiC plate 6 on which the above is formed is placed in a quartz glass furnace core tube of an electric furnace (not shown), and the quartz glass substrate 1 is placed thereon.
And heat it in a He gas atmosphere at 1330 ° C. for 1 hour,
The porous glass layer 4 is sintered and made into a transparent glass, and SiO
To form a 2 -B 2 O 3 -P 2 O 5 based cladding layer 5.
The thickness of the clad layer 5 after transparent vitrification was 30 μm, and the refractive index was the same as that of the quartz glass substrate, n 3 = 1.457.
It is 6.

【0024】(実施例2)図3に示すように幅0.2m
m、一辺の長さが5mmの正方形(5mm角)の格子状
に溝7を形成したSiC板6を用いた以外は実施例1と
同様の方法により石英系導波路素子を形成した。
(Embodiment 2) As shown in FIG. 3, the width is 0.2 m.
A silica-based waveguide element was formed by the same method as in Example 1 except that the SiC plate 6 in which the grooves 7 were formed in a square (5 mm square) lattice having a length of m and a side of 5 mm was used.

【0025】(実施例3)図4に示すように幅1mm、
一辺の長さが9mmの正方形(9mm角)の格子状に溝
7を形成したSiC板6を用いた以外は実施例1と同様
の方法により石英系導波路素子を形成した。
(Embodiment 3) As shown in FIG. 4, a width of 1 mm,
A silica-based waveguide element was formed by the same method as in Example 1 except that the SiC plate 6 in which the grooves 7 were formed in the shape of a square (9 mm square) lattice having a side length of 9 mm was used.

【0026】(実施例3)図5に示すように幅2mm、
一辺の長さが4mmの正方形(4mm角)の格子状に溝
7を形成したSiC板6を用いた以外は実施例1と同様
の方法により石英系導波路素子を形成した。
(Embodiment 3) As shown in FIG. 5, a width of 2 mm,
A silica-based waveguide element was formed by the same method as in Example 1 except that the SiC plate 6 in which the grooves 7 were formed in the shape of a square (4 mm square) grid having a side length of 4 mm was used.

【0027】高温熱処理終了後、石英ガラス基板の反り
量を測定装置(DEKTAK)により測定した。実施例
1及び実施例2の反り量は5μmであり、実施例3の反
り量は8μm、実施例4の反り量は15μmであった。
After the high temperature heat treatment was completed, the amount of warpage of the quartz glass substrate was measured by a measuring device (DEKTAK). The amount of warpage in Examples 1 and 2 was 5 μm, the amount of warpage in Example 3 was 8 μm, and the amount of warpage in Example 4 was 15 μm.

【0028】従って、本発明の石英系導波路素子の製造
方法によれば、石英ガラス基板の反り量を大幅に減少さ
せることができる。
Therefore, according to the method for manufacturing a silica-based waveguide element of the present invention, the amount of warpage of the silica glass substrate can be greatly reduced.

【0029】尚、溝の幅としては、0.1mm以上であ
ればよく2mm以下であればよい。また、高温熱処理の
温度は1250℃以上であればよい。更に、SiC板に
SiO2 膜をコーティングしたのは、高温熱処理の際
に、石英ガラス基板の裏面にSiC板の微小の凹凸を転
写するのを防ぐためである。
The width of the groove may be 0.1 mm or more and 2 mm or less. The temperature of the high temperature heat treatment may be 1250 ° C or higher. Furthermore, the reason why the SiC plate is coated with the SiO 2 film is to prevent the transfer of minute irregularities of the SiC plate to the back surface of the quartz glass substrate during the high temperature heat treatment.

【0030】[0030]

【発明の効果】以上要するに本発明によれば、複数の溝
を設けたSiC板を用いて、石英ガラス基板への熱伝導
を妨げることにより、石英ガラス基板の反り量を減少さ
せることができる。よって、接続損失及び光損失を抑止
することが可能となる。
In summary, according to the present invention, it is possible to reduce the amount of warpage of a quartz glass substrate by using a SiC plate provided with a plurality of grooves to prevent heat conduction to the quartz glass substrate. Therefore, it is possible to suppress connection loss and optical loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の石英系導波路素子の製造方法の一実施
例を示す図である。
FIG. 1 is a diagram showing an embodiment of a method for manufacturing a silica-based waveguide element of the present invention.

【図2】図1のSiC板を示す拡大図である。FIG. 2 is an enlarged view showing the SiC plate of FIG.

【図3】その他の実施例を示す図である。FIG. 3 is a diagram showing another embodiment.

【図4】その他の実施例を示す図である。FIG. 4 is a diagram showing another embodiment.

【図5】その他の実施例を示す図である。FIG. 5 is a diagram showing another embodiment.

【図6】従来の石英系導波路素子の製造方法を示す図で
ある。
FIG. 6 is a diagram showing a conventional method for manufacturing a silica-based waveguide element.

【図7】図6の方法により製造した石英系導波路素子の
石英ガラス基板を示す断面図である。
7 is a cross-sectional view showing a silica glass substrate of a silica-based waveguide device manufactured by the method of FIG.

【符号の説明】[Explanation of symbols]

1 石英ガラス基板 2 コアガラス膜 3 コア導波路 4 多孔質ガラス層 5 クラッド層 6 SiC板 7 溝 1 Quartz Glass Substrate 2 Core Glass Film 3 Core Waveguide 4 Porous Glass Layer 5 Cladding Layer 6 SiC Plate 7 Groove

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 石英ガラス基板にコアガラス膜を形成
し、該コアガラス膜にフォトリソグラフィ及びエッチン
グを施してコア導波路を形成した後、この周囲に多孔質
ガラス層を形成し、該多孔質ガラス層を焼結して透明ガ
ラス化するために高温熱処理を施して石英系ガラス導波
路素子を製造する方法において、上記高温熱処理を施す
際に、上記石英ガラス基板を、表面に複数の溝を有する
SiC板に載置することを特徴とする石英系ガラス導波
路素子の製造方法。
1. A core glass film is formed on a quartz glass substrate, a core waveguide is formed by subjecting the core glass film to photolithography and etching, and then a porous glass layer is formed around the core waveguide to form the porous glass layer. In a method for producing a silica-based glass waveguide element by subjecting a glass layer to a high-temperature heat treatment to sinter the glass layer into a transparent glass, the quartz glass substrate is provided with a plurality of grooves on the surface when the high-temperature heat treatment is performed. A method for manufacturing a silica-based glass waveguide element, characterized by placing the glass-based waveguide element on a SiC plate.
【請求項2】 上記SiC板の溝が、格子状に設けられ
ていることを特徴とする請求項1記載の石英系ガラス導
波路素子の製造方法。
2. The method for manufacturing a silica-based glass waveguide device according to claim 1, wherein the grooves of the SiC plate are provided in a grid pattern.
【請求項3】 上記溝の幅が、0.1mm〜2.0mm
であることを特徴とする請求項1または2に記載の石英
系ガラス導波路素子の製造方法。
3. The groove has a width of 0.1 mm to 2.0 mm.
The method for producing a silica-based glass waveguide element according to claim 1 or 2, wherein
【請求項4】 上記SiC板の少なくとも表面に薄膜の
SiO2 がコーティングされていることを特徴とする請
求項1から3のいずれかに記載の石英系ガラス導波路素
子の製造方法。
4. The method for manufacturing a silica-based glass waveguide device according to claim 1, wherein at least the surface of the SiC plate is coated with a thin film of SiO 2 .
【請求項5】 上記SiC板の溝の格子角が、辺長4m
m〜9mmとしたものである請求項2から4のいずれか
に記載の石英系ガラス導波路素子の製造方法。
5. The lattice angle of the groove of the SiC plate has a side length of 4 m.
The method for manufacturing a silica-based glass waveguide element according to any one of claims 2 to 4, wherein m is 9 mm.
JP15464495A 1995-06-21 1995-06-21 Method for manufacturing quartz-based glass waveguide device Expired - Fee Related JP3293411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15464495A JP3293411B2 (en) 1995-06-21 1995-06-21 Method for manufacturing quartz-based glass waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15464495A JP3293411B2 (en) 1995-06-21 1995-06-21 Method for manufacturing quartz-based glass waveguide device

Publications (2)

Publication Number Publication Date
JPH095551A true JPH095551A (en) 1997-01-10
JP3293411B2 JP3293411B2 (en) 2002-06-17

Family

ID=15588734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15464495A Expired - Fee Related JP3293411B2 (en) 1995-06-21 1995-06-21 Method for manufacturing quartz-based glass waveguide device

Country Status (1)

Country Link
JP (1) JP3293411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182348A1 (en) * 2022-03-24 2023-09-28 三菱ケミカル株式会社 Method for manufacturing quartz member, method for forming silica coating, and method for smoothing surface of member made from quartz

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008051973A1 (en) 2006-10-24 2008-05-02 Bradley Fixtures Corporation Capacitive sensing for washroom fixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182348A1 (en) * 2022-03-24 2023-09-28 三菱ケミカル株式会社 Method for manufacturing quartz member, method for forming silica coating, and method for smoothing surface of member made from quartz

Also Published As

Publication number Publication date
JP3293411B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
US6690872B2 (en) Silica based optical waveguide and production method therefor
JP3293411B2 (en) Method for manufacturing quartz-based glass waveguide device
JPH05215929A (en) Manufacture of glass waveguide
JP3500990B2 (en) Method for manufacturing substrate-type optical waveguide
JPH09222525A (en) Production of optical waveguide
JP3245367B2 (en) Method of forming optical waveguide
JPH01189614A (en) Quartz system light waveguide and its manufacture
JPH05297236A (en) Manufacture of planar optical waveguide and resulted device
JP3208744B2 (en) Manufacturing method of optical waveguide
JP3575342B2 (en) Method for manufacturing silica glass optical waveguide
US20020064360A1 (en) Optical waveguide and a method for producing it
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
JPH05181031A (en) Optical waveguide and its production
JPH0843654A (en) Silica glass waveguide and its production
JPH07318734A (en) Quartz glass waveguide and its production
JP2953173B2 (en) Optical waveguide
WO2020129664A1 (en) Optical waveguide and method for manufacturing same
JP3031066B2 (en) Method for manufacturing oxide film and method for manufacturing optical waveguide
JPS63184707A (en) Manufacture of planar light waveguide
JPH09243846A (en) Production of high specific refractive index difference optical waveguide
JP2001074959A (en) Embedded type optical waveguide and its production
KR20010047296A (en) Planar optic waveguide using aerosol process and method for manufacturing the same
JPS59137346A (en) Manufacture of glass waveguide
JPH05257021A (en) Production of optical waveguide
JPH08136754A (en) Production of optical waveguide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees