JPH09509615A - Method for manufacturing rectangular thin slab and continuous casting apparatus - Google Patents

Method for manufacturing rectangular thin slab and continuous casting apparatus

Info

Publication number
JPH09509615A
JPH09509615A JP7519818A JP51981895A JPH09509615A JP H09509615 A JPH09509615 A JP H09509615A JP 7519818 A JP7519818 A JP 7519818A JP 51981895 A JP51981895 A JP 51981895A JP H09509615 A JPH09509615 A JP H09509615A
Authority
JP
Japan
Prior art keywords
casting
continuum
thickness
cooling mold
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7519818A
Other languages
Japanese (ja)
Other versions
JP3056252B2 (en
Inventor
プレシウチュニッヒ,フリッツ−ペーター
Original Assignee
マンネスマン・アクチエンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6509214&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09509615(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by マンネスマン・アクチエンゲゼルシャフト filed Critical マンネスマン・アクチエンゲゼルシャフト
Publication of JPH09509615A publication Critical patent/JPH09509615A/en
Application granted granted Critical
Publication of JP3056252B2 publication Critical patent/JP3056252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Artificial Fish Reefs (AREA)
  • Heat Treatment Of Articles (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Pinball Game Machines (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The invention relates to a process and a continuous casting facility for the production of thin slabs, preferably of steel with a predetermined congealing thickness of (for example) 50 mm. In the said process, an optimal casting surface and internal quality, with minimal and predetermined congealing thickness and plant capacity, and thus minimal complexity of rolling material, is achieved by the optimal combination of such elements as the following: rolling of cast metal in the area of the casting guide (segment 0), cambered ingot mould with a cross-sectional area which increases from inlet to outlet, hydraulically driven lifting platform, casting powder and supply thereof, immersion discharge with specific flow cross section. Qualitative adjustment of these process and system parameters results in satisfactory supply of casting slag and circulation in the meniscus by comparison with a standard 200 mm thick slab. The conditions from the basin top to the meniscus have a direct effect on the superficial and interior quality of the casting and the reliability of the casting process.

Description

【発明の詳細な説明】 方形薄肉スラブの製造方法及び連続鋳造装置 本発明は連続鋳造装置及び薄肉スラブ製造のための方法に関する。 例えばドイツ特許出願公開第DE 37 09 188 A1 号公報に開示されているように 従来の技術から平たい浸漬出湯口を使用することは公知である。更に、液圧駆動 式持上げテーブルが通常的であり、これは、鋳造最中にさえ正弦振動から変位さ せることにより振動の行程高さ、周波数及び形を変化させ最適に選択することを 可能にする。凝固の間に鋳造厚が、鋳造連続体の改善された内部品質が得られる ように減少される鋳造圧延装置が、ドイツ特許出願公開第DE 38 18 077 A1 号公 報から公知である。 従来の技術を調べて分かった点は、薄肉連続鋳造スラブを製造する目的は、複 雑な問題の解決を必要とし、連続鋳造装置全体について見て制御可能な変数の全 体が非常に大きくて、従って平均的専門家の知識ではまったく充分でなく、多少 とも適用可能な多数の解決法のうちから可及的最小の労作で充分に良好な結果を 得る解決法を見つけることを平均的専門家に要求するのは無理である点である。 本発明の課題は、スラグの供給及び鋳造連続体厚の減少における最適な条件が 既に鋳造圧延装置において、及び冷却鋳型及び案内ロールスタンドにおいて得ら れることにより、薄肉スラブの前もって与えられている厚さを実現することを可 能にする方法及び連続鋳造装置を提供することにある。 上記課題は本発明により請求の範囲第1項及び第3項の特徴部分に記載された 特徴事項により解決される。有利な実施の形態は副次請求項に記載されている。 上記課題の解決法は、例えば垂直冷却鋳型、垂直湾曲式冷却鋳型又は円弧状の冷 却鋳型のタイプに依存しない。 図は、以下の本発明の例示的な説明の理解のために用いられる。 第1図は冷却鋳型の鋳造条件を示し、 第2図は200mm厚さ×10mm幅のスラブについて、同一の表面品質及び 鋳造性能についてのスラブ厚さに依存する技術的労作を示し、 第3.1図〜第3.3図は200mm厚×1000mm幅のスラブについて、 同一の表面品質及びスラブ厚さについての鋳造速度に依存する技術的労作を示し 、 第4図は200mm厚×1000mm幅のスラブについて、冷却鋳型の中の鋼 の、スラブ厚さに依存する液圧的挙動を示し、 第5図は連続鋳造装置を示す。 本発明を実現する範囲内で行われた試験により、鋳造連続体の表面品質は実質 的にスラグ供給に依存することが分かった。これには、メニスカス、すなわちス ラグ高さ(hSchlacke)と、冷却鋳型(例えば金型、黒鉛型等)をはね上げる際 に溶湯から出てくる鋳造連続体外殻高さ(hStrangschale)との共働作用が責を 負う(第1図)。 潤滑が最適であり表面欠陥(鋳造連続体表面の直下の、主に酸化物の形の鋳造 粉末粒子)が回避されるためには次式の基準が満足されなければならないことが 分かった。 (1) hSchlacke≧hStrangschale スラグ高さhSchlackeは主に冷却鋳型入口横断面の厚さに依存し、鋳造連続体 外殻高さhStrangschaleは主に、振動する冷却鋳型の引上げ高さに依存する。 hSchlackeの大きさと、このものの冷却鋳型入口横断面の厚さへの依存性とを 考えると、この系に持込まなければならない技術的煩労とも呼ぶことができる下 記式の関係は予期しないことに下にあげる結果を示す。 (2) ハンディキャップ=製造された鋳造連続体表面積/溶湯表面積 (単位はm2/min×1/m2) 前もって与えている鋳造性能すなわち2.736t/minにおいて、通常の 200mmスラブを50mmスラブと比較し、そしてこれを200mmスラブに ついて式(2)において1とすると、この値は第2図より見られるように50m mスラブについては16.62に上昇する。すなわち式(2)は、鋳造連続体厚 さの減少に逆比例して増加し、その際その依存性は指数曲線をたどる。 これに対して、75/100及び125mm冷却鋳型について第3図に示され ているように、鋳造厚さが定められている場合に式(2)が、鋳造速度を高める につれてどのように変化するかを考えるならばこれは、小さい勾配の直線でリニ アにのみ増加することが確認される。 式(1)に多大の影響を与えるのが、溶融金属が冷却鋳型の中に流入すること により発生する乱流であり、この乱流はしばしば、溶湯液面まで継続し、波動と なることがあり、その際、波の山はスラグ液面を越えて高まることがあり、これ により潤滑における中断が生じる。この乱流はとりわけ、生産量と、浸漬出湯口 横断面における冷却鋳型の厚さと幅とに依存する。乱流の尺度として、生産量と 厚さとの商としての液圧的挙動が定義され、そして次式により表される。 (3) 液圧挙動=生産量(単位はt/min)/厚さ(単位はmm) 200mmの厚さのスラブについての液圧挙動の値が、例えば第4図から見る ことができる。冷却鋳型厚さが大きくなるにつれて液圧挙動が大幅に良好になる ことが分かる。 下記式の関係も乱流に関して重要である。 (4) FST/FTA≦50 ただし、 FST=浸漬出湯口の横断面面積 FTA=完全凝固したスラブの鋳造連続体横断面面積 更に、冷却鋳型領域内での電磁的ブレーキが、鋳造液面領域における乱流を大 幅に低減できる。 以上に説明され測定により実証された各式から、冷却鋳型の中のスラブ厚さを 選択する際に例えば100mmから50mmに減少すると、式(1)の関係を守 る際の問題が大幅に大きくなる。すなわち、溶融金属を供給することが困難とな る外に、小さい冷却鋳型横断面積に充分な鋳造粉末を被着させて生じる鋳造連続 体の大表面を潤滑し、更に式(4)の関係を設定することが殆ど不可能になる。 これに対して、例えば冷却鋳型における、また従って鋳造液面における75mm の鋳造連続体厚さにおける鋳造速度は、特別の付加労作無しに高めることができ る。これは、薄肉スラブ鋳造の領域内でスラブ厚さを冷却鋳型から凝固末端(溶 湯部最下位置)まで一定に保持することは有意義ではなくて、スラブ厚さを鋳造 圧延装置を用いて減少させて、圧延機に供給される際のスラブ厚さに到達する方 が技術的に大幅に簡単であると言う驚くべき解決手段に導くが、このためには例 えば挟みセグメントとして形成されたマルチロール型ロールスタンド(セグメン ト0)が有利であることが示されている。 第5図には例として、すべての本発明の特徴を有する連続鋳造装置が示されて いる。 参照数字リスト 1 Q(鋳造粉末) 2 粉末Tli,粉末/スラグの相境界 3 h(鋳造連続体殻),鋳造連続体殻/溶湯面の高さ 4 hSchlacke,スラグ高さ 5 粉末,粉末高さ 6 浸漬出湯口 7 沈着物 8 スラグ中への酸化物の流れ 9 Vg=鋳造速度 10 QSchlacke=スラグ消費量 11 空気 12 結晶化境界,鋼の固体/液体 13 鋳造連続体外殻 14 振動(行程高さ,周波数,形状) 15 銅板 16 配分器(タンディッシュ) 17 浸漬出湯口 外法 例えば250×45mm 内法 例えば220×15mm 18 最適化された鋳造粉末 19 75×800〜1600mm 鋳造液面(メニスカス)におけるスラブフォーマット 20 15×220mm,浸漬出湯口の流れの横断面 21 液圧式冷却鋳型駆動装置 22 FST/FTA≦50(ただし、FST=浸漬出湯口横断面、FTA=完全凝固 したスラブの鋳造連続体横断面)。 23 75×800〜1600mm 冷却鋳型出口におけるスラブフォーマット 24 リンク部材又は液圧シリンダ等 25 セグメント0,例えば挟み部材として形成されている 26 液圧シリンダ等 27 50mm,鋳造圧延装置工程後のスラブ厚さ 28 液圧式調整装置等を有するセグメント1...n 29 Vgmax6m/min 30 50mm,鋳造連続体案内部末端におけるスラブ厚さDetailed Description of the Invention                 Method for manufacturing rectangular thin slab and continuous casting apparatus   The present invention relates to a continuous casting machine and a method for producing thin slabs.   For example, as disclosed in DE 37 09 188 A1 It is known from the prior art to use flat dip taps. Furthermore, hydraulic drive A lifting table is common, which displaces sinusoidal vibrations even during casting. By changing the stroke height, frequency and shape of vibration, it is possible to select the optimum one. to enable. Casting thickness during solidification gives improved internal quality of casting continuum Casting and rolling mill, which is reduced in number, is published in German Patent Application DE 38 18 077 A1 It is known from the news.   What we found by examining the conventional techniques is that the purpose of manufacturing thin wall continuous casting slab is All of the controllable variables for the entire The body is so large that the knowledge of the average expert is not enough at all, Of the many solutions that can be applied together with the least possible effort to achieve good results It is not possible to require the average expert to find a solution to get.   The subject of the present invention is to find the optimum conditions for the supply of slag and the reduction of the thickness of the casting continuum. Already obtained in casting and rolling equipment, and in cooling molds and guide roll stands. It is possible to achieve the given thickness of thin slabs by It is an object of the present invention to provide a method and a continuous casting apparatus that enable the performance.   According to the present invention, the above-mentioned problems are described in the characterizing portions of claims 1 and 3. It is solved by the characteristics. Advantageous embodiments are described in the subclaims. The solution to the above-mentioned problems is, for example, a vertical cooling mold, a vertical curved cooling mold, or an arc-shaped cooling mold. Independent of the mold type.   The figures are used for the understanding of the following exemplary description of the invention.   FIG. 1 shows the casting conditions of the cooling mold,   FIG. 2 shows the same surface quality and slab for a slab with a thickness of 200 mm and a width of 10 mm. Demonstrate the technical effort depending on the slab thickness for casting performance,   Figures 3.1 to 3.3 are for a slab with a thickness of 200 mm and a width of 1000 mm. Shows the technical effort depending on the casting speed for the same surface quality and slab thickness ,   Fig. 4 shows the steel in the cooling mold for a slab with a thickness of 200 mm and a width of 1000 mm. , Showing hydraulic behavior depending on slab thickness,   FIG. 5 shows a continuous casting device.   Tests carried out within the realization of the invention show that the surface quality of the casting continuum is substantially It turned out that it depends on the slag supply. This includes a meniscus, or screen Rug height (hSchlacke) And a cooling mold (for example, mold, graphite mold, etc.) The height of the outer shell of the casting continuum (hStrangschale) Is responsible for Bear (Fig. 1).   Optimum lubrication and surface defects (casting directly below the casting surface, mainly in the form of oxides) In order to avoid (powder particles), the criteria of the following formula must be satisfied. Do you get it.       (1) hSchlacke≧ hStrangschale   Slag height hSchlackeMainly depends on the thickness of the cooling mold inlet cross section, Outer shell height hStrangschaleMainly depends on the pulling height of the oscillating cooling mold.   hSchlackeAnd the dependence of this on the thickness of the cooling mold inlet cross section. If you think about it, it can be called the technical effort that must be brought into this system. The notational relationship unexpectedly gives the following results.       (2) Handicap = Surface area of cast continuous body produced / Surface area of molten metal                                 (Unit is m2/ Min × 1 / m2)   At the casting performance given in advance, ie, 2.736 t / min, Compare a 200mm slab to a 50mm slab and make this a 200mm slab Assuming 1 in equation (2), this value is 50 m as seen from Fig. 2. It rises to 16.62 for m-slabs. That is, the formula (2) is the casting continuum thickness. It increases inversely with the decrease in height, the dependence of which follows an exponential curve.   In contrast, the 75/100 and 125 mm cooled molds are shown in FIG. (2) increases the casting speed when the casting thickness is defined as This is a straight line with a small slope, It is confirmed that the number increases only to a.   (1) has a great effect on the flow of molten metal into the cooling mold. Is a turbulent flow generated by the And then the wave peaks may rise above the slag level, which Causes an interruption in lubrication. This turbulence is especially due to the production volume and the dip tap. It depends on the thickness and width of the cooling mold in the cross section. Production as a measure of turbulence The hydraulic behavior as a quotient of thickness is defined and is represented by:       (3) Hydraulic behavior = Production amount (unit: t / min) / thickness (unit: mm)   Values of hydraulic behavior for a slab with a thickness of 200 mm can be seen, for example, from FIG. be able to. Hydraulic behavior improves significantly with increasing cooling mold thickness I understand.   The relationship of the following equation is also important for turbulence.       (4) FST/ FTA≤50   However,       FST= Cross-sectional area of the immersion tap       FTA= Cross-sectional area of the casting continuum of a completely solidified slab   In addition, the electromagnetic brake in the cooling mold area increases turbulence in the casting surface area. The width can be reduced.   From the equations explained above and verified by measurement, the slab thickness in the cooling mold can be calculated. When selecting, for example, if it is reduced from 100 mm to 50 mm, the relationship of formula (1) is maintained. The problem with the That is, it is difficult to supply the molten metal. In addition, the continuous casting occurs by depositing sufficient casting powder on a small cooling mold cross-sectional area. It becomes almost impossible to lubricate the large surface of the body and further establish the relationship of equation (4). On the other hand, for example, 75 mm in the cooling mold and thus in the casting surface The casting speed at the casting continuum thickness of can be increased without any extra effort You. This is the solidification end (melting end) of the slab thickness from the cooling mold in the area of thin wall slab casting. It is not meaningful to keep it constant up to the bottom of the molten metal), and cast the slab thickness How to reach the slab thickness when it is supplied to the rolling mill by reducing it using a rolling mill Leads to a surprising solution that is technically significantly easier, but for this an example For example, a multi-roll type roll stand (segment segment) formed as a sandwiching segment 0) has been shown to be advantageous.   FIG. 5 shows by way of example a continuous casting machine with all the features of the invention. I have. Reference digit list   1 Q (casting powder)   2 powder Tli, Powder / slag phase boundary   3 h (cast continuous shell), height of continuous cast shell / molten surface   4 hSchlacke, Slag height   5 powder, powder height   6 Immersion tap   7 deposits   8 Oxide flow into slag   9 Vg= Casting speed   10 QSchlacke= Slag consumption   11 air   12 Crystallization boundary, solid / liquid of steel   13 Casting continuum outer shell   14 Vibration (stroke height, frequency, shape)   15 Copper plate   16 Distributor (Tundish)   17 Immersion tap         Outside method For example, 250 × 45mm         Inner method 220 × 15mm   18 Optimized casting powder   1975 x 800-1600 mm         Slab format on casting surface (meniscus)   20 15 x 220 mm, cross section of flow of immersion tap   21 Hydraulic cooling mold drive   22 FST/ FTA≤50 (however, FST= Cross section of immersion tap, FTA= Complete solidification Slab casting continuum cross section).   23 75 x 800-1600 mm         Slab format at the outlet of the cooling mold   24 Link members or hydraulic cylinders, etc.   25 segments 0, for example formed as pinching members   26 Hydraulic cylinder, etc.   27 50 mm, slab thickness after casting and rolling equipment process   28 Segment having a hydraulic adjusting device, etc. 1. . . n   29 Vgmax6m / min   30 50mm, slab thickness at the end of casting continuum guide

【手続補正書】特許法第184条の8 【提出日】1995年12月20日 【補正内容】 請求の範囲(補正) 1. 下記の各段階、すなわち − 浸漬出湯口及び冷却鋳型についてのFST/FTA≦50の条件の維持のも とに、振動する方形の冷却鋳型の中に浸漬出湯口により溶融金属を鋳込み(ただ しFSTは完全に凝固したスラブの鋳造連続体断面積である)、 − hSchlacke≧hStrangschaleの条件が冷却鋳型の運動の振動高さ、形及 び周期に依存して保たれるように鋳造粉末を供給(ただしhSchlackeは鋳造連続 体外殻/溶湯液面の高さであり、hStrangschaleはスラグ高さである)、 − マルチロール型ロールスタンドの中で多段階で冷却鋳型の直接下方で鋳 造連続体断面積を減少し、これにより、鋳造連続体厚さを連続的に減少するのに 平行してまだ液状の鋳造連続体内部で強制対流を発生させ、その際、鋳造連続体 の最終厚さは、芯部がまだ液状の状態にあるマルチロール型ロールスタンドの末 端で到達され、 − マルチロール型ロールスタンドの出口において最終厚さに到達する際に 鋳造連続体内部でまだ2相領域が存在するように凝固を行う各段階を包含する、 薄肉スラブの製造方法。 2. 鋳造の間でさえも冷却鋳型の運動のための周期、行程高さ及び振動形が 自由に選択可能であることを特徴とする請求の範囲第1項に記載の薄肉スラブの 製造方法。 3. − 浸漬出湯口を具備し、前記浸漬出湯口の横断面面積(FST)は、完 全に凝固したスラブの横断面面積(FTA)の1/50以上であり、前記浸漬出湯 口は方形冷却鋳型の中に突出し、前記方形冷却鋳型は、周期、行程高さ及び形を 自由に選択できる振動装置に接続しており、 − 鋳造粉末供給装置を更に具備し、これは測定及び調整用装置を介して前 記振動装置に接続しており、またこれによって、スラグ高さ(hSchlacke)≧鋳 造連続体外殻/溶湯液面の高さ(hStrangschale)が維持されるように振動高さ 、振動形及び振動周期に依存して鋳造粉末が供給され、 − その方形冷却鋳型の引出し方向において後方に配置された、互いに向か いあった2つのロールの間隔を無段階で変化させることのできる液圧式装置(2 4、25)を有するマルチロール型ロールスタンド(25)を更に具備する、 上にあげた各請求の範囲の1つに記載の方法を実施するための連続鋳造装置。 4. 隣接する2つのロールの間隔が、予め与えられた鋳造連続体厚さの減少 に際して、そのなお液体状態の鋳造連続体内部において攪拌作用が得られるよう に選ばれていることを特徴とする請求の範囲第3項に記載の連続鋳造装置。[Procedure Amendment] Article 184-8 of the Patent Act [Submission date] December 20, 1995 [Amendment content] Claims (Amendment) 1. The molten metal is cast into the vibrating rectangular cooling mold by means of the immersion tap, while maintaining the following conditions: -F ST / F TA ≤50 for the immersion tap and the cooling mold (however, F ST is the casting continuum cross-sectional area of a completely solidified slab), −h Schlacke ≧ h Strangschale The casting powder so that the conditions are kept dependent on the vibration height, shape and period of motion of the cooling mold. (Where h Schlacke is the height of the casting continuum shell / melt surface and h Strangschale is the slag height),-casting directly below the cooling mold in multiple stages in a multi-roll roll stand. The cross-sectional area of the continuum is reduced so that in parallel with the continuous reduction of the thickness of the casting continuum, forced convection is generated inside the still continuous casting continuum, the final thickness of the casting continuum being The core is still in a liquid state Reached at the end of the multi-roll roll stand, comprising the steps of solidification such that there are still two-phase regions inside the casting continuum when reaching the final thickness at the exit of the multi-roll roll stand, Method for manufacturing thin slabs. 2. 2. The method for producing a thin-walled slab according to claim 1, characterized in that the period, stroke height and oscillatory shape for the movement of the cooling mold even during casting are freely selectable. 3. A dip tap, the cross-sectional area (F ST ) of the dip tap is 1/50 or more of the cross-sectional area (F TA ) of a completely solidified slab, and the dip tap is square cooled Projecting into the mould, said rectangular cooling mould is connected to a vibrating device with freely selectable cycle, stroke height and shape, and-further comprises a casting powder feeder, which comprises a measuring and adjusting device. And a vibration height, a vibration shape, such that the slag height (h Schlacke ) ≥ the casting continuum shell / the height of the molten metal surface (h Strangschale ) is maintained. And, depending on the oscillation period, the casting powder is supplied, and a hydraulic device (stepwise) which allows the distance between two rolls facing each other, which are arranged rearward in the drawing direction of the rectangular cooling mold, to be changed steplessly ( 2 4, 25) Chiroru type further comprising a roll stand (25), a continuous casting apparatus for carrying out the method according to one of the scope of the claims listed above. 4. The distance between two adjacent rolls is selected such that a stirring action is obtained within the casting continuum in its liquid state during the reduction of a given casting continuum thickness. The continuous casting apparatus according to claim 3.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FR,GB,GR,IE,IT,LU,M C,NL,PT,SE),OA(BF,BJ,CF,CG ,CI,CM,GA,GN,ML,MR,NE,SN, TD,TG),AP(KE,MW,SD,SZ),AM, AU,BB,BG,BR,BY,CA,CN,CZ,E E,FI,GE,HU,JP,KE,KG,KP,KR ,KZ,LK,LR,LT,LV,MD,MG,MN, MW,MX,NO,NZ,PL,RO,RU,SD,S I,SK,TJ,TT,UA,US,UZ,VN────────────────────────────────────────────────── ─── Continuation of front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, M C, NL, PT, SE), OA (BF, BJ, CF, CG , CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP (KE, MW, SD, SZ), AM, AU, BB, BG, BR, BY, CA, CN, CZ, E E, FI, GE, HU, JP, KE, KG, KP, KR , KZ, LK, LR, LT, LV, MD, MG, MN, MW, MX, NO, NZ, PL, RO, RU, SD, S I, SK, TJ, TT, UA, US, UZ, VN

Claims (1)

【特許請求の範囲】 1. − 浸漬出湯口により方形冷却鋳型の中に鋳込む段階と、 − 振動する冷却鋳型と、 − hSchlacke≧hStrangschaleの条件が冷却鋳型の運動の振動高さ、形及 び周期に依存して保たれるように鋳造粉末を供給する段階と、 − マルチロール型ロールスタンド(セグメント0)の中で多段階で冷却鋳 型の直下の鋳造連続体断面積を減少し、これにより、鋳造連続体厚さを連続的に 減少するのに平行して、まだ液状の鋳造連続体内部に電磁的攪拌の作用に相応す る強制的対流を発生させる段階と、 − マルチロール型ロールスタンド(セグメント0)の末端における鋳造連 続体の最終厚さに到達する段階と、 − マルチロール型ロールスタンドの出口において最終厚さに到達する際に 鋳造連続体内部にまだ2相領域(結晶/溶融物)が存在するように凝固を行う段 階と、 − FST/FTA≦50の条件を維持すること を包含することを特徴とする薄肉スラブの製造方法。 2. 鋳造の間でさえも冷却鋳型の運動のための周期、行程高さ及び振動形が 自由に選択可能であることを特徴とする請求の範囲第1項に記載の薄肉スラブの 製造方法。 3. 下記の各要素、すなわち − 浸漬出湯口、 − 振動の周波数、行程高さ及び形が鋳造の間でさえも自由に選択可能であ る振動する方形冷却鋳型、 − 振動高さ、振動形及び振動周期に依存して鋳造粉末を、hSchlacke≧hStrangschale の条件が維持されるように供給する鋳造粉末供給装置、 − 連続的に鋳造連続体厚さを減少するマルチロール型ロールスタンド(但 し鋳造連続体はマルチロール型ロールスタンドの出口においてまだ液状の芯部を 有する)、 − FST/FTA≦50の条件が満足されるように形成されている浸漬出湯口 及び凝固横断面 を含む請求の範囲第1項又は第2項に記載の薄肉スラブの製造方法を実施するた めの連続鋳造装置。 4. マルチロール型ロールスタンドの中の各ロールが、鋳造連続体厚さを減 少することによりまだ液状の鋳造連続体内部に攪拌作用が得られ、そして同時に 内部亀裂の発生が防止されるように配置されていることを特徴とする請求の範囲 第3項に記載の連続鋳造装置。[Claims] 1. -Casting into a rectangular cooling mold with a dip tap, -an oscillating cooling mold, -a condition of h Schlacke ≥h Strangschale is kept dependent on the vibration height, shape and period of the motion of the cooling mold. Feeding the casting powder in such a manner that: -in a multi-roll type roll stand (segment 0), the casting continuum cross-sectional area directly below the cooling mold is reduced in multiple stages, thereby reducing the casting continuum thickness. In parallel with the continuous decrease, the generation of forced convection in the still liquid casting continuum corresponding to the action of electromagnetic stirring, and-casting at the end of the multi-roll roll stand (segment 0) Reaching the final thickness of the continuum, and-solidifying so that there are still two-phase regions (crystals / melts) inside the casting continuum when reaching the final thickness at the exit of the multi-roll roll stand. And a condition of F ST / F TA ≦ 50 are maintained, the method for producing a thin slab. 2. 2. The method for producing a thin-walled slab according to claim 1, characterized in that the period, stroke height and oscillatory shape for the movement of the cooling mold even during casting are freely selectable. 3. Each of the following elements: -a dip spout, -a vibrating rectangular cooling mold whose vibration frequency, stroke height and shape are freely selectable even during casting, -vibration height, vibration shape and vibration period. , A casting powder feeding device for feeding the casting powder so that the condition of h Schlacke ≧ h Strangschale is maintained, and a multi-roll type roll stand for continuously reducing the thickness of the casting continuum (however, the casting continuum Has a liquid core at the exit of the multi-roll type roll stand), and a dip tap and a solidification cross section which are formed so that the condition of FST / FTA≤50 is satisfied. A continuous casting apparatus for carrying out the method for producing a thin-walled slab according to item 1 or 2. 4. Each roll in the multi-roll type roll stand is arranged so that by reducing the thickness of the casting continuum, a stirring action is obtained inside the still liquid casting continuum, and at the same time the occurrence of internal cracks is prevented. The continuous casting apparatus according to claim 3, wherein
JP7519818A 1994-01-28 1995-01-20 Method for producing rectangular thin slab and continuous casting apparatus Expired - Fee Related JP3056252B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4403048A DE4403048C1 (en) 1994-01-28 1994-01-28 Continuous caster and process for producing rectangular thin slabs
DE4403048.7 1994-01-28
PCT/DE1995/000089 WO1995020444A1 (en) 1994-01-28 1995-01-20 Continuous casting facility and process for producing rectangular thin slabs

Publications (2)

Publication Number Publication Date
JPH09509615A true JPH09509615A (en) 1997-09-30
JP3056252B2 JP3056252B2 (en) 2000-06-26

Family

ID=6509214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7519818A Expired - Fee Related JP3056252B2 (en) 1994-01-28 1995-01-20 Method for producing rectangular thin slab and continuous casting apparatus

Country Status (14)

Country Link
EP (1) EP0741617B2 (en)
JP (1) JP3056252B2 (en)
KR (1) KR100355000B1 (en)
CN (1) CN1046450C (en)
AT (1) ATE164102T1 (en)
AU (1) AU1453195A (en)
BR (1) BR9506665A (en)
CA (1) CA2181902A1 (en)
DE (2) DE4403048C1 (en)
DK (1) DK0741617T4 (en)
ES (1) ES2113730T5 (en)
RU (1) RU2121903C1 (en)
WO (1) WO1995020444A1 (en)
ZA (1) ZA95670B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19639302C2 (en) * 1996-09-25 2000-02-24 Schloemann Siemag Ag Method and device for producing thin slabs on a continuous caster
DE19639297C2 (en) * 1996-09-25 2000-02-03 Schloemann Siemag Ag Method and device for high-speed continuous casting plants with a reduction in strand thickness during solidification
AT408323B (en) * 1999-12-01 2001-10-25 Voest Alpine Ind Anlagen METHOD FOR STEEL CONTINUOUS
DE10057160A1 (en) * 2000-11-16 2002-05-29 Sms Demag Ag Method and device for producing thin slabs
ITMI20120046A1 (en) * 2012-01-18 2013-07-19 Arvedi Steel Engineering S P A PLANT AND PROCEDURE FOR THE CONTINUOUS QUICK CASTING OF STEEL BRAMME AND STEEL BRAMME
CN109465415A (en) * 2018-12-07 2019-03-15 东北大学 Fan-shaped section roll array structure under a kind of double single-point weight in continuous casting and solidifying end
CN117564235B (en) * 2024-01-15 2024-04-09 中铝材料应用研究院有限公司 Casting and rolling device and method for aluminum alloy plate blank

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3423475C2 (en) 1984-06-26 1986-07-17 Mannesmann AG, 4000 Düsseldorf Method and device for the continuous casting of liquid metals, in particular of liquid steel
DE3627991A1 (en) * 1986-08-18 1988-02-25 Mannesmann Ag METHOD FOR CONTINUOUSLY MOLDING SLABS AND DEVICE FOR CARRYING OUT THE METHOD
DE3709188A1 (en) * 1987-03-20 1988-09-29 Mannesmann Ag POURING PIPE FOR METALLURGICAL VESSELS
DE3818077A1 (en) * 1988-05-25 1989-11-30 Mannesmann Ag METHOD FOR CONTINUOUS CASTING ROLLERS
DE3823861A1 (en) * 1988-07-14 1990-01-18 Thyssen Stahl Ag METHOD AND SYSTEM FOR PRODUCING A STEEL TAPE THICKNESS THAN 10 MM

Also Published As

Publication number Publication date
ZA95670B (en) 1995-09-28
DK0741617T4 (en) 2002-06-17
EP0741617A1 (en) 1996-11-13
ATE164102T1 (en) 1998-04-15
WO1995020444A1 (en) 1995-08-03
DE59501651D1 (en) 1998-04-23
JP3056252B2 (en) 2000-06-26
CN1046450C (en) 1999-11-17
RU2121903C1 (en) 1998-11-20
CA2181902A1 (en) 1995-08-03
CN1139893A (en) 1997-01-08
AU1453195A (en) 1995-08-15
KR100355000B1 (en) 2002-12-31
EP0741617B1 (en) 1998-03-18
BR9506665A (en) 1997-09-09
DE4403048C1 (en) 1995-07-13
ES2113730T3 (en) 1998-05-01
ES2113730T5 (en) 2002-12-01
EP0741617B2 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
CN109663892B (en) Progressive solidification forming device for large cast ingot or casting blank
JP3085978B2 (en) Method for manufacturing thin slab and continuous casting apparatus
JPH09509615A (en) Method for manufacturing rectangular thin slab and continuous casting apparatus
AU757475B2 (en) High speed continuous casting device and relative method
JPH07106434B2 (en) Continuous casting method for metal ribbon
JP2005103604A (en) Continuous casting method, continuous casting cast slab, and steel plate
EP0657235A1 (en) Process for the production of semi-solidified metal composition
CN113128029A (en) Method and device for improving internal quality of large-section round billet
RU96117378A (en) CONTINUOUS CASTING DEVICE AND METHOD FOR MANUFACTURING THIN FLAT INGOTS
JP3119203B2 (en) Unsolidified rolling method of slab
CN114749616A (en) Ingot mould for large-scale high-length-diameter ratio steel ingot and blank forming method
JP2004216411A (en) Continuous casting method for special molten steel
JP3536559B2 (en) Method for forming semi-solid metal
CN1049852C (en) Device for realizing semisolid casting
JP3257546B2 (en) Steel continuous casting method
JP2003340553A (en) Continuous casting method for magnesium alloy sheet
JPH10128510A (en) Method for continuously casting steel
JP4076155B2 (en) Manufacturing method of iron alloy-based thixocasting material
CN107812905A (en) Large section Properties of Heavy Rail Steel green shell quality optimization control method
JP3551710B2 (en) Steel continuous casting method
CN210188431U (en) Progressive solidification forming device for large cast ingot or cast blank
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
JPS5940539B2 (en) Continuous casting method
JPH01170551A (en) Mold for continuously casting steel
JP2002178113A (en) Cast slab having excellent solidified structure and steel obtained by working the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees