JPH09501541A - Gas diffusion electrode with catalyst for electrochemical cell with solid electrolyte and manufacturing method thereof - Google Patents

Gas diffusion electrode with catalyst for electrochemical cell with solid electrolyte and manufacturing method thereof

Info

Publication number
JPH09501541A
JPH09501541A JP8500096A JP50009696A JPH09501541A JP H09501541 A JPH09501541 A JP H09501541A JP 8500096 A JP8500096 A JP 8500096A JP 50009696 A JP50009696 A JP 50009696A JP H09501541 A JPH09501541 A JP H09501541A
Authority
JP
Japan
Prior art keywords
catalyst
gas diffusion
layer
diffusion electrode
ionomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8500096A
Other languages
Japanese (ja)
Inventor
ディルヴェン,パウル
エンゲレン,ウィリー
Original Assignee
ヴラームス インステリング ヴォール テクノロギッシュ オンダーゾーク,アフゲコート”ヴィ.イー.テー.オー.”,オンダーネミン ヴァン オッペンバール ナット オンダー デ ヴォーム ヴァン エーン ナームローゼ フェンノートシャップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴラームス インステリング ヴォール テクノロギッシュ オンダーゾーク,アフゲコート”ヴィ.イー.テー.オー.”,オンダーネミン ヴァン オッペンバール ナット オンダー デ ヴォーム ヴァン エーン ナームローゼ フェンノートシャップ filed Critical ヴラームス インステリング ヴォール テクノロギッシュ オンダーゾーク,アフゲコート”ヴィ.イー.テー.オー.”,オンダーネミン ヴァン オッペンバール ナット オンダー デ ヴォーム ヴァン エーン ナームローゼ フェンノートシャップ
Publication of JPH09501541A publication Critical patent/JPH09501541A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Gas diffusion electrode with catalyst for an electrochemical cell with solid electrolyte, in particular for a fuel cell with solid electrolyte, which electrode contains a hydrophobic, porous back support (12), a non-catalytic intermediate layer (13) which contains electron conductive material and an active catalytic layer (14) which contains bound catalyst particles, characterized in that the intermediate layer (13) contains a mixture of electron conductive material and a proton conductive ionomer, and in that the active layer (14) forms the outside layer and the catalyst particles are bound by a proton conductive ionomer <IMAGE>

Description

【発明の詳細な説明】 固体電解質を有する電気化学的電池のための 触媒付きガス拡散電極とその製造方法 本発明は固体電解質を有する電気化学的電池、特定的に固体電解質を有する燃 料電池用の触媒付きガス拡散電極に関し、その電極は溌水性、多孔性バック支持 体、電子伝導材料を含む非触媒中間層、そして束縛触媒粒子を含むアクティブ触 媒層とを包含する。 電気化学的反応のための触媒は通常高価であるので、普通、その目的は可能な 限り触媒の量を制限することである。これはとりわけ、燃料電池を含む多くの事 例に対して今まで最も適した触媒であって、プラチナを沈着させた炭素粒子の形 式で通常使われるプラチナの事例である。 燃料電池用の従来型の電極においては、触媒の大部分がその反応のために効果 的に使用されていないことが分かった。反応ガスが触媒に接近しやすく、そして 更にその触媒が陽子伝導体と同様に電気的伝導体とも接触しているこれらの場所 においてのみ、その触媒はアクティブとなる。 それ故に、触媒が効果的にアクティブとなるところに主にその触媒を提供する ことにより触媒の量を制限することは明白である。 幾つかの技術がこの目的のためにもうすでに開発されている。 多くの技術によれば、触媒は電極上にではなく、固体電解 質薄膜上に直接的に適用される。 「Journal of applied electrochemistry」22(1992年)、p1−7に表れ た記事「Thin-film catalyst layers for polymer electrolyte fuel cell elec trodes」は、例えばPTFEのフィルム上に溶解したNAFIONR 5パーセント重量/P t−C/グリセリンのインクの噴射、或いは塗布、その後この被覆されたフィル ムは固体重合体電解質上で熱間プレスされ、そしてそのフィルムは取り除かれる が、触媒被覆が残る。NAFI0NRは、Du Pont de Nemours(デュポンドヌムール) が過フルオロ炭素材料を市販している商標名である。通常、非触媒ガス拡散電極 は燃料電池内の薄膜触媒層のためのバック支持体として提供される。 「Solid State Ionics」61(1993年)、p 251−255に表れたR.MosdaleとP.S tevens氏等による記事「New electrodes for hydrogen/oxygen solid polymer e lectrolyte fuelcell」によれば、溶液はエターノール内のPt/C触媒粉末、N AFIONR溶液、PTFE懸濁液、そしてアセチレン黒とから製造される。この溶液はNA FIONR薄膜上に直接散布される。 AP−A−0.483.085は他の技術を説明する、それによりPt/C触 媒粒子はイオン交換の溶液で含浸されて、乾燥される、非炭素粒子はイオン交換 の前記溶液で含浸されて、乾燥される、その後、これらの乾燥された粒子の混合 物はPTFE分散状態に置かれて、そして続いて乾燥されて、溌水性結合体上に提供 される。そのように形成された電極は加圧下でイオン交換薄膜に熱的に結合され る。更にもう1つの技術がUS−A−5.084.144で説明される、それ により非触媒炭素電極はNAFIONRなどのイオン交換重合体で含浸され、その後、 全体が電気化学的的方法で触媒作用が及ぼされる。 US−A−4.876.115は更にもう1つの方法を説明する。例えばPt /C粒子を有する炭素の、従来的に触媒されたガス拡散電極上に、陽子伝導性材 料の溶液が提供される。 最近の方法が、1993年11月15−19日のLa Rochelle(フランス)の「Proc.Sym posium Realites et Perspectives du Vehicule Electrique」で出版された、S .Escribano,R.Mosdale、そしてP.Aldebert 氏等の「Nouveau type d'electr odes pour piles a combustible hydrogene/oxygene」において説明される。こ の方法は、多孔性バック支持体上に電子伝導体としてのアセチレン黒と中間層と してのPTFE懸濁液との混合物を提供し、そして溶剤の蒸発後に、アクティブ層を 形成するために、触媒としてのPt/C粒子、電子伝導体としてのアセチレン黒 、そして溌水性材料としてのPTFEの懸濁液との混合物を連続的に提供することか ら成る。その中間層はアクティブ層のあまりにも深い浸透を防止する。最後に、 NAFIONR溶液はそのアクティブ層上にもまた散布される。 この方法によれば、ガス拡散電極は最初のパラグラフで説明されたように得ら れるので、それは多孔性バック支持体を含み、この上に非触媒ではあるが、イオ ン伝導性の中間層とアクティブ触媒層とを含む。触媒、アセチレン黒、そしてPT FEとから成るそのアクティブ触媒層は、但し、NAFI0NR層 で更に被覆される。 本発明は、触媒の更に効率的な使用を可能にし、そして燃料電池の酸素電極と して特に適する固体電解質を有する電気化学的電池用の触媒付きガス拡散電極を 提供することが目的である。それにより電極は大気圧下の大出力でも、大気でも 作動できる。 この目的は、中間層が電子伝導材料と陽子伝導イオノマーとの混合物を含む、 そしてアクティブ層が外部層を形成し、そして触媒粒子が陽子伝導イオノマーに より拘束される本発明により達せられる。 ほとんど、その触媒はプラチナを沈着させた炭素の形式を有する。 本発明の特定的な形態によれば、陽子伝導イオノマーはNAFIONRである。 中間層はほとんど炭素粉とイオノマーから成るが、触媒層はほとんどプラチナ を沈着させた炭素粉とイオノマーとから成る。 本発明は、本発明によるガス拡散電極を製造するのに特に適している方法にも 関する。 それで、本発明は、上述の既知の方法とは異なり、そして触媒の最適使用を可 能にして、非常に効率的な電極を得ることが出来るようにする方法を提供するこ とを目的とする。 故に、本発明は固体電解質を有する電気化学的電池用の触媒付きガス拡散電極 を製造するための方法に関する、その方法によれば、無触媒中間層は溶剤内に電 子伝導材料を含む液体の形式で多孔性溌水性バック支持体上に散布される、そし て溶剤の除去後、アクティブ触媒層が少なくとも触媒粒子と溶剤とを含む液体の 形式で散布される、そしてそれは溶剤内の電子伝導体とイオノマーのインクが中 間層として、そして溶剤内の触媒粒子とイオノマーの懸濁液がアクティブ触媒層 として散布、或いは噴霧されることを特徴とする。 本発明の他の詳細や利点は、本発明による、固体電解質を有する電気化学的電 池用の触媒付きガス拡散電極とそのような電極を製造する方法についての次の説 明から明らかとなろう。この説明は実施例としてのみ与えられ、本発明を制限す るものではない。図は添付の図を示す: 図1は本発明による電極を備えた燃料電池を概略的に示す; 図2は上述の電極の断面を拡大して概略的に示す。 図1はそのように知られたタイプのPEM(陽子交換薄膜)電池と呼ばれるもの の固体電解質を有する燃料電池を示す。この燃料電池は主にカソード1、アノー ド2、そしてそれらの間の固体電解質薄膜3のアッセンブリーから構成される、 そのアッセンブリーはそれに対して金属電流コレクター5が外部に提供される二 つの電気的伝導性フォイル、或いはプレート4間でクランプされる。 プレート4は、ダクト6、或いは7を介して供給される反応ガスがそれに沿っ てカソード1とアノード2上に送られる溝を備えている。 酸化電極、或いはアノード2に対して、酸素がダクト6を介してそれに供給さ れる低減電極、或いはカソード1に固体電解質薄膜3を通じて流れる触媒的に水 素イオン分解される 水素がダクト7を介して供給される。ここで、水素イオンは酸素と電子とで触媒 的に反応するので、水を形成する。 反応生成物と供給された酸素と水素の過剰分はプレート4内のダクト8と9を 介して排出される。 上述の電気化学的反応により生成される電流は、電流コレクター5とその上に 接続された電機ケーブル10とを介して電気負荷11に導かれる。 アノード2として、E-TEK電極が使用出来るが、固体電解質薄膜3はイオン交 換重合体、或いはイオノマーから製造される。このようなイオノマーは市場で入 手可能であり、通常過フルオロ・スルホン酸、即ちスルホン酸グループで終わる 側枝を有するポリテトラフルオロエチレンに似ている重合体である。非常に適し たイオノマーはDu Pont de Nemours(デュポンドヌムール)の商標名NAFIONRで 市販されているものである。薄膜の厚みは通常50から175ミクロンの間に位 置する。 本発明は、図2で詳細に表されるように、カソード1の成分がバック支持体1 2、遷移層、或いは中間層13、そしてアクティブ触媒層14とから成ることを 特徴とする。 そのバック支持体は触媒層のための電流コレクターと支持体として機能する。 このバック支持体は、RVS316Lなどの耐腐食性金属ガーゼ、或いは炭素紙、から 製造することが出来るが、それは、TEXTRON USAのCPW-003炭素生地、或いはフラ ンスからのLE CARBONELORRAINEのTCM 128やTGM 389炭素生地から製造されるのが 望ましい。 その炭素生地上に、ポリテトラフルオロエチレン(PTFE) などの溌水性油脂溶出材料の混合物の層が施される。この混合物は全体に溌水性 を与えるだけでなく、生地の大きな孔をも満たすので、他の層がその上に施され るように比較的滑らかな表面を与えることが出来る。 混合物内のPTFEの最適量は、15から20パーセント重量である。このバック 支持体12は、十分な電気的伝導性を有し、反応ガスと反応生成物の十分な供給 と排出をおこなうのに十分な多孔性であり、且つ溌水性と機械的に安定している 。 中間層13は無触媒であり、2/10と3/10の間の関係での炭素とイオノ マーの混合物から成る。実際は、およそ0.10から0.30、そして望ましくは約0.16 mg/cm2炭素と0.30から1.5 mg/cm2、そして望ましくは約0.70 mg/cm2イオノマー がこの方法でバック支持体上に施される。適したイオノマーは上述のNAFIONRで ある。 触媒層14はPt/C粒子とイオノマーとの混合物から成る。それによってプ ラチナ粒子が炭素微粒子に沈着するそのような触媒粒子はとりわけE-TEKにより 市販されている。それらはXC−72炭素粉に10から40パーセント重量のプ ラチナを含む。Pt/C粒子の量は、電池パラメーターのものと同様に実行され るべき電気化学的反応について強く依存し、そして例えばPt/cm2の量が0.10 と0.50の間、そして望ましくは0.21 mg と0.43 mg/cm2の間に位置するようにな る。 上述の電極は次のように製造される。 バック支持体は別々に作られる。その炭素は塊を壊すよう に乳鉢ですり漬される、そして混合物が約2対1の重量比のPTFE懸濁液などの有 機結合剤と得られた炭素とから製造される。この混合物は脱塩水で希釈されて、 そしてそれは磁気撹拌器で1時間撹拌される。結果として、結合剤の繊維は炭素 微粒子に接着する。 その後、混合物はガラス繊維フィルターで殆過される、そして殆過ペーストは 、5/1の重量比率で水で薄められた、懸濁液のPTFEなどの溌水性油脂溶出材料に その間浸されている炭素生地上に塗られる。その底部に炭素生地がその一端で固 定される約0.40 mmの深さのスクラップモールドのこの端部に使用される。この 炭素生地上に施されて、モールドの突出端上に移動されるペーストは、生地内に 押し付けている間に、スクラップナイフにより約0.40 mmの一定の厚みにされる 。 それが室温で10時間ほど乾燥された後、被覆された炭素生地はオーブン内に 置かれ、そこでそれは40℃で更に1時間乾燥される。その後、温度は溌水性油 脂溶出材料の焼結が得られるまで、例えば380℃まで昇温される。 そのようにして得られたバック支持体は回転テーブル、或いは移動ベルト上に 置かれる、そして最初に遷移フィルムが、適用される層を乾燥させるために各段 階間で中断して、数段階に分けて、望ましくは二段階で提供される。各層はイオ ノマーの溶液内の炭素などの電子伝導性材料、特定的にNAFIONRやエタノールな どの溶剤の懸濁液を製造することにより作られるインクの散布、或いは噴霧によ り提供される。インクは均一であることが不可欠である、それはそれを撹 拌、混合した後、およそ20時間超音波バス内で、その混合物を処理することに より得られる。 中間層が適用された後、それは85℃のオーブンで更に1時間蒸発させられる 。 最後に、触媒層は数段階に分けて、望ましくは二段階で、同方法で適用される 、それにより触媒の懸濁液、NAFIONRなどの陽子伝導性イオノマーの溶液、そし てエタノールなどの溶剤とから成るインクは、各段階で散布、或いは噴霧される 。 燃料電池を作るために、カソードとしての上述の電極、陽子伝導性イオノマー から成る薄膜、そしてアノードとは既知方法で共に熱間プレスされて一体化され る。 本発明は更に次の実例よって説明される。実施例1 バック支持体はCABOT CORP社の66パーセント重量のVULCAN XC-72炭素を34 パーセント重量の市販されているPTFE懸濁液(PTFE 30N of Du Pont)と混合す ることにより作られた。全体は脱塩水で希釈されて、そして磁気撹拌器で一時間 混合された。 均一混合物はガラス繊維フィルターで殆過された(Whatman GF/A-B)。 同時に、TEXTRONの炭素生地CPW-003が重量比5 H2O/1 PTFE懸濁液の水で薄 められたDu Pont の PTFE 30N内に浸された。この濡れた炭素生地はスクラップ モールドの底部に固定された。殄過されたペーストがこの生地上に適用されて、 スクラップナイフにより炭素生地内にプレスされると同 時に、0.40 mmの厚みに平らにされた。 それが室温でおよそ10時間乾燥された後、炭素生地はオーブン内に置かれて 、更に40℃で更に1時間乾燥された、その後、オーブン温度はPTFEが焼結され るまで、2時間、380℃まで昇温された。 それで得られたバック支持体は毎分約40回転の速度で回転される回転テーブ ル上に固定された。その上にずらして配置されたスプリンクラーヘッドにより、 中間層のためのインクが、二段階間に赤外線光線での2分間の乾燥を挟んで二段 階に分けて噴霧された。 そのインクは、CABOTの10gの炭素XC−72と、SOLUTION TECHNOLOGY INC .の5%NAFIONを1リットルと、1リットルのエタノールとを混合し、そしてそ れをローラーテーブル上で振り、そしてそれを超音波バスでおよそ20時間処理 することによりこの混合物を均一にすることにより準備された。 中間層を有するそのバック支持体は、85℃のオーブンで1時間蒸発させられ た。 中間層の厚みは、数ミクロンであるので、0.16 mg/cm2炭素であり、そして0.7 0 mg/cm2NAFIONRはバック支持体上に乾燥状態で存在する。 正確に中間層に関するのと同じ方法で、触媒層が前記中間層上に二段階に分け て噴霧される。 この散布のためのインクは、E-TEKの触媒20%Pt/Cの50gをSOLUTION TECHNOLOGY INC.のNAFIONRの5%溶液を1リットルと、1リットルのエターノー ルとを混合するこ とにより準備された。 その噴霧は、0.43 mgPt/cm2の量が得られるように行われた。 それで作られた電極は50cm2の表面に切断されて、燃料電池内のカソードと して使用された。 その電極は、通常の方法で作られて、清浄化されたNAFIONR117固体電解質 とアノードとして市販されているE-TEKの電極とで単一体に加工された。 引き続いて、その電極は、電極表面の大きさの凹所を有するその外側のガラス 繊維強化PTFEフォイルと、0.25 mm厚のPTFEフィルムによる電極からふるい落と された0.5 mm厚の外部のRVS金属プレートと共に、まだ濡れている薄膜のいずれ かの面上に置かれた。 その全体はプレスで熱間プレスされた。前記熱間プレスは、50kPaの圧力で 120秒間135℃で、そして6000kPaの圧力で30秒間実行された。 得られた単一電池は電池ハウジング内に搭載され、そして酸素と水素とが異な る圧力高さでカソードとアノードとに各々に添加された。その結果は、80℃の 電池温度において、以下の表で表される。実施例2 例1は完全に反復されたが、触媒でのインクの散布の段階において、その散布 は、中間層上のPtの量が0.21 Pt/cm2となった時に停止された。その結果は、 80℃の電池温度において、以下の表でも表される。 その燃料電池は優秀な結果を与える。Pt触媒の最小量が使用される、そして 更にそれは最適に使用される。 非触媒中間層13のおかげで、薄膜触媒層とバック支持体間の隔壁上の張力は 除去される。 NAFIONR、或いは同一のイオノマーを使用することにより、非触媒中間層13 や触媒層14のための結合剤としてPTFEの使用よりもより良好な結果を明白に与 える。この層はインクの散布、或いは噴霧により行われるという事実もまた、そ の結果に積極的な効果を持つように思われる。The present invention relates to a gas diffusion electrode with a catalyst for an electrochemical cell having a solid electrolyte and a method for producing the same. The present invention is directed to an electrochemical cell having a solid electrolyte, specifically a fuel cell having a solid electrolyte. Regarding a catalyzed gas diffusion electrode, the electrode includes a water repellent, porous backing support, a non-catalytic intermediate layer containing an electronically conductive material, and an active catalyst layer containing bound catalyst particles. Since catalysts for electrochemical reactions are usually expensive, their purpose is usually to limit the amount of catalyst as much as possible. This is notably the case of platinum, which is by far the most suitable catalyst for many cases including fuel cells and is commonly used in the form of platinum-deposited carbon particles. It has been found that in conventional electrodes for fuel cells, most of the catalyst is not effectively used for its reaction. Only in those places where the reaction gas is accessible to the catalyst and in addition the catalyst is in contact with the electrical conductors as well as the proton conductors are the catalysts active. Therefore, it is clear to limit the amount of catalyst mainly by providing it where it is effectively active. Several techniques have already been developed for this purpose. According to many techniques, the catalyst is applied directly on the solid electrolyte membrane, rather than on the electrodes. "Journal of applied electrochemistry" 22 (1992), appeared an article in p1-7 "Thin-film catalyst layers for polymer electrolyte fuel cell elec trodes " is, for example NAFION R 5 percent weight / P, which was dissolved on the film of PTFE Jetting or application of t-C / glycerin ink, after which the coated film is hot pressed onto the solid polymer electrolyte and the film removed, leaving the catalyst coating. NAFI0N R is a trade name of Du Pont de Nemours, which markets perfluorocarbon materials. Generally, the non-catalytic gas diffusion electrode is provided as a backing support for the thin film catalyst layer in the fuel cell. "Solid State Ionics" 61 (1993), p. Mosdale and P. According to the article "New electrodes for hydrogen / oxygen solid polymer electrolyte fuel cell" by Stevens et al., The solution is made from Pt / C catalyst powder in ethanol, N AFION R solution, PTFE suspension, and acetylene black. To be done. This solution is sprayed directly onto the NA FION R membrane. AP-A-0.483.085 describes another technique whereby Pt / C catalyst particles are impregnated with a solution of ion exchange and dried, non-carbon particles are impregnated with said solution of ion exchange. And dried, then the mixture of these dried particles is placed in a PTFE dispersion and subsequently dried to provide on the water repellent conjugate. The electrode so formed is thermally bonded to the ion exchange membrane under pressure. Yet another technique is described in US-A-5.084.144 whereby a non-catalytic carbon electrode is impregnated with an ion exchange polymer such as NAFION R , after which the whole is catalyzed by an electrochemical method. The effect is exerted. US-A-4.876.115 describes yet another method. A solution of proton-conducting material is provided on a conventionally catalyzed gas diffusion electrode, for example of carbon with Pt / C particles. A recent method was published by La Rochelle (France), Proc. Symposium Realites et Perspectives du Vehicule Electrique, November 15-19, 1993, S. Escribano, R. Mosdale, and P. It is explained in "Nouveau type d'electr odes pour piles a combustible hydrogene / oxygene" by Aldebert et al. This method provides a mixture of acetylene black as an electron conductor and a PTFE suspension as an intermediate layer on a porous backing support, and as a catalyst to form an active layer after evaporation of the solvent. Of Pt / C particles, acetylene black as the electron conductor, and a suspension of PTFE as the water repellent material in a continuous manner. The middle layer prevents the active layer from penetrating too deeply. Finally, NAFION R solution is also sprayed on the active layer. According to this method, a gas diffusion electrode is obtained as described in the first paragraph, so that it comprises a porous backing support, on top of which a non-catalytic but ion-conducting intermediate layer and an active catalyst are provided. And layers. The active catalyst layer consisting of the catalyst, acetylene black, and PT FE, however, is further coated with a NAFI0N R layer. It is an object of the present invention to provide a catalyzed gas diffusion electrode for an electrochemical cell having a solid electrolyte which allows a more efficient use of the catalyst and which is particularly suitable as an oxygen electrode for fuel cells. This allows the electrodes to operate at high power at atmospheric pressure or in the atmosphere. This object is achieved according to the invention in which the intermediate layer comprises a mixture of electron-conducting material and a proton-conducting ionomer, and the active layer forms the outer layer and the catalyst particles are bound by the proton-conducting ionomer. Mostly, the catalyst has the form of platinum-deposited carbon. According to a specific embodiment of the present invention, the proton conductive ionomer is NAFION R. The middle layer consists mostly of carbon powder and ionomer, while the catalyst layer consists mostly of platinum-deposited carbon powder and ionomer. The invention also relates to a method which is particularly suitable for manufacturing the gas diffusion electrode according to the invention. The present invention, therefore, differs from the known methods described above and aims to provide a method which allows the optimum use of the catalyst and makes it possible to obtain very efficient electrodes. Therefore, the present invention relates to a method for producing a catalyzed gas diffusion electrode for an electrochemical cell having a solid electrolyte, according to which the uncatalyzed intermediate layer is in the form of a liquid containing an electronically conductive material in a solvent. On a porous water-repellent backing substrate, and after removal of the solvent, the active catalyst layer is sprayed in the form of a liquid containing at least catalyst particles and solvent, which is the electron conductor and ionomer in the solvent. Is sprayed or sprayed as an intermediate layer and a suspension of catalyst particles and ionomer in a solvent as an active catalyst layer. Other details and advantages of the present invention will become apparent from the following description of the present invention of a catalyzed gas diffusion electrode for an electrochemical cell having a solid electrolyte and a method of making such an electrode according to the present invention. This description is given for the sake of example only, without limiting the invention. The figures show the accompanying figures: FIG. 1 schematically shows a fuel cell with electrodes according to the invention; FIG. 2 schematically shows an enlarged cross-section of the electrodes described above. FIG. 1 shows a fuel cell with a solid electrolyte of what is known as a PEM (Proton Exchange Thin Film) cell of that type. This fuel cell mainly consists of an assembly of a cathode 1, an anode 2 and a solid electrolyte membrane 3 between them, which assembly is electrically conductive to which a metallic current collector 5 is provided. It is clamped between foils or plates 4. The plate 4 is provided with grooves along which the reaction gas supplied via the ducts 6 or 7 is directed onto the cathode 1 and the anode 2. Oxidation electrode or anode 2 is supplied with oxygen via a duct 6 or reduction electrode with which oxygen is supplied thereto, or cathode 1 is supplied with hydrogen, which is catalytically decomposed into hydrogen ions through a solid electrolyte thin film 3, through a duct 7. To be done. Here, hydrogen ions catalytically react with oxygen and electrons to form water. The reaction products and the excess oxygen and hydrogen supplied are discharged via ducts 8 and 9 in the plate 4. The electric current generated by the above-described electrochemical reaction is guided to the electric load 11 via the electric current collector 5 and the electric cable 10 connected thereto. An E-TEK electrode can be used as the anode 2, but the solid electrolyte thin film 3 is made of an ion exchange polymer or an ionomer. Such ionomers are commercially available and are usually polymers that resemble perfluoro sulfonic acids, i.e., polytetrafluoroethylenes having side branches that end in the sulfonic acid group. Very suitable ionomers are those sold under the trade name NAFION R of Du Pont de Nemours (DuPont de Nemours). The thin film thickness is typically located between 50 and 175 microns. The invention is characterized in that, as represented in detail in FIG. 2, the components of the cathode 1 consist of a back support 12, a transition layer or intermediate layer 13, and an active catalyst layer 14. The back support serves as a current collector and support for the catalyst layer. This backing can be made from corrosion resistant metal gauze such as RVS316L or carbon paper, which is CPW-003 carbon fabric from TEXTRON USA or LE CARBONE LORRAINE's TCM 128 or TGM 389 from France. It is preferably manufactured from carbon fabric. Onto the carbon dough is applied a layer of a mixture of water repellent oil-eluting materials such as polytetrafluoroethylene (PTFE). This mixture not only imparts overall water repellency, but also fills the large pores of the fabric so that it can provide a relatively smooth surface on which other layers are applied. The optimum amount of PTFE in the mixture is 15 to 20 percent by weight. The back support 12 has sufficient electrical conductivity, is sufficiently porous to supply and discharge the reaction gas and the reaction product, and is water-repellent and mechanically stable. There is. The intermediate layer 13 is uncatalyzed and consists of a mixture of carbon and ionomer in a relationship between 2/10 and 3/10. In practice, about 0.10 to 0.30, and preferably about 0.16 mg / cm 2 carbon and 0.30 to 1.5 mg / cm 2 , and preferably about 0.70 mg / cm 2 ionomer are applied in this manner on the backing support. Suitable ionomers are above NAFION R. The catalyst layer 14 is composed of a mixture of Pt / C particles and an ionomer. Such catalyst particles, whereby the platinum particles are deposited on the carbon particles, are especially marketed by E-TEK. They contain 10 to 40 percent by weight platinum in XC-72 carbon powder. The amount of Pt / C particles strongly depends on the electrochemical reaction to be carried out as well as that of the cell parameters, and for example the amount of Pt / cm 2 is between 0.10 and 0.50, and preferably 0.21 mg and 0.43. It will be located between mg / cm 2 . The electrode described above is manufactured as follows. The back support is made separately. The carbon is soaked in a mortar to break the mass, and the mixture is made from the resulting carbon and an organic binder such as a PTFE suspension in a weight ratio of about 2: 1. This mixture is diluted with demineralized water and it is stirred with a magnetic stirrer for 1 hour. As a result, the binder fibers adhere to the carbon particulates. Thereafter, the mixture is passed through a glass fiber filter, and the passover is soaked in a water-soluble fat-eluting material such as PTFE in suspension, diluted with water in a weight ratio of 5/1. Coated on carbon fabric. Used at this end of a scrap mold about 0.40 mm deep with carbon dough secured to its bottom at one end. The paste, which is applied onto this carbon dough and which is moved onto the protruding end of the mould, is brought to a constant thickness of about 0.40 mm by means of a scrap knife while being pressed into the dough. After it has been dried at room temperature for about 10 hours, the coated carbon fabric is placed in an oven where it is dried at 40 ° C. for an additional hour. Then, the temperature is raised to, for example, 380 ° C. until the sintering of the water-soluble fat / oil elution material is obtained. The back support thus obtained is placed on a turntable, or moving belt, and first the transition film is divided into several steps, interrupted between each step to dry the applied layer. Therefore, it is preferably provided in two stages. Each layer is provided an electron conductive material such as carbon in a solution of the ionomer, spraying of ink is made by preparing a suspension of a solvent, such as specifically NAFION R or ethanol, or by spraying. It is essential that the ink be uniform, it is obtained by stirring it, mixing it and then treating the mixture in an ultrasonic bath for approximately 20 hours. After the intermediate layer has been applied, it is evaporated in an oven at 85 ° C for another hour. Finally, the catalyst layer is applied in the same manner in several stages, preferably in two stages, whereby a suspension of the catalyst, a solution of proton-conducting ionomers such as NAFION R and a solvent such as ethanol are applied. The ink consisting of is sprayed or sprayed at each stage. To make a fuel cell, the above-mentioned electrode as the cathode, a thin film of proton-conducting ionomer, and the anode are hot pressed together in a known manner. The invention is further described by the following examples. Example 1 A back support was made by mixing 66 percent by weight VULCAN XC-72 carbon from CABOT CORP, Inc. with 34 percent by weight of a commercially available PTFE suspension (PTFE 30N of Du Pont). The whole was diluted with demineralized water and mixed with a magnetic stirrer for 1 hour. The homogeneous mixture was mostly filtered through a glass fiber filter (Whatman GF / AB). At the same time, carbon cloth CPW-003 of TEXTRON was immersed in PTFE 30N of Du Pont diluted with water in a weight ratio of 5 H 2 O / 1 PTFE suspension. This wet carbon fabric was fixed to the bottom of the scrap mold. The passed paste was applied onto this dough and pressed into the carbon dough with a scrap knife while flattening to a thickness of 0.40 mm. After it was dried at room temperature for approximately 10 hours, the carbon dough was placed in an oven and further dried at 40 ° C for another hour, then the oven temperature was 2 hours, 380 hours until the PTFE was sintered. The temperature was raised to ℃. The back support thus obtained was fixed on a turntable which was rotated at a speed of about 40 revolutions per minute. A staggered sprinkler head was used to spray the ink for the intermediate layer in two steps with a 2 minute drying in the infrared between the two steps. The ink was prepared by mixing 10 g of CABOT's carbon XC-72, 1 liter of SOLUTION TECHNOLOGY INC. With 1 liter and 1 liter of ethanol, and shaking it on a roller table and sonicating it. It was prepared by homogenizing this mixture by treating in a bath for approximately 20 hours. The backing support with the intermediate layer was evaporated in an oven at 85 ° C for 1 hour. The thickness of the intermediate layer, since it is several microns, a 0.16 mg / cm 2 carbon, and 0.7 0 mg / cm 2 NAFION R is present in a dry state on the back support. Exactly in the same way as for the intermediate layer, the catalyst layer is sprayed onto said intermediate layer in two stages. The ink for this application was prepared by mixing 50 g of 20% Pt / C of E-TEK catalyst with 1 liter of a 5% solution of NAFION R from SOLUTION TECHNOLOGY INC. And 1 liter of ethanol. . The atomization was carried out so as to obtain an amount of 0.43 mg Pt / cm 2 . The electrode thus made was cut to a surface of 50 cm 2 and used as a cathode in a fuel cell. Its electrodes are made in the usual manner, processed into single-piece by the electrode of the E-TEK, which is commercially available as cleaned NAFION R 117 solid electrolyte and the anode. Subsequently, the electrode was fitted with a glass-fibre reinforced PTFE foil on its outside with recesses sized to the surface of the electrode, and an external RVS metal plate 0.5 mm thick, which had been screened from the electrode by a 0.25 mm thick PTFE film. Placed on either side of the thin film, still wet. The whole was hot pressed in a press. The hot pressing was carried out at a pressure of 50 kPa for 120 seconds at 135 ° C. and a pressure of 6000 kPa for 30 seconds. The resulting single cell was mounted in a cell housing and oxygen and hydrogen were added to the cathode and anode, respectively, at different pressure levels. The results are shown in the table below at a battery temperature of 80 ° C. Example 2 Example 1 was completely repeated, but at the stage of ink application with the catalyst, the application was stopped when the amount of Pt on the interlayer was 0.21 Pt / cm 2 . The results are also shown in the table below at a battery temperature of 80 ° C. The fuel cell gives excellent results. A minimum amount of Pt catalyst is used, and further it is optimally used. Owing to the non-catalyst intermediate layer 13, the tension on the partition between the thin film catalyst layer and the back support is removed. NAFION R, or by using the same ionomer, than the use of PTFE as a binding agent for the non-catalytic intermediate layer 13 and catalyst layer 14 gives clearly better results. The fact that this layer is done by sprinkling or spraying with ink also seems to have a positive effect on the result.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 エンゲレン,ウィリー ベルギー国 ビー―2490 バレン サヴェ ル 51────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Engelen and Willie             Belgium Bee-2490 Barren Save             Le 51

Claims (1)

【特許請求の範囲】 1.電極は溌水性、多孔性バック支持体(12)、電子伝導性材料を含む非触媒中 間層(13)、そして束縛触媒粒子を含むアクティブ触媒層(14)とを含む、固体電解 質を有する電気化学的電池のための、特定的に固体電解質を有する燃料電池のた めの触媒付きガス拡散電極において、中間層(13)は電子伝導性材料と陽子伝導性 イオノマーとの混合物を含む、そしてアクティブ層(14)は外部層を形成し、そし て触媒粒子は陽子伝導性イオノマーにより束縛されることを特徴とするガス拡散 電極。 2.触媒はプラチナを沈着させた炭素の形式を有することを特徴とする前記請 求項に記載のガス拡散電極。 3.中間層(13)は電気的に伝導性の粉末と陽子伝導性イオノマーとから成るこ とを特徴とする前記請求項1、2項のいずれかに記載のガス拡散電極。 4.陽子伝導性イオノマーはNAFIONRであることを特徴とする請求項1から3 項のいずれかに記載のガス拡散電極。 5.中間層(13)は炭素粉末とイオノマーとから成るが、触媒層(14)はプラチナ を沈着させた炭素粉末とイオノマーとから成ることを特徴とする請求項1、2、 3項のいずれかに記載のガス拡散電極。 6.バック支持体(12)は炭素粉末と有機溌水性結合剤との混合物で充填された 炭素布から成ることを特徴とする請求項1から5項のいずれかに記載のガス拡散 電極。 7.結合剤はPTFEであることを特徴とする請求項6項に記 載のガス拡散電極。 8.無触媒中間層(13)は電子伝導性材料と溶剤とを含む液体の形で多孔性溌水 バック支持体(12)上に散布され、そして溶剤の除去後、アクティブ層(14)は少な くとも触媒粒子と溶剤とを含む液体の形で散布される、固体電解質を有する電気 化学的電池のための触媒付きガス拡散電極を製造するための方法において、溶剤 内の電子伝導体とイオノマーとのインクは中間層(13)として散布、或いは噴霧さ れ、そして溶剤内の触媒粒子とイオノマーとのインクはアクティブ触媒層(14)と して散布されることを特徴とする方法。 9.バック支持体(12)は、スクラップモールド内に固定された生地上に電気的 に伝導性材料と有機溌水性結合剤とのペーストを適用して、そしてモールド上で 移動されるスクラップナイフにより均一な厚みを得ることが出来るように前記生 地内にこのペーストを押し付けることにより製造されることを特徴とする前記請 求項に記載の方法。 10.中間層(13)と触媒層(14)とは前記段階で適用された層を乾燥させるため に各段階間で中断して、数段階に分けて散布されることを特徴とする請求項8、 9項のいずれかに記載の方法。[Claims] 1. Electrodes having a solid electrolyte, the electrode comprising a water repellent, porous backing support (12), a non-catalytic intermediate layer (13) containing electronically conductive material, and an active catalyst layer (14) containing bound catalyst particles. In a catalyzed gas diffusion electrode for a fuel cell, in particular for a fuel cell with a solid electrolyte, the intermediate layer (13) comprises a mixture of an electron-conducting material and a proton-conducting ionomer, and an active layer ( 14) A gas diffusion electrode, characterized in that it forms an outer layer, and the catalyst particles are bound by a proton conducting ionomer. 2. Gas diffusion electrode according to the preceding claim, characterized in that the catalyst is in the form of platinum-deposited carbon. 3. The gas diffusion electrode according to claim 1, wherein the intermediate layer (13) is composed of electrically conductive powder and a proton conductive ionomer. 4. The gas diffusion electrode according to claim 1, wherein the proton-conducting ionomer is NAFION R. 5. The intermediate layer (13) comprises carbon powder and an ionomer, while the catalyst layer (14) comprises platinum-deposited carbon powder and an ionomer. The gas diffusion electrode described. 6. A gas diffusion electrode according to any one of claims 1 to 5, characterized in that the back support (12) comprises a carbon cloth filled with a mixture of carbon powder and an organic repellent binder. 7. The gas diffusion electrode according to claim 6, wherein the binder is PTFE. 8. The non-catalyst intermediate layer (13) is sprinkled on the porous water backing support (12) in the form of a liquid containing an electronically conductive material and a solvent, and after removal of the solvent, the active layer (14) is at least catalytic. In a method for producing a catalyzed gas diffusion electrode for an electrochemical cell having a solid electrolyte, which is sprayed in the form of a liquid containing particles and a solvent, the ink of an electron conductor and an ionomer in a solvent is A method characterized in that it is sprinkled or sprayed as an intermediate layer (13) and the ink of catalyst particles and ionomer in a solvent is sprinkled as an active catalyst layer (14). 9. The backing support (12) applies a paste of an electrically conductive material and an organic water repellent binder onto the fabric fixed in the scrap mold, and is evened out by a scrap knife that is moved over the mold. Process according to the previous claims, characterized in that it is produced by pressing this paste into the dough so as to obtain a thickness. 10. The intermediate layer (13) and the catalyst layer (14) are sprayed in several steps, interrupted between each step to dry the layer applied in the step. Item 10. The method according to any one of Item 9.
JP8500096A 1994-06-07 1995-06-07 Gas diffusion electrode with catalyst for electrochemical cell with solid electrolyte and manufacturing method thereof Pending JPH09501541A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BE9400561 1994-06-07
BE9400561A BE1008455A3 (en) 1994-06-07 1994-06-07 ELECTRODE GAS DIFFUSION WITH CATALYST FOR AN ELECTROCHEMICAL CELL WITH SOLID ELECTROLYTE AND METHOD FOR MANUFACTURING SUCH ELECTRODE.
PCT/BE1995/000053 WO1995034098A1 (en) 1994-06-07 1995-06-07 Gas diffusion electrode with catalyst for an electrochemical cell with solid electrolyte and method for making such an electrode

Publications (1)

Publication Number Publication Date
JPH09501541A true JPH09501541A (en) 1997-02-10

Family

ID=3888194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8500096A Pending JPH09501541A (en) 1994-06-07 1995-06-07 Gas diffusion electrode with catalyst for electrochemical cell with solid electrolyte and manufacturing method thereof

Country Status (8)

Country Link
US (1) US5561000A (en)
EP (1) EP0687023B1 (en)
JP (1) JPH09501541A (en)
AT (1) ATE163805T1 (en)
BE (1) BE1008455A3 (en)
CA (1) CA2151104A1 (en)
DE (1) DE69501681T2 (en)
WO (1) WO1995034098A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302804A (en) * 1997-04-18 1998-11-13 De Nora Spa Gas dispersion electrode for polymeric membrane fuel cell
JP2005166478A (en) * 2003-12-03 2005-06-23 Sony Corp Method of manufacturing electrode for fuel cell
JP2005302694A (en) * 2004-03-17 2005-10-27 Nitto Denko Corp Fuel cell
JP2008177135A (en) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd Catalyst electrode for fuel cell and its manufacturing method
JP2009199915A (en) * 2008-02-22 2009-09-03 Asahi Glass Co Ltd Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
JP2009533553A (en) * 2006-04-12 2009-09-17 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Gas diffusion electrode for electrolyte penetration cell
JP2010040281A (en) * 2008-08-04 2010-02-18 Toshiba Corp Direct methanol fuel cell
JP2014022302A (en) * 2012-07-23 2014-02-03 Fuji Electric Co Ltd Method for manufacturing fuel cell electrode
JP2014135229A (en) * 2013-01-11 2014-07-24 Ne Chemcat Corp Catalyst ink for fuel cell

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773162A (en) * 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
US6703150B2 (en) 1993-10-12 2004-03-09 California Institute Of Technology Direct methanol feed fuel cell and system
US6322676B1 (en) 1998-03-25 2001-11-27 University Of Iowa Research Foundation Magnetic composites exhibiting distinct flux properties due to gradient interfaces
US7709115B2 (en) * 1994-08-25 2010-05-04 University Of Iowa Research Foundation Methods for forming magnetically modified electrodes and articles produced thereby
US5565073A (en) * 1994-07-15 1996-10-15 Fraser; Mark E. Electrochemical peroxide generator
US6949179B2 (en) * 1994-08-25 2005-09-27 University Of Iowa Research Foundation Methods for forming magnetically modified electrodes and articles produced thereby
US6001248A (en) 1994-08-25 1999-12-14 The University Of Iowa Research Foundation Gradient interface magnetic composites and systems therefor
US5871625A (en) 1994-08-25 1999-02-16 University Of Iowa Research Foundation Magnetic composites for improved electrolysis
US20050213187A1 (en) * 1994-08-25 2005-09-29 University Of Iowa Research Foundation Methods for forming magnetically modified electrodes and articles produced thereby
US5817221A (en) * 1994-08-25 1998-10-06 University Of Iowa Research Foundation Composites formed using magnetizable material, a catalyst and an electron conductor
DE69629201D1 (en) * 1995-10-06 2003-08-28 Dow Global Technologies Inc LIQUID DISTRIBUTION STRUCTURES FOR MEMBRANE ELECTRODE ARRANGEMENTS OF FUEL CELLS
US5702755A (en) * 1995-11-06 1997-12-30 The Dow Chemical Company Process for preparing a membrane/electrode assembly
US6312845B1 (en) 1995-10-06 2001-11-06 The Dow Chemical Company Macroporous flow field assembly
DE19544323A1 (en) * 1995-11-28 1997-06-05 Magnet Motor Gmbh Gas diffusion electrode for polymer electrolyte membrane fuel cells
US6183898B1 (en) 1995-11-28 2001-02-06 Hoescht Research & Technology Deutschland Gmbh & Co. Kg Gas diffusion electrode for polymer electrolyte membrane fuel cells
US5716664A (en) * 1995-12-22 1998-02-10 Marchetti; George A. Method of making a hydrophilic, graphite electrode membrane assembly
US5869201A (en) * 1995-12-22 1999-02-09 George Marchetti Hydrophilic, graphite fuel cell electrode for use with an ionomer membrane
JPH09223503A (en) * 1996-02-14 1997-08-26 Tanaka Kikinzoku Kogyo Kk Manufacture of high molecular solid electrolyte type fuel cell electrode
US5882810A (en) * 1996-03-08 1999-03-16 The Dow Chemicalcompany Active layer for membrane electrode assembly
AU3137097A (en) 1996-05-16 1997-12-05 Lockheed Martin Energy Systems, Inc. Low temperature material bonding technique
US6660680B1 (en) 1997-02-24 2003-12-09 Superior Micropowders, Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
DE19709199A1 (en) * 1997-03-06 1998-09-17 Magnet Motor Gmbh Gas diffusion electrode with reduced diffusivity for water and method for operating a polymer electrolyte membrane fuel cell without supplying membrane dampening water
JP3773325B2 (en) * 1997-03-17 2006-05-10 ジャパンゴアテックス株式会社 Gas diffusion layer material for polymer electrolyte fuel cell and its joined body
US6136412A (en) * 1997-10-10 2000-10-24 3M Innovative Properties Company Microtextured catalyst transfer substrate
US5910378A (en) 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
US5879828A (en) * 1997-10-10 1999-03-09 Minnesota Mining And Manufacturing Company Membrane electrode assembly
AU1902099A (en) * 1997-11-25 1999-06-15 California Institute Of Technology Improved hspes membrane electrode assembly
JPH11224679A (en) * 1998-02-06 1999-08-17 Matsushita Electric Ind Co Ltd Solid high polymer fuel cell and its manufacture
US6221523B1 (en) 1998-02-10 2001-04-24 California Institute Of Technology Direct deposit of catalyst on the membrane of direct feed fuel cells
US7150920B2 (en) * 1998-02-24 2006-12-19 Cabot Corporation Metal-carbon composite powders
US6911412B2 (en) 1998-02-24 2005-06-28 Cabot Corporation Composite particles for electrocatalytic applications
US6967183B2 (en) 1998-08-27 2005-11-22 Cabot Corporation Electrocatalyst powders, methods for producing powders and devices fabricated from same
US6753108B1 (en) * 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
US6548202B2 (en) 1998-03-06 2003-04-15 Ballard Power System, Inc. Carbon-supported catalysts for fuel cells
US6746793B1 (en) 1998-06-16 2004-06-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP2002528866A (en) * 1998-10-16 2002-09-03 バラード パワー システムズ インコーポレイティド Ionomer impregnation of electrode substrate for fuel cell performance improvement
US6153323A (en) 1998-10-16 2000-11-28 Ballard Power Systems Inc. Electrode treatment method for improving performance in liquid feed fuel cells
US6287717B1 (en) 1998-11-13 2001-09-11 Gore Enterprise Holdings, Inc. Fuel cell membrane electrode assemblies with improved power outputs
EP2316873B1 (en) 1999-01-20 2013-09-18 Cabot Corporation Aggregates having attached polymer groups and polymer foams
EP2316874A1 (en) 1999-01-20 2011-05-04 Cabot Corporation Aggregates having attached polymer groups and polymer foams
JP4726301B2 (en) * 1999-03-12 2011-07-20 ユーティーシー パワー コーポレイション Water management device for fuel cells
US6284401B1 (en) 1999-04-19 2001-09-04 George A. Marchetti Thin graphite bipolar plate with associated gaskets and carbon cloth flow-field for use in an ionomer membrane fuel cell
US6277513B1 (en) * 1999-04-12 2001-08-21 General Motors Corporation Layered electrode for electrochemical cells
US6440594B1 (en) 1999-06-17 2002-08-27 California Institute Of Technology Aerosol feed direct methanol fuel cell
AU6984500A (en) * 1999-09-09 2001-04-10 Danish Power Systems Aps Polymer electrolyte membrane fuel cells
KR100437293B1 (en) * 1999-09-21 2004-06-25 마쯔시다덴기산교 가부시키가이샤 Polymer electrolytic fuel cell and method for producing the same
US6280871B1 (en) 1999-10-12 2001-08-28 Cabot Corporation Gas diffusion electrodes containing modified carbon products
US6399202B1 (en) 1999-10-12 2002-06-04 Cabot Corporation Modified carbon products useful in gas diffusion electrodes
DE19951936A1 (en) * 1999-10-28 2001-05-10 Forschungszentrum Juelich Gmbh Production of catalyst layers on membranes for low-temperature fuel cells
TW515129B (en) * 2000-09-29 2002-12-21 Sony Corp Method for manufacturing gas diffusion electrode and method for manufacturing electrochemical device
DE10052224B4 (en) * 2000-10-21 2009-12-10 Daimler Ag A gas diffusion electrode having increased tolerance to moisture variation, a membrane electrode assembly having the same, methods for producing the gas diffusion electrode and the membrane electrode assembly, and use of the membrane electrode assembly
EP1348241A1 (en) * 2000-10-27 2003-10-01 MicroCoating Technologies, Inc. Fuel cell having improved catalytic layer
EP1357618A1 (en) 2001-03-08 2003-10-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
US20030022055A1 (en) * 2001-04-11 2003-01-30 Jameel Menashi Fuel cells and other products containing modified carbon products
US7541308B2 (en) 2001-04-11 2009-06-02 Cabot Corporation Fuel cells and other products containing modified carbon products
US7060384B2 (en) * 2001-09-28 2006-06-13 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
TWI265654B (en) * 2001-11-21 2006-11-01 Polyfuel Inc Catalyst agglomerates for membrane electrode assemblies
US6733915B2 (en) * 2001-12-27 2004-05-11 E. I. Du Pont De Nemours And Company Gas diffusion backing for fuel cells
KR100448168B1 (en) * 2001-12-27 2004-09-10 현대자동차주식회사 A preparing method of Membrane-Electrode-Gasket Assembly for fuel cell
DE10211177A1 (en) * 2002-03-14 2003-10-02 Daimler Chrysler Ag Membrane-electrode assembly
US7312174B2 (en) * 2002-09-09 2007-12-25 The Board Of Trustees Of The University Of Illinois Method for preparing highly loaded, highly dispersed platinum metal on a carbon substrate
US7960072B2 (en) * 2003-04-04 2011-06-14 GM Global Technology Operations LLC MEA with catalyst for oxidation of carbon monoxide
US7083708B2 (en) * 2003-07-31 2006-08-01 The Regents Of The University Of California Oxygen-consuming chlor alkali cell configured to minimize peroxide formation
US8227117B2 (en) * 2004-03-15 2012-07-24 Cabot Corporation Modified carbon products, their use in electrocatalysts and electrode layers and similar devices and methods relating to the same
KR100599774B1 (en) * 2004-06-07 2006-07-13 삼성에스디아이 주식회사 A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
KR100599716B1 (en) * 2004-06-23 2006-07-12 삼성에스디아이 주식회사 Fuel cell and method for preparating the same
US20060040045A1 (en) * 2004-08-18 2006-02-23 Siegfried Limmer Method of making electrodes for electrochemical fuel cells
KR100671494B1 (en) * 2005-01-27 2007-01-19 한국과학기술연구원 Multi-layered electrode for fuel cell and method for preparing the same
KR101201816B1 (en) * 2005-03-07 2012-11-15 삼성에스디아이 주식회사 Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same
US20060237034A1 (en) * 2005-04-20 2006-10-26 Lawrence Shore Process for recycling components of a PEM fuel cell membrane electrode assembly
KR100846072B1 (en) * 2006-01-04 2008-07-14 주식회사 엘지화학 Membrane Electrode Assembly Having Layer for Trapping Catalyst and Fuel Cell Employed with the Same
US8124261B2 (en) * 2006-06-20 2012-02-28 Basf Corporation Process for recycling components of a PEM fuel cell membrane electrode assembly
US20090214905A1 (en) * 2007-01-08 2009-08-27 California Institute Of Technology Direct methanol fuel cell operable with neat methanol
TWI398982B (en) * 2007-08-15 2013-06-11 Univ Feng Chia Modified carbonized substrate and its manufacturing method and use
JP6062853B2 (en) 2010-06-29 2017-01-18 ヴィート エヌブイ Gas diffusion electrode, manufacturing method thereof, membrane electrode assembly including the same, and method of manufacturing membrane electrode assembly including the same
US20120321995A1 (en) * 2011-06-20 2012-12-20 Xerox Corporation System and Method for Selective Deposition of A Catalyst Layer for PEM Fuel Cells Utilizing Inkjet Printing
CN104716337B (en) * 2013-12-13 2017-05-17 中国科学院大连化学物理研究所 Production method of gas diffusion layer for proton exchange membrane fuel cell
WO2015168556A1 (en) * 2014-05-01 2015-11-05 The University Of Utah Research Foundation Magnetically-modified conducting polymer composites and methods of preparation thereof
KR102175009B1 (en) 2015-09-24 2020-11-05 코오롱인더스트리 주식회사 Membrane-electrode assembly for fuel cell, method for manufacturing of the same, and fuel cell comprising the same
EP3509744A4 (en) 2016-09-08 2020-05-20 The Board of Trustees of the Leland Stanford Junior University Atomic layer deposition with passivation treatment
JP7265982B2 (en) * 2016-09-08 2023-04-27 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Atomic layer deposition of electrochemical catalysts
KR20210074896A (en) * 2019-12-12 2021-06-22 현대자동차주식회사 Gas diffusion layer for fuel cell and manufacturing method thereof
US20220098741A1 (en) * 2020-09-30 2022-03-31 Alliance For Sustainable Energy, Llc Compositions including ionic liquids and methods of making the same
CN113135614A (en) * 2021-03-10 2021-07-20 中国工程物理研究院材料研究所 Organic pollutant anodic oxidation treatment device based on proton exchange membrane

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185131A (en) * 1978-06-28 1980-01-22 United Technologies Corporation Screen printing method for making an electrochemical cell electrode
US4849253A (en) * 1987-05-29 1989-07-18 International Fuel Cell Corporation Method of making an electrochemical cell electrode
US4804592A (en) * 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
US4927514A (en) * 1988-09-01 1990-05-22 Eltech Systems Corporation Platinum black air cathode, method of operating same, and layered gas diffusion electrode of improved inter-layer bonding
JPH04154046A (en) * 1990-10-17 1992-05-27 Fuji Electric Co Ltd Manufacture of electrode for fuel cell
JP3245929B2 (en) * 1992-03-09 2002-01-15 株式会社日立製作所 Fuel cell and its application device
US5272017A (en) * 1992-04-03 1993-12-21 General Motors Corporation Membrane-electrode assemblies for electrochemical cells
US5242765A (en) * 1992-06-23 1993-09-07 Luz Electric Fuel Israel Limited Gas diffusion electrodes
US5441823A (en) * 1994-07-01 1995-08-15 Electric Fuel (E.F.L.) Ltd. Process for the preparation of gas diffusion electrodes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302804A (en) * 1997-04-18 1998-11-13 De Nora Spa Gas dispersion electrode for polymeric membrane fuel cell
JP4522502B2 (en) * 1997-04-18 2010-08-11 バスフ・ヒュエル・セル・ゲーエムベーハー Gas diffusion electrodes for polymer membrane fuel cells
JP2005166478A (en) * 2003-12-03 2005-06-23 Sony Corp Method of manufacturing electrode for fuel cell
JP4561086B2 (en) * 2003-12-03 2010-10-13 ソニー株式会社 Method for producing electrode for fuel cell
JP2005302694A (en) * 2004-03-17 2005-10-27 Nitto Denko Corp Fuel cell
JP2009533553A (en) * 2006-04-12 2009-09-17 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Gas diffusion electrode for electrolyte penetration cell
JP2008177135A (en) * 2007-01-22 2008-07-31 Nissan Motor Co Ltd Catalyst electrode for fuel cell and its manufacturing method
JP2009199915A (en) * 2008-02-22 2009-09-03 Asahi Glass Co Ltd Membrane-electrode assembly for polymer electrolyte fuel cell and method of manufacturing the same
JP2010040281A (en) * 2008-08-04 2010-02-18 Toshiba Corp Direct methanol fuel cell
JP2014022302A (en) * 2012-07-23 2014-02-03 Fuji Electric Co Ltd Method for manufacturing fuel cell electrode
JP2014135229A (en) * 2013-01-11 2014-07-24 Ne Chemcat Corp Catalyst ink for fuel cell

Also Published As

Publication number Publication date
DE69501681T2 (en) 1998-08-20
BE1008455A3 (en) 1996-05-07
WO1995034098A1 (en) 1995-12-14
CA2151104A1 (en) 1995-12-08
US5561000A (en) 1996-10-01
DE69501681D1 (en) 1998-04-09
EP0687023B1 (en) 1998-03-04
ATE163805T1 (en) 1998-03-15
EP0687023A1 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JPH09501541A (en) Gas diffusion electrode with catalyst for electrochemical cell with solid electrolyte and manufacturing method thereof
EP0920065B1 (en) Solid polymer electrolyte-catalyst composite electrode, electrode for fuel cell, and process for producing these electrodes
JP3576739B2 (en) Gas diffusion electrode
KR930000425B1 (en) Flexible fuel cell electrode plate
CN101411016B (en) Preparation of gas diffusion layer for fuel cell
CA2171386C (en) Improved materials for use in electrode manufacture
CA2368258C (en) Gas diffusion substrates
EP1979970B1 (en) Microporous layer
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
CA2345219C (en) Gas diffusion structures and gas diffusion electrodes for polymer electrolyte fuel cells
EP0949703A1 (en) Gas diffusion electrode, solid polymer electrolyte membrane, method of producing them, and solid polymer electrolyte type fuel cell using them
US20030190519A1 (en) Electrodes for alkaline fuel cells with circulating electrolyte
JPH07240204A (en) Porous electrode for fuel cell and its preparation
JPH0652862A (en) Porous electrode and its manufacture
US20100273085A1 (en) Method for the Electrochemical Deposition of Catalyst Particles Onto Carbon Fibre-Containing Substrates and Apparatus Therefor
EP1165885B1 (en) Nonwoven web
WO2005057698A1 (en) Fuel cell
JPH10223233A (en) Electrode for fuel cell, and electrode electrolyte film joint body
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JP4117430B2 (en) Gas diffusion electrode and fuel cell having the same
JP2001160398A (en) Gas diffusion electrode for fuel cell and fuel cell using the same
JP2006079904A (en) Polymer electrolyte fuel cell and its manufacturing method
JPH1116586A (en) Manufacture of high polymer electrolyte film-gas diffusion electrode body
JP4011330B2 (en) Electrocatalyst layer formation method
KR100423843B1 (en) Manufacturing method of electrode for fuel cell and electrode using the same