JPH0943169A - X-ray measuring sample heating furnace - Google Patents

X-ray measuring sample heating furnace

Info

Publication number
JPH0943169A
JPH0943169A JP7196867A JP19686795A JPH0943169A JP H0943169 A JPH0943169 A JP H0943169A JP 7196867 A JP7196867 A JP 7196867A JP 19686795 A JP19686795 A JP 19686795A JP H0943169 A JPH0943169 A JP H0943169A
Authority
JP
Japan
Prior art keywords
sample
ray
cover
heating furnace
glassy carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7196867A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mizutani
敏行 水谷
Toshiji Kikuchi
利治 菊地
Koichi Kawasaki
宏一 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7196867A priority Critical patent/JPH0943169A/en
Publication of JPH0943169A publication Critical patent/JPH0943169A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray measuring sample heating furnace used for a sample structural analysis method in a high temperature range. SOLUTION: The X-ray measuring sample heating furnace comprises a sample mount 15 and a heater 16, a base 17 including a mount 14 at an X-ray measuring unit, and a cover 6 mounted at the base 17 to cover the sample, wherein the cover is a glassy carbon cover 6 integrally molded by glassy carbon material. The shape of the area used as the X-ray permeating partition wall 4 of the cover 6 is the part of a sphere having a predetermined thickness, a cylindrical shape having a predetermined thickness or the part of a cylinder having a predetermined thickness. A sample heating furnace for heating experiment exceeding 500 deg.C with the wide wall 4 can be easily provided. The X-ray permeating part can be freely provided at a furnace body, and further the sample using atmospheric gas containing oxygen can be heated and measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、X線を用いて金属
および半導体およびセラミックス等の高温での結晶構造
や集合組織、応力、元素組成を測定するため、X線測定
装置に装着し試料を高温に加熱するためのX線測定用試
料加熱炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the crystal structure, texture, stress, and elemental composition of metals, semiconductors, ceramics, etc. at high temperatures by using X-rays. The present invention relates to a sample heating furnace for X-ray measurement for heating to a high temperature.

【0002】[0002]

【従来の技術】加熱を必要とする材料製造工程において
は、加熱時に材料に生起している現象を把握し、最適な
製造方法や熱処理過程を見出す必要性がある。また、高
温で用いられる材料においては、高温での材料の特性を
把握しておかなければならない。これらの加熱時や高温
における材料に生起している現象や、材料の特性を測定
するために、X線を用いた高温での非破壊構造解析法が
用いられる。このような高温での構造解析のために、X
線測定装置に装着されるX線測定用試料加熱炉が使用さ
れる。
2. Description of the Related Art In a material manufacturing process that requires heating, it is necessary to understand the phenomenon occurring in the material during heating and find an optimum manufacturing method and heat treatment process. In addition, regarding materials used at high temperatures, it is necessary to understand the characteristics of the materials at high temperatures. A nondestructive structural analysis method at high temperature using X-rays is used to measure the phenomenon occurring in the material at the time of heating or at high temperature and the characteristics of the material. For structural analysis at such a high temperature, X
A sample heating furnace for X-ray measurement, which is mounted on the X-ray measuring apparatus, is used.

【0003】X線測定用試料加熱炉には、加熱炉外部と
内部の間で、X線を出し入れするためのX線透過可能な
隔壁(以下、X線透過隔壁と記す)を必要とする。X線
透過隔壁には、X線の透過性が良いことが要求されるた
め、元素番号の小さな元素を素材とする材料が用いられ
る。さらに、高温においても溶融せず、変質しない材料
が要求される。加えて、多くの場合、不活性ガスまたは
反応ガス等の雰囲気中や、真空中での試料加熱がおこな
われるため、試料加熱炉には密封性が要求される。X線
透過隔壁に用いられる材料には、試料加熱炉の密封性を
保つのに充分な稠密性が要求される。
A sample heating furnace for X-ray measurement requires a partition wall (hereinafter, referred to as an X-ray transparent partition wall) which can transmit and receive X-rays between the inside and outside of the heating furnace. Since the X-ray transparent partition wall is required to have good X-ray transparency, a material made of an element having a small element number is used. Further, a material that does not melt even at high temperatures and does not deteriorate is required. In addition, in many cases, since the sample is heated in an atmosphere of an inert gas or a reaction gas or in a vacuum, the sample heating furnace is required to have hermeticity. The material used for the X-ray transparent partition wall is required to have a denseness sufficient to maintain the hermeticity of the sample heating furnace.

【0004】従来、上記の要求を満たすX線透過隔壁用
の材料として金属ベリリウムが広く用いられてきた。金
属ベリリウムは、もっともX線の透過性が高い金属であ
り、さらに、金属ベリリウムは、試料加熱炉の密封性を
保つのに充分な性質を持っている。しかしながら、金属
ベリリウムは加工が容易ではなく、高価であるという欠
点に加えて、高温では速やかに酸化されるという大きな
欠点を持つ。温度が500℃より低いときは、金属ベリ
リウムの表面だけが酸化され皮膜をつくるだけである。
ところが、500℃を超す温度では酸化が急速に進み、
酸化皮膜の自然剥離による金属ベリリウムの侵食が急速
に進み、炉の密封性が破れる。このため、金属ベリリウ
ム製X線透過隔壁の温度が500℃を超えることがない
ように、使用しなければならなかった。
Heretofore, metal beryllium has been widely used as a material for an X-ray transparent partition wall that satisfies the above requirements. Metallic beryllium has the highest X-ray permeability, and metallic beryllium has properties sufficient to maintain the hermeticity of the sample heating furnace. However, metal beryllium has the drawback that it is not easy to process and is expensive, and that it is rapidly oxidized at high temperatures. When the temperature is lower than 500 ° C., only the surface of metallic beryllium is oxidized to form a film.
However, at temperatures above 500 ° C, oxidation rapidly progresses,
Corrosion of metallic beryllium due to spontaneous peeling of the oxide film progresses rapidly, and the hermeticity of the furnace is broken. Therefore, the metal beryllium X-ray transmissive partition wall must be used so that the temperature thereof does not exceed 500 ° C.

【0005】試料加熱炉ではX線透過隔壁が直接加熱さ
れることはないが、試料加熱部および試料による輻射熱
や、炉内に雰囲気ガスが入る場合は、加熱された雰囲気
ガスによって、X線透過隔壁も加熱される。したがっ
て、試料温度が500℃を超える場合には、X線透過隔
壁に冷却を施し、金属ベリリウム製X線透過隔壁の温度
を500℃より低くしなければならない。ところが、X
線測定用試料加熱炉には、例えば水冷管等のようなX線
を妨げる冷却部品を、X線の通過範囲を避けて配置しな
ければならないという、構成上の制約がある。しかも、
金属ベリリウムは、金属の中でも熱伝導度が低い部類に
入るため、試料温度が500℃を超えた場合、冷却管か
ら離れた場所での隔壁の温度は500℃を超えてしま
う。このような理由から、広い金属ベリリウム製X線透
過隔壁は、試料加熱温度が500℃より高い試料加熱炉
では使用できなかった。
In the sample heating furnace, the X-ray transmitting partition wall is not directly heated. However, when radiant heat from the sample heating section and the sample or atmospheric gas enters the furnace, the heated atmospheric gas causes X-ray transmission. The partition is also heated. Therefore, when the sample temperature exceeds 500 ° C., it is necessary to cool the X-ray transparent partition wall so that the temperature of the metal beryllium X-ray transparent partition wall is lower than 500 ° C. However, X
The sample heating furnace for line measurement has a structural restriction that cooling components such as a water-cooled tube that obstruct X-rays must be arranged so as to avoid the X-ray passage range. Moreover,
Since metal beryllium belongs to the category of low thermal conductivity among metals, when the sample temperature exceeds 500 ° C., the temperature of the partition wall at a location apart from the cooling pipe exceeds 500 ° C. For this reason, the wide metal beryllium X-ray transparent partition wall cannot be used in a sample heating furnace in which the sample heating temperature is higher than 500 ° C.

【0006】一方、狭い金属ベリリウム製X線透過隔壁
は、500℃を超える試料加熱の場合であっても、X線
透過隔壁の炉の外側の大気と接する面の温度を500℃
より低く保つことは可能であった。しかしながら、この
ような場合でも、金属ベリリウムの熱伝導度が低いた
め、炉の内側の熱源に向いた面の冷却は不充分となり、
しばしば、500℃を超えることがあった。そのため、
炉の内側の面の酸化による侵食を避けるために、アルゴ
ンガス等の不活性ガスで炉内を置換するか、炉内を高真
空にする必要性があり、酸素を含む雰囲気ガス中での試
料加熱はできなかった。
On the other hand, the narrow metal beryllium X-ray transparent partition wall has a temperature of the surface of the X-ray transparent partition wall in contact with the atmosphere outside the furnace of 500 ° C. even when the sample is heated above 500 ° C.
It was possible to keep it lower. However, even in such a case, since the thermal conductivity of metal beryllium is low, cooling of the surface facing the heat source inside the furnace becomes insufficient,
Frequently above 500 ° C. for that reason,
In order to avoid erosion due to oxidation of the inner surface of the furnace, it is necessary to replace the inside of the furnace with an inert gas such as argon gas or to make the inside of the furnace a high vacuum.Samples in an atmosphere gas containing oxygen It couldn't be heated.

【0007】金属ベリリウムの上記のような問題点を解
決するために、ベリリウムの次に固体の主成分となるX
線の吸収率の低い元素である炭素からなる材料をX線透
過隔壁に用いる方法が考えられる。実際、炭素や酸素、
水素等からなる高分子樹脂は、低温加熱用のX線用試料
加熱炉の透過窓に一般的に使われている。しかしなが
ら、高分子樹脂は高温での耐久性がほとんどないため、
室温から200℃ぐらいの温度範囲でしか利用できない
という制約があった。
In order to solve the above problems of metallic beryllium, X, which is the main component of the solid next to beryllium, is used.
A method of using a material made of carbon, which is an element having a low absorptance of rays, for the X-ray transmitting partition is conceivable. In fact, carbon and oxygen,
A polymer resin made of hydrogen or the like is generally used for a transmission window of a sample heating furnace for X-rays for low temperature heating. However, since polymeric resins have little durability at high temperatures,
There is a restriction that it can be used only in the temperature range from room temperature to 200 ° C.

【0008】一方、炭素単体からなる炭素材料は、熱衝
撃性、加工性、耐熱性に優れ、高温になるにつれ強度が
増す等の性質を持ち、試料加熱炉のX線透過隔壁に用い
るには有望な材料である。
On the other hand, a carbon material composed of simple carbon has excellent properties such as thermal shock resistance, workability, and heat resistance, and its strength increases as the temperature rises. Therefore, it can be used as an X-ray transmitting partition wall of a sample heating furnace. It is a promising material.

【0009】実際、本発明の発明者の一人は、既に、X
線透過型試料加熱炉のX線透過隔壁に、黒鉛の平板を用
いてみた(特願平6−77590号、特願平7−587
01号)。この例では、X線入射隔壁とX線出射隔壁の
それぞれを有するX線透過型試料加熱炉に、厚さ3mmの
黒鉛の平板を、厚さ0.5mmの金属ベリリウムの平板の
代わりに用いた。ところが、X線の透過性を考慮する
と、平板を可能な限り薄くしなければならないのだが、
黒鉛は脆いため、平板を厚くする必要があった。X線の
透過性が劣る黒鉛を厚くしたため、この加熱炉は一般の
X線測定と同様にX線を試料に対して様々な角度で出入
りさせる用途に利用するために作製したにもかかわら
ず、黒鉛平板ではX線の入出射の角度が狭くなるという
欠点が生じた。金属ベリリウム製平板隔壁に垂直な方向
から40度の角度でX線を出入りしても強度が1%分減
衰で済むのに対して、黒鉛の場合は15度の角度で既に
1%分減衰する。さらに、黒鉛は結晶質であるため、黒
鉛結晶による回折X線がX線測定時のノイズになるとい
う欠点もあった。
In fact, one of the inventors of the present invention was already
A graphite flat plate was used as the X-ray transmission partition wall of the X-ray transmission sample heating furnace (Japanese Patent Application Nos. 6-77590 and 7-587).
No. 01). In this example, a graphite flat plate with a thickness of 3 mm was used instead of a flat plate of metal beryllium with a thickness of 0.5 mm in an X-ray transmission type sample heating furnace having an X-ray entrance partition and an X-ray exit partition. . However, considering X-ray transparency, it is necessary to make the flat plate as thin as possible.
Since graphite is brittle, it was necessary to thicken the flat plate. Since the thickness of graphite, which has poor X-ray permeability, was increased, this heating furnace was created to be used for the purpose of moving X-rays into and out of the sample at various angles, similar to general X-ray measurement. The graphite flat plate has a drawback that the angle of X-ray incidence and emission becomes narrow. Even if X-ray enters and exits at a 40 degree angle from the direction perpendicular to the metal beryllium flat partition wall, the strength can be attenuated by 1%, whereas in the case of graphite, it is already attenuated by 1% at an angle of 15 degrees. . Further, since graphite is crystalline, there is a drawback that diffracted X-rays by the graphite crystals become noise during X-ray measurement.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明の課題
は、上記のような従来のX線測定用試料加熱炉の問題点
を解決した、X線測定用試料加熱炉を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sample heating furnace for X-ray measurement which solves the problems of the conventional sample heating furnace for X-ray measurement. .

【0011】[0011]

【課題を解決するための手段】上述した課題を解決する
ために、本発明で用いるX線測定用試料加熱炉は、試料
取付部および加熱部、X線測定装置への取付部を含む基
部と、該基部に装着され試料を覆う覆蓋から構成される
試料加熱炉において、該覆蓋部がガラス状炭素材料を一
体成形したガラス状炭素製覆蓋であることを要旨とす
る。そして、該覆蓋のX線透過隔壁として用いる領域
が、厚さ一定の球の一部、厚さ一定の円筒形または、厚
さ一定の円筒の一部の形状を有する覆蓋が望ましい。覆
蓋が円筒形またはその一部の場合は、試料取り付け位置
が該円筒の中心線上に配置する構成である。覆蓋が球の
一部の場合は、試料取り付け位置が該球の中心に配置す
る構成である。
In order to solve the above-mentioned problems, a sample heating furnace for X-ray measurement used in the present invention comprises a sample mounting part, a heating part, and a base part including a mounting part for an X-ray measuring apparatus. In a sample heating furnace configured by a cover attached to the base for covering a sample, the gist is that the cover is a glass-like carbon cover integrally molded with a glass-like carbon material. Further, it is desirable that the region used as the X-ray transmission partition of the cover has a shape of a sphere having a constant thickness, a cylindrical shape having a constant thickness, or a part of a cylinder having a constant thickness. When the cover is cylindrical or a part thereof, the sample mounting position is arranged on the center line of the cylinder. When the cover is a part of a sphere, the sample mounting position is arranged at the center of the sphere.

【0012】本発明で用いるX線測定用試料加熱炉の他
の構成は、加熱時に密封される円筒形の試料室を有し、
該試料室の円筒の中心線上に試料取付部が位置してお
り、該試料室を囲む円筒形の炉壁の試料取り付け高さの
円筒帯部分が、一定厚みの円筒形ガラス状炭素製X線透
過窓であることを要旨とする。
Another structure of the sample heating furnace for X-ray measurement used in the present invention has a cylindrical sample chamber which is sealed during heating.
The sample mounting portion is located on the center line of the cylinder of the sample chamber, and the cylindrical band portion of the cylindrical furnace wall surrounding the sample chamber at the sample mounting height is a cylindrical glassy carbon X-ray having a constant thickness. The gist is that it is a transparent window.

【0013】[0013]

【作用】本発明によるX線測定用試料加熱炉は、耐熱性
が良い非晶質のガラス状炭素材料製のX線透過隔壁から
構成することを特徴としているため、X線透過隔壁の温
度が2000℃近くの高温でも使用可能な試料加熱炉を
作製することが可能となる。ガラス状炭素材料を始めと
する炭素材料は、一般に、高温になるにつれ強度が増
し、高温において炭素材料単独でも形状を保てるため、
温度上昇が避けられないX線透過壁に好都合な性質を有
している。金属ベリリウム製X線透過隔壁の使用上限温
度が500℃と低かったのに対して、X線透過隔壁に炭
素材料を用いたことによって、この制限から逃れること
ができる。また、炉の内面が500℃を超える場合で
も、不活性ガス雰囲気への置換や高真空に保つ必要がな
く、金属ベリリウムでは不可能であった酸素を含む雰囲
気ガス中での試料加熱が可能となる。X線を用いた高温
域での材料の非破壊構造解析では、通常、1500℃以
下の試料加熱で済むため、炭素材料製X線透過隔壁から
構成されるX線測定用試料加熱炉を用いることにより、
ほとんどの高温域でのX線測定が可能になる。
The sample heating furnace for X-ray measurement according to the present invention is characterized by being composed of an X-ray transmission partition wall made of an amorphous glassy carbon material having good heat resistance. It is possible to fabricate a sample heating furnace that can be used even at a high temperature near 2000 ° C. Carbon materials such as glassy carbon materials generally increase in strength as the temperature rises, and the shape of the carbon material alone can be maintained at high temperatures.
It has a property which is convenient for the X-ray transmitting wall in which the temperature rise cannot be avoided. While the upper limit temperature of the metal beryllium X-ray transmissive partition wall was as low as 500 ° C., this limitation can be avoided by using a carbon material for the X-ray transmissive partition wall. Further, even when the inner surface of the furnace exceeds 500 ° C., it is not necessary to replace the atmosphere with an inert gas atmosphere or maintain a high vacuum, and it is possible to heat a sample in an atmosphere gas containing oxygen, which was impossible with metal beryllium. Become. In non-destructive structural analysis of materials in the high temperature region using X-rays, it is usually sufficient to heat the sample at 1500 ° C or lower, so use a sample heating furnace for X-ray measurement composed of carbon material X-ray transparent partition walls. Due to
X-ray measurement is possible in most high temperature regions.

【0014】炭素材料には、黒鉛、炭素繊維、ガラス状
炭素、およびそれらの複合材料があるが、X線透過隔壁
には稠密性が要求されるため、ガスをほとんど透過しな
い、ガラス状炭素のみからなるガラス状炭素材料、また
は、ガラス状炭素と黒鉛の複合材料、ガラス状炭素と炭
素繊維の複合材料が、X線透過隔壁の材料として望まし
い。これらのガラス状炭素から成る材料の中でも、ガラ
ス状炭素材料がX線測定装置用のX線透過隔壁としては
もっとも望ましい材料である。ガラス状炭素材料は非晶
質であるため測定時にノイズとなるX線透過隔壁の回折
X線が発生せず、また、構造が緻密で外力に強いためX
線の減衰を抑えるために薄いX線透過隔壁の作製が可能
であり、成形が容易であるため様々な形状のX線透過隔
壁を、金属ベリリウムに比べて1桁程安価に提供でき
る。
Carbon materials include graphite, carbon fiber, glassy carbon, and composite materials thereof. However, since the X-ray transmitting partition wall is required to have a high density, only glassy carbon that hardly permeates gas is used. A glassy carbon material composed of, a composite material of glassy carbon and graphite, or a composite material of glassy carbon and carbon fiber is desirable as the material of the X-ray transmitting partition. Among these materials made of glassy carbon, the glassy carbon material is the most desirable material as the X-ray transmitting partition wall for the X-ray measuring device. Since the vitreous carbon material is amorphous, no diffracted X-rays of the X-ray transmitting partition, which cause noise during measurement, are generated, and the structure is dense and strong against external force.
A thin X-ray transmitting partition wall can be manufactured to suppress the attenuation of the rays, and the X-ray transmitting partition wall of various shapes can be provided at a cost lower than that of metal beryllium by about one digit because it is easy to mold.

【0015】さらに、X線透過隔壁にガラス状炭素材料
を用いると、ガラス状炭素の強度が高いためX線透過隔
壁の厚みを金属ベリリウムに比べて薄くできることに加
えて、ガラス状炭素の密度が1.55g/cm3 であり、金
属ベリリウムの密度1.82g/cm3 よりも低いため、炭
素原子がベリリウム原子よりX線の吸収が大きいという
欠点を補なえる。例えば、厚さ1mmの金属ベリリウムの
X線透過率は95%であり、ガラス状炭素材料で同じX
線透過率となる厚さは0.5mmである。厚さ0.5mmの
ガラス状炭素材料は、厚さ1mmの金属ベリリウムを超え
る強度を有し、X線透過隔壁として使用できる。
Furthermore, when a glassy carbon material is used for the X-ray transparent partition wall, the strength of the glassy carbon is high, so that the thickness of the X-ray transparent partition wall can be made thinner than that of metallic beryllium, and the density of the glassy carbon is also increased. Since it is 1.55 g / cm 3 , which is lower than the density of metal beryllium, which is 1.82 g / cm 3, the disadvantage that carbon atoms absorb X-rays more than beryllium atoms can be compensated. For example, the beryllium metal having a thickness of 1 mm has an X-ray transmittance of 95%, and the same glassy carbon material as the X-ray transmittance.
The thickness which is the linear transmittance is 0.5 mm. The glassy carbon material having a thickness of 0.5 mm has a strength higher than that of a metal beryllium having a thickness of 1 mm and can be used as an X-ray transmitting partition.

【0016】X線透過隔壁の厚さは、X線の減衰を抑え
るために可能な限り薄くしなければならない。しかしな
がら、炉内を密閉するためには、厚さを確保し、堅牢に
しなければならない。壁厚は壁の形状、大きさに応じて
適宜選択する必要がある。ガラス状炭素をX線透過隔壁
に用いる場合望ましい厚さは、0.1mm〜5mmが適当で
ある。厚さが0.1mm未満では強度不足となり、5mmの
ときのX線透過率は60%であり、これより厚くなると
測定に支障をきたすようになる。なお、金属ベリリウム
の適度な厚さである0.5mm〜2mmの場合と同じX線透
過率となるガラス状炭素材料の厚さは、0.2mm〜1mm
の範囲であり、この範囲がより望ましい。しかしなが
ら、炉内を高真空に排気する必要がある場合には、X線
透過隔壁をさらに堅牢にする必要があり、金属ベリリウ
ムの場合でも2mmより厚くする必要がある。同様に、ガ
ラス状炭素の場合にも、X線の透過率が悪くなっても、
高真空下では1mm〜5mmの範囲を使用した方が良い。
The thickness of the X-ray transmitting partition wall should be as thin as possible in order to suppress the attenuation of X-rays. However, in order to seal the inside of the furnace, it is necessary to secure the thickness and make it robust. The wall thickness needs to be appropriately selected according to the shape and size of the wall. When glassy carbon is used for the X-ray transparent partition wall, a desirable thickness is 0.1 mm to 5 mm. If the thickness is less than 0.1 mm, the strength becomes insufficient, and the X-ray transmittance at 5 mm is 60%. If the thickness is more than this, the measurement will be hindered. In addition, the thickness of the glassy carbon material having the same X-ray transmittance as that of the beryllium metal having an appropriate thickness of 0.5 mm to 2 mm is 0.2 mm to 1 mm.
And the range is more desirable. However, when the inside of the furnace needs to be evacuated to a high vacuum, the X-ray transmission partition wall needs to be made more robust, and even in the case of metal beryllium, it needs to be thicker than 2 mm. Similarly, in the case of glassy carbon, even if the X-ray transmittance becomes poor,
It is better to use the range of 1 mm to 5 mm under high vacuum.

【0017】本発明による試料加熱炉の一つは、X線測
定装置への取付部、試料取付部および試料加熱部よりな
る基部と該基部に装着され試料を覆う一体成形されたガ
ラス状炭素材料製覆蓋の2つから構成することによっ
て、炉の構造が単純になる。さらに、該覆蓋が一体成形
されたガラス状炭素材料製からなるため、覆蓋の形状を
自由に成形することが可能であり、しかも、覆蓋の全て
の場所がX線透過性を持つ。覆蓋の形状を決めるにあた
っては、X線透過隔壁として使用するX線透過部分の形
状と位置を決め、さらに、覆蓋の唯一の開口部である基
部への装着する基部装着部分の形状と位置を決定してか
ら、基部装着部分の開口部を除く隙間を適当な平面また
は曲面で覆い覆蓋を閉じる。
One of the sample heating furnaces according to the present invention is a glass-like carbon material integrally mounted on the base part, which is composed of a mounting part for an X-ray measuring device, a sample mounting part and a sample heating part, and which is mounted on the base part and covers the sample. The structure of the furnace is simplified by being composed of two cover lids. Further, since the cover lid is made of integrally molded glassy carbon material, the shape of the cover lid can be freely formed, and all the locations of the cover lid are X-ray transparent. In determining the shape of the cover lid, the shape and position of the X-ray transmitting portion used as the X-ray transmitting partition wall are determined, and further, the shape and position of the base mounting portion to be attached to the base portion which is the only opening of the cover lid are determined. After that, the gap except the opening of the base mounting portion is covered with an appropriate flat surface or curved surface, and the cover lid is closed.

【0018】図1に示すように、あらゆる立体角度から
細いX線1を試料2に出し入れするX線測定装置、例え
ば4軸X回折計等を用いる場合は、ガラス状炭素製X線
透過壁3の形状を一定厚みの球の一部とし、球の中心に
試料2を配置するのが、もっとも望ましい。この配置に
することにより、球面を通過して試料へ出し入れするX
線1は、立体的な角度にかかわらず、球表面に垂直な方
向を常に向く。さらに、厚さが一定であるため、立体角
度にかかわらず、X線が球面部を通過する長さを最短に
することができ、常にX線の減衰が最小になる。一方、
基部への装着部の形状は、円筒または立方体とすること
で、基部の覆蓋装着部の作製が容易となる。
As shown in FIG. 1, when an X-ray measuring device for moving a thin X-ray 1 into and out of a sample 2 from any solid angle, such as a 4-axis X-diffractometer, is used, the glassy carbon X-ray transmitting wall 3 is used. It is most desirable to make the shape of a part of a sphere having a constant thickness and arrange the sample 2 at the center of the sphere. With this arrangement, X passes through the spherical surface and is taken in and out of the sample.
The line 1 always faces the direction perpendicular to the spherical surface regardless of the three-dimensional angle. Further, since the thickness is constant, the length of X-ray passing through the spherical portion can be minimized regardless of the solid angle, and the attenuation of X-ray is always minimized. on the other hand,
If the shape of the mounting portion to the base portion is a cylinder or a cube, the cover lid mounting portion of the base portion can be easily manufactured.

【0019】後述する本発明の一実施例に関する図2に
示すような、半球系ガラス状炭素製X線透過隔壁4の場
合、半球と同じ半径の円筒を基部への装着部5にした半
球形ガラス状炭素製覆蓋6にすれば、覆蓋は凸面のみの
形状となり成形が容易となる。しかしながら、X線測定
装置の中には半球よりも広い立体角を必要とする装置も
あり、そのような装置用の試料加熱炉には、図3に示す
ような球形ガラス状炭素製覆蓋7を使用する。なお、こ
の例では基部への装着部5の形状は円筒形であるが、立
方体であっても構わない。
In the case of a hemispherical glassy carbon X-ray transmitting partition wall 4 as shown in FIG. 2 relating to an embodiment of the present invention described later, a hemispherical shape in which a cylinder having the same radius as the hemisphere is used as the mounting portion 5 to the base portion. If the cover lid 6 made of glassy carbon is used, the cover lid has only a convex shape, and the molding is easy. However, some X-ray measuring devices require a solid angle wider than a hemisphere, and a sample heating furnace for such a device has a spherical glassy carbon cover 7 as shown in FIG. use. In addition, in this example, the shape of the mounting portion 5 on the base portion is a cylindrical shape, but it may be a cube.

【0020】一方、観測面に沿って幅の広いX線を試料
の周りに周回させるX線測定装置、例えば粉末X線回折
装置を用いる場合にも、半球形ガラス状炭素製覆蓋6ま
たは球形ガラス状炭素製覆蓋7を使用することも可能で
ある。これらを利用できない場合は、X線測定装置の加
熱炉の取り付けスペースが半球形ガラス状炭素製覆蓋6
または球形ガラス状炭素製覆蓋7を利用できないぐらい
狭いときと、厚さが1mmを超える厚い覆蓋を用いる場合
との2つがある。厚い球状X線透過隔壁を幅広のX線が
通過するとき、X線の中心を球面へ垂直に通過させて
も、中心から離れるにつれ覆蓋を通過する長さが増えて
いき、幅広のX線の両端での減衰が大きくなるためであ
る。このような場合は、円筒形X線透過隔壁が有効であ
る。
On the other hand, even when using an X-ray measuring device for circulating X-rays having a wide width along the observation surface around the sample, for example, a powder X-ray diffractometer, the hemispherical glassy carbon cover 6 or the spherical glass is used. It is also possible to use a carbon-like cover 7. If these cannot be used, the installation space of the heating furnace of the X-ray measurement device has a hemispherical glassy carbon cover 6.
There are two cases: when the spherical glassy carbon cover 7 is too narrow to use, and when a thick cover with a thickness of more than 1 mm is used. When a wide X-ray passes through a thick spherical X-ray transparent partition wall, even if the center of the X-ray is passed perpendicularly to the spherical surface, the length of passing through the cover lid increases as the distance from the center increases, and This is because the attenuation at both ends becomes large. In such a case, the cylindrical X-ray transparent partition wall is effective.

【0021】円筒状X線透過隔壁を有する試料加熱炉で
は、図4に示すように、一定厚みの円筒またはその一部
の形状である円筒形ガラス状炭素製X線透過壁8を使用
し、円筒の中心に試料2を配置するのが望ましい。この
配置にすることにより、幅広のX線9の減衰を最小に抑
えることが可能となるのは、前述の球形の場合と同様で
ある。一方、基部との装着部は、円筒または立方体が用
いられる。後述する本発明の一実施例に関する図5に示
すような、円筒全周を用いる円筒形ガラス状炭素製X線
透過壁8の場合は、X線透過隔壁として用いる円筒をそ
のまま延長して、基部との装着部5とする横円筒形ガラ
ス状炭素製覆蓋10がもっとも容易に成形がおこなえ
る。円筒のもう一端は、球面等の曲面か平面で覆蓋を閉
じるようにする。図6に示すように、円筒の一部を縦方
向に配置した円筒形ガラス状炭素製X線透過壁8の場合
は、基部への装着部5を立方体として、円筒の両側面を
平面によって閉じた縦円筒形ガラス状炭素製覆蓋11が
成形し易い。
In a sample heating furnace having a cylindrical X-ray transmission partition, as shown in FIG. 4, a cylindrical glassy carbon X-ray transmission wall 8 having a constant thickness of a cylinder or a part thereof is used, It is desirable to place the sample 2 in the center of the cylinder. With this arrangement, it is possible to minimize the attenuation of the wide X-rays 9 as in the case of the spherical shape described above. On the other hand, a cylinder or a cube is used for the mounting portion with the base portion. In the case of the cylindrical glassy carbon X-ray transmission wall 8 using the entire circumference of the cylinder as shown in FIG. 5 relating to an embodiment of the present invention described later, the cylinder used as the X-ray transmission partition is extended as it is, and the base is The horizontal cylindrical glassy carbon cover 10 as the mounting portion 5 for and can be molded most easily. The other end of the cylinder should be closed with a curved surface such as a spherical surface or a flat surface. As shown in FIG. 6, in the case of the cylindrical glassy carbon X-ray transparent wall 8 in which a part of the cylinder is arranged in the vertical direction, the mounting part 5 to the base is a cube, and both side surfaces of the cylinder are closed by flat surfaces. The vertical cylindrical glassy carbon cover 11 is easy to form.

【0022】本発明によるもう1つの構成の試料加熱炉
は、後述する本発明の一実施例に関する図7及び図8に
示すように、例えばステンレス鋼で形成した炉体の一部
を、一定厚みの円筒形のガラス状炭素で置き換えた円筒
形ガラス状炭素製X線透過窓12を有する。この構成に
よって、横円筒ガラス状炭素製覆蓋10による試料加熱
炉に設けるには困難である様々な機能を炉に付加するこ
とができる。例えば、炉体の上部に石英ガラス製窓13
を設け、試料加熱炉の外側に設置した集中赤外線加熱器
により試料を加熱したり、試料加熱炉の外側に設置した
赤外線カメラによって試料の温度を計測したりすること
が可能となる。また、試料の引っ張り機構等もX線の通
過範囲を避けて設けることが可能となる。しかしなが
ら、覆蓋を有する試料加熱炉に比べれば炉体の構造は複
雑であり、付加機能が必要となる場合に、本構成による
試料加熱炉が有効になる。
Another example of the sample heating furnace according to the present invention is, as shown in FIGS. 7 and 8 relating to one embodiment of the present invention described later, a part of a furnace body formed of, for example, stainless steel and having a constant thickness. It has an X-ray transmission window 12 made of cylindrical glassy carbon, which is replaced by the cylindrical glassy carbon of FIG. With this configuration, various functions that are difficult to provide in the sample heating furnace with the horizontal cylindrical glassy carbon cover 10 can be added to the furnace. For example, a quartz glass window 13 is provided on the upper part of the furnace body.
It is possible to heat the sample with a centralized infrared heater installed outside the sample heating furnace and to measure the temperature of the sample with an infrared camera installed outside the sample heating furnace. Further, a sample pulling mechanism or the like can be provided while avoiding the X-ray passing range. However, the structure of the furnace body is more complicated than that of a sample heating furnace having a cover, and the sample heating furnace according to this configuration is effective when an additional function is required.

【0023】ところで、X線の使用にあたっては必ず遮
蔽が必要となる。X線測定装置に備え付けられた遮蔽壁
によりX線を法定の線量当量限度以下に遮蔽がおこなえ
る場合は、X線測定用試料加熱炉に遮蔽をおこなう必要
性はない。しかしながら、X線測定装置には、装置の遮
蔽壁だけではなく、試料室での遮蔽が必要となる装置も
ある。ガラス状炭素製X線透過覆蓋のあらゆる場合をX
線が通過可能であるが、そのようなX線測定装置に用い
る場合でも、X線の吸収が大きいステンレス鋼等による
遮蔽用覆いをガラス状炭素製覆蓋にかぶせて、測定に不
要な方向に出るX線を遮蔽することができる。一方、ガ
ラス状炭素製円筒形X線透過窓からなる試料加熱炉で
は、炉体をステンレス鋼等のX線の吸収の大きい材料で
作製することで、利用方向以外に出るX線を遮蔽するこ
とができる。
By the way, when using X-rays, it is necessary to shield them. When X-rays can be shielded below the legal dose equivalent limit by the shield wall provided in the X-ray measurement apparatus, it is not necessary to shield the sample heating furnace for X-ray measurement. However, there are some X-ray measurement apparatuses that require shielding in the sample chamber as well as the shielding wall of the apparatus. X for all cases of glassy carbon X-ray transparent cover
Although X-rays can pass therethrough, even when used in such an X-ray measuring device, a shielding cover made of stainless steel or the like, which absorbs a large amount of X-rays, is put on the glass-like carbon cover to make it appear in an unnecessary direction for measurement. X-rays can be shielded. On the other hand, in a sample heating furnace consisting of a glassy carbon cylindrical X-ray transmission window, the furnace body is made of a material having a large absorption of X-rays, such as stainless steel, to shield X-rays emitted in directions other than the direction of use. You can

【0024】[0024]

【実施例】【Example】

(実施例1−半球形ガラス状炭素製覆蓋を有する試料加
熱炉)本発明によるX線測定用試料加熱炉の1つであ
る、半球形ガラス状炭素製覆蓋を有する試料加熱炉の実
施例について、図2を用いて説明する。本実施例のX線
試料加熱炉は、X線測定装置への取付部14、試料取付
部15および試料加熱部16よりなる基部17と、該基
部17に装着され試料2を覆う一体成形された一定厚み
の半球形ガラス状炭素材料製覆蓋6の2つから構成す
る。半球形ガラス状炭素材料製覆蓋6は、厚さ0.5m
m、内直径6cmの半球に、厚さ0.5mm、高さ3cm、内
直径6cmの円筒をつないだ形状にガラス状炭素材料を一
体成形して作製した。覆蓋の半球形部はX線透過隔壁4
として用い、円筒形部は基部への装着部5とする。試料
取付部15は、覆蓋6の取付面から高さ3cmの、半球形
覆蓋6の球の中心に試料2が位置するように基部17に
取り付ける。試料取付部15のすぐ下には、カーボン抵
抗による試料加熱部16を取り付け、試料2を最大15
00℃まで加熱可能とした。試料加熱時に雰囲気ガスを
導入・排気する場合のために、それぞれバルブを有する
雰囲気導入管18と排気管19を、基部に設けた。な
お、図中にはバルブは記していない。基部17と覆蓋6
の間はゴム製のオーリング20により炉の気密性を保
ち、加熱時のオーリングの保護のためのステンレス鋼パ
イプによる水冷管21を有する。また、炉内の加圧時の
ために、図示していない覆蓋押さえ治具により、覆蓋6
を基部17に固定する。
(Example 1-Sample heating furnace having a hemispherical glassy carbon cover) About an example of a sample heating furnace having a hemispherical glassy carbon cover, which is one of the sample heating furnaces for X-ray measurement according to the present invention. 2 will be described with reference to FIG. The X-ray sample heating furnace according to the present embodiment is integrally molded so as to cover the sample 2 by mounting the base 17 on the X-ray measuring device, the base 17 including the sample mounting part 15, and the sample heating part 16. It is composed of two cover lids 6 made of hemispherical glassy carbon material having a constant thickness. The cover 6 made of hemispherical glassy carbon material has a thickness of 0.5 m.
A glassy carbon material was integrally molded into a shape in which a cylinder having a thickness of 0.5 mm, a height of 3 cm and an inner diameter of 6 cm was connected to a hemisphere having an inner diameter of 6 cm and a diameter of 6 cm. The hemispherical part of the cover is an X-ray transparent partition wall 4
And the cylindrical portion is the mounting portion 5 to the base portion. The sample mounting portion 15 is mounted on the base portion 17 so that the sample 2 is located at the center of the sphere of the hemispherical cover 6 having a height of 3 cm from the mounting surface of the cover 6. Immediately below the sample mounting part 15, a sample heating part 16 by carbon resistance is mounted so that a maximum of 15 samples 2 can be mounted.
It was possible to heat up to 00 ° C. An atmosphere introducing pipe 18 and an exhaust pipe 19 each having a valve were provided at the base for introducing and exhausting the atmospheric gas when the sample was heated. The valve is not shown in the figure. Base 17 and cover 6
Between them, a rubber O-ring 20 keeps the furnace airtight, and a water-cooling pipe 21 made of a stainless steel pipe is provided for protecting the O-ring during heating. Further, in order to pressurize the inside of the furnace, a cover lid holding jig (not shown) is used.
Is fixed to the base portion 17.

【0025】(比較例1−半球形金属ベリリウム製覆蓋
を有する試料加熱炉)本発明による半球形ガラス状炭素
製覆蓋を有する試料加熱炉に対する比較例として用い
た、半球形金属ベリリウム製覆蓋を有する試料加熱炉に
ついて説明する。本比較例の半球形金属ベリリウム製覆
蓋は、厚さ1mm、内直径6cmの半球に、厚さ1mm、高さ
3cm、内直径6cmの円筒をつないだ形状に金属ベリリウ
ム塊から削りだした。覆蓋の半球形部はX線透過隔壁と
して用い、円筒形部は基部への装着部とする。球形金属
ベリリウム製覆蓋は実施例1の基部17に装着する。
(Comparative Example 1-Sample Heating Furnace Having a Hemispherical Metal Beryllium Cover) A hemispherical metal beryllium cover used as a comparative example for the sample heating furnace having a hemispherical glassy carbon cover according to the present invention was used. The sample heating furnace will be described. The hemispherical metal beryllium cover of this comparative example was carved from a metal beryllium block into a shape in which a hemisphere having a thickness of 1 mm and an inner diameter of 6 cm was connected to a cylinder having a thickness of 1 mm, a height of 3 cm and an inner diameter of 6 cm. The hemispherical portion of the cover is used as an X-ray transmitting partition wall, and the cylindrical portion is a mounting portion to the base. The spherical metal beryllium cover is attached to the base 17 of the first embodiment.

【0026】(実施例2−横円筒形ガラス状炭素製覆蓋
を有する試料加熱炉)本発明によるX線測定用試料加熱
炉である、横円筒形ガラス状炭素製覆蓋10を有する試
料加熱炉の実施例について、斜視図の図5を用いて説明
する。横円筒形ガラス状炭素材料製覆蓋10は、厚さ
1.5mm、高さ5cm、内直径6cmの円筒と、その一端を
平面で閉じた形状にガラス状炭素材料を一体成形して作
製した。横円筒形ガラス状炭素製覆蓋10は、実施例1
で述べた基部17に装着する。横円筒形ガラス状炭素製
覆蓋10の内直径は、半球形ガラス状炭素製覆蓋6と同
じく6cmであるため、横円筒覆蓋10の円筒形X線透過
隔壁8の中心線上に試料2が位置する。
Example 2 Sample Heating Furnace Having Horizontal Cylindrical Glassy Carbon Cover Lid A sample heating furnace having a horizontal cylindrical glassy carbon lid 10 which is a sample heating furnace for X-ray measurement according to the present invention. An example will be described with reference to FIG. 5 which is a perspective view. The horizontal cylindrical vitreous carbon material cover 10 was made by integrally molding a vitreous carbon material into a shape having a thickness of 1.5 mm, a height of 5 cm, and an inner diameter of 6 cm, and one end of which was closed with a flat surface. The horizontal cylindrical glassy carbon cover 10 is used in the first embodiment.
It is attached to the base portion 17 described above. Since the inner diameter of the horizontal cylindrical glassy carbon cover 10 is 6 cm like the hemispherical glassy carbon cover 6, the sample 2 is located on the center line of the cylindrical X-ray transmission partition 8 of the horizontal cylindrical cover 10. .

【0027】(比較例2−横円筒形金属ベリリウム製覆
蓋を有する試料加熱炉)本発明による横円筒形ガラス状
炭素製覆蓋10を有する試料加熱炉の実施例2に対する
比較例である、横円筒形金属ベリリウム製覆蓋を有する
試料加熱炉について説明する。本比較例の横円筒状金属
ベリリウム製覆蓋は、厚さ3mm、高さ5cm、内直径6cm
の円筒に一端を平面で閉じた形状に金属ベリリウム塊か
ら削りだした。横円筒形金属ベリリウム製覆蓋は実施例
1の基部17に装着する。
COMPARATIVE EXAMPLE 2-Sample Heating Furnace with Horizontal Cylindrical Metal Beryllium Cover Lid A horizontal cylinder, which is a comparative example to Example 2 of the sample heating furnace having the horizontal cylindrical glassy carbon cover 10 according to the present invention. A sample heating furnace having a shape metal beryllium cover will be described. The horizontal cylindrical metal beryllium cover of this comparative example has a thickness of 3 mm, a height of 5 cm, and an inner diameter of 6 cm.
A beryllium metal block was machined into a cylinder whose one end was closed with a flat surface. The horizontal cylindrical metal beryllium cover is attached to the base 17 of the first embodiment.

【0028】(実施例3−横円筒形ガラス状炭素製透過
窓を有する試料加熱炉)本発明によるX線測定用試料加
熱炉である、円筒形ガラス状炭素製窓12を有する試料
加熱炉の実施例について、図7及び図8を用いて説明す
る。本実施例は、ステンレス鋼製のX線測定装置への取
付部14、試料取付部15、円筒形の炉壁下部22、円
筒形ガラス状炭素製X線透過窓12、ステンレス鋼製の
円筒形の炉壁上部23と炉蓋24のネジ止め部からなる
炉体上部25の3つを、順に重ねた炉体に、石英ガラス
窓13付きのステンレス鋼製の炉蓋24をネジ止めする
構成である。高さ3cmステンレス鋼製の炉壁下部22、
高さ2cmの円筒形ガラス状炭素製X線透過窓12、高さ
3cmステンレス鋼製の炉壁上部23は、すべて、厚さ
1.5mm、内直径6cmであり、それぞれの間は、セラミ
ックボンドで接着した。炉壁上部25には、ネジ穴が設
けられ、その内径側に炉の気密性を保つためのゴム製オ
ーリング20を取り付けた。炉壁25には、オーリング
20と石英ガラス窓13とステンレス鋼の接合部を、熱
から保護するための水冷管21を溶接した。炉体下部2
2には、試料加熱時に雰囲気ガスを導入・排気する場合
のために、それぞれバルブを有する雰囲気導入管18と
排気管19を設けた。なお、図中にはバルブは記してい
ない。実施例1および2の試料加熱炉と異なり、本実施
例では、試料加熱炉の外部から、赤外線放射加熱装置
(株式会社サーモ理工製IR−2000R)によって発
生する赤外線を石英ガラス窓13を透過させ、試料の加
熱をおこなう。
Example 3 Sample Heating Furnace Having Transverse Cylindrical Glassy Carbon Transmission Window A sample heating furnace having a cylindrical glassy carbon window 12 which is a sample heating furnace for X-ray measurement according to the present invention. An example will be described with reference to FIGS. 7 and 8. In this embodiment, a stainless steel X-ray measuring device mounting portion 14, a sample mounting portion 15, a cylindrical furnace wall lower portion 22, a cylindrical glassy carbon X-ray transmission window 12, and a stainless steel cylindrical shape. The furnace wall upper part 23 and the furnace body upper part 25 consisting of the screwed parts of the furnace lid 24 are stacked in this order, and the stainless steel furnace lid 24 with the quartz glass window 13 is screwed to the furnace body. is there. Lower part of the furnace wall 22 made of stainless steel, 3 cm in height,
The cylindrical glassy carbon X-ray transmission window 12 having a height of 2 cm and the furnace wall upper portion 23 having a height of 3 cm made of stainless steel all have a thickness of 1.5 mm and an inner diameter of 6 cm, and a ceramic bond between them. I glued it in. The furnace wall upper part 25 was provided with a screw hole, and the rubber O-ring 20 for maintaining the airtightness of the furnace was attached to the inner diameter side thereof. A water cooling pipe 21 for protecting the joint between the O-ring 20, the quartz glass window 13 and the stainless steel from heat was welded to the furnace wall 25. Lower part of the furnace body 2
In No. 2, an atmosphere introducing pipe 18 and an exhaust pipe 19 each having a valve were provided for introducing and exhausting an atmospheric gas when heating the sample. The valve is not shown in the figure. Unlike the sample heating furnaces of Examples 1 and 2, in this example, infrared rays generated by an infrared radiation heating device (IR-2000R manufactured by Thermo Riko Co., Ltd.) are transmitted from the outside of the sample heating furnace through the quartz glass window 13. , Heat the sample.

【0029】(比較例3−円筒形金属ベリリウム製透過
窓を有する試料加熱炉)実施例3に対する比較例として
用いた、円筒形金属ベリリウム製窓を有する試料加熱炉
では、実施例3のガラス状炭素製の円筒形X線透過窓の
代わりに、金属ベリリウム製円筒形X線透過窓を炉体下
部と炉体上部の間に重ね、銀ロウ付けによって接合し
た。金属ベリリウム製円筒形X線透過窓の大きさは、厚
さ3mm、高さ2cm、内直径6cmである。金属ベリリウム
の冷却のために、金属ベリリウム製円筒形X線透過窓の
両脇の炉の外側面に水冷管2本を巻き付けた。
COMPARATIVE EXAMPLE 3-Sample Heating Furnace Having Cylindrical Metal Beryllium Transmission Window The sample heating furnace having a cylindrical metal beryllium window used as a comparative example to Example 3 has the glass-like shape of Example 3. Instead of the carbon cylindrical X-ray transmission window, a metal beryllium cylindrical X-ray transmission window was placed between the lower part of the furnace body and the upper part of the furnace body and joined by silver brazing. The size of the cylindrical X-ray transmission window made of metal beryllium is 3 mm in thickness, 2 cm in height, and 6 cm in inner diameter. To cool the metal beryllium, two water cooling tubes were wrapped around the outside surface of the furnace on both sides of the metal beryllium cylindrical X-ray transmission window.

【0030】(実験1−気密性のテスト)まず、炉の気
密性を調べるために、実施例1、2、3および、比較例
1、2、3のそれぞれのX線測定用試料加熱炉の、雰囲
気導入管18のバルブを閉じ、排気管19にロータリー
ポンプを接続し排気実験をおこなった。本実験で用いた
ロータリーポンプは、本実施例の試料加熱炉とほぼ同じ
体積の密封容器に接続した場合、10Torrの真空度に到
達する性能のものである。到達真空度に達した後、ポン
プを止め排気管19を閉じた状態で24時間放置した後
でも、すべての加熱炉において、真空度は50Torrより
も悪化せず、炉の真空度は、金属ベリリウムでもガラス
状炭素材料であっても充分に保つことができた。ガラス
状炭素材料をX線透過隔壁に用いても、試料加熱炉の密
封性は充分に確保できる。
(Experiment 1-Test of Airtightness) First, in order to examine the airtightness of the furnace, the X-ray measurement sample heating furnaces of Examples 1, 2 and 3 and Comparative Examples 1, 2 and 3 were tested. A valve of the atmosphere introducing pipe 18 was closed, and a rotary pump was connected to the exhaust pipe 19 to perform an exhaust experiment. The rotary pump used in this experiment has a performance of reaching a vacuum degree of 10 Torr when connected to a sealed container having substantially the same volume as the sample heating furnace of this example. After reaching the ultimate vacuum level, even after leaving the pump stopped and leaving the exhaust pipe 19 closed for 24 hours, the vacuum level did not deteriorate below 50 Torr in all heating furnaces. However, even the glassy carbon material could be sufficiently retained. Even if the glassy carbon material is used for the X-ray transparent partition, the sample heating furnace can be sufficiently sealed.

【0031】(実験2−高温加熱のテスト)続いて、高
温での強度を調べるために、ガラス状炭素材料製のX線
透過隔壁を有する実施例1、2、3のそれぞれのX線測
定用試料加熱炉を、20℃で炉内を減圧または加圧した
状態で、試料を1500℃に加熱した。炉内の減圧にあ
たっては、気密性を調べたときと同様にロータリーポン
プで排気をおこない、排気管19のバルブを閉じて封入
した。炉内の加圧は、雰囲気導入管18から酸素を含む
雰囲気ガスとして空気を導入し、排気管19のバルブを
調整することで、温度にかかわらず、大気より0.5気
圧分の高い圧力を保った。すべてのX線測定用試料加熱
炉において、減圧時も加圧時もX線透過隔壁の変形およ
び破壊は生じず、ガラス状炭素材料を用いての高温での
炉の使用には問題はなかった。
(Experiment 2 Test of High Temperature Heating) Next, in order to examine the strength at high temperature, for each X-ray measurement of Examples 1, 2 and 3 having an X-ray transparent partition wall made of a glassy carbon material. The sample heating furnace was heated to 1500 ° C while the inside of the furnace was depressurized or pressurized at 20 ° C. When decompressing the inside of the furnace, exhaust was performed by a rotary pump as in the case of checking the airtightness, and the valve of the exhaust pipe 19 was closed and sealed. As for pressurization in the furnace, air is introduced as an atmosphere gas containing oxygen from the atmosphere introduction pipe 18 and a valve of the exhaust pipe 19 is adjusted so that a pressure higher than the atmospheric pressure by 0.5 atm is obtained regardless of the temperature. I kept it. In all of the sample heating furnaces for X-ray measurement, neither deformation nor destruction of the X-ray transparent partition walls occurred during depressurization and pressurization, and there was no problem in using the furnace at high temperature using the glassy carbon material. .

【0032】同じ条件で、金属ベリリウム製のX線透過
隔壁を有する比較例1、2、3のそれぞれのX線測定用
試料加熱炉を、20℃で炉内を減圧または加圧した状態
で、1500℃までの加熱実験をおこなった。金属ベリ
リウム製覆蓋を有する比較例1および2では、試料温度
が500℃近くまで上昇した時点で、金属ベリリウム製
覆蓋の大気と接する外面で酸化皮膜の剥離が生じ、実験
を中止した。一方、比較例3の金属ベリリウム製円筒窓
の場合は、試料温度が500℃近くで、大気と接する外
面では隔壁の侵食は見られなかったものの、石英ガラス
窓13を通して見た、炉体の内面側では酸化皮膜の剥離
による隔壁の侵食が見られ、実験を中止した。
Under the same conditions, the sample heating furnaces for X-ray measurement of Comparative Examples 1, 2 and 3 each having an X-ray transparent partition wall made of metal beryllium were depressurized or pressurized at 20 ° C. A heating experiment up to 1500 ° C. was performed. In Comparative Examples 1 and 2 having the metallic beryllium cover, the oxide film peeled off on the outer surface of the metallic beryllium cover that was in contact with the atmosphere at the time when the sample temperature rose to near 500 ° C., and the experiment was stopped. On the other hand, in the case of the metal-beryllium cylindrical window of Comparative Example 3, the sample temperature was close to 500 ° C. and no erosion of the partition wall was observed on the outer surface in contact with the atmosphere, but the inner surface of the furnace body seen through the quartz glass window 13 was observed. On the side, erosion of the partition due to peeling of the oxide film was observed, and the experiment was stopped.

【0033】(実験3−X線透過度のテスト)X線透過
性を調べるために、実施例1、2、3および比較例1、
2、3それぞれの試料加熱炉をX線回折装置に取り付
け、回折X線の強度を測定した。Mo回転対陰極より発
生するMoKαX線を、アルミナ粉末試料に照射し、ア
ルミナによる回折X線をイメージングプレートを用いて
検出した。同一試料に対して、室温で試料加熱炉を使わ
ずに測定した回折X線強度と比較することによって、高
温でのX線透過隔壁によるX線の減衰を調べた。実施例
1、2、3のガラス状炭素製X線透過隔壁を有する加熱
炉では1000℃での測定を、比較例1、2、3の金属
ベリリウム製X線透過隔壁を有する加熱炉では、450
℃での測定をおこなった。まず、すべての試料加熱炉に
おいて、回折X線の向きによらず透過率には角度依存性
が見られなかった。続いて、回折X線の強度は、実施例
1と比較例1で87%、実施例2と3と比較例2と3で
70%の大きさになり、ガラス状炭素材料製のX線透過
隔壁と金属ベリリウム製とでは、同等な強度の減衰を示
した。
(Experiment 3-Test of X-ray Transmittance) In order to examine X-ray transmittance, Examples 1, 2, 3 and Comparative Example 1,
Two or three sample heating furnaces were attached to the X-ray diffractometer, and the intensity of the diffracted X-ray was measured. The alumina powder sample was irradiated with MoK α X-rays generated from the Mo rotating anticathode, and the X-rays diffracted by the alumina were detected using an imaging plate. The same sample was examined for X-ray attenuation by the X-ray transparent partition at high temperature by comparing with the diffracted X-ray intensity measured at room temperature without using a sample heating furnace. The heating furnace having the glassy carbon X-ray transmitting partition walls of Examples 1, 2 and 3 was measured at 1000 ° C., and the heating furnace having the metal beryllium X-ray transmitting barrier walls of Comparative Examples 1, 2 and 3 was 450.
The measurement was performed at ° C. First, in all the sample heating furnaces, the transmittance did not depend on the angle of the diffracted X-rays. Subsequently, the intensity of the diffracted X-rays was 87% in Example 1 and Comparative Example 1, and 70% in Examples 2 and 3 and Comparative Examples 2 and 3, and the X-ray transmission of the glassy carbon material was performed. The partition wall and the metal beryllium metal exhibited the same level of attenuation.

【0034】以上の実験結果をまとめると、隔壁全面の
冷却をおこなわなくても、500℃を超える高温域での
試料加熱をガラス状炭素材料製X線透過隔壁によって可
能となった。また、ガラス状炭素材料によっても、金属
ベリリウムによる場合と同等のX線透過度および炉の密
封性が実現可能であった。
In summary of the above experimental results, the X-ray transmissive partition wall made of the glassy carbon material enables the sample heating in a high temperature range of more than 500 ° C. without cooling the entire surface of the partition wall. Further, even with the glassy carbon material, it was possible to realize the X-ray transmittance and the hermeticity of the furnace, which are equivalent to those of the metal beryllium.

【0035】[0035]

【発明の効果】本発明によるX線透過部にガラス状炭素
材料を用いたX線測定用試料加熱炉により、従来不可能
であった、500℃を超える加熱実験のための広いX線
透過隔壁を有する試料加熱炉を、容易に提供することが
可能となった。また、X線透過部を自由に炉体に設ける
ことが可能となり、加熱炉の構成によって測定装置の機
能を制限することなく、X線測定装置に合わせた試料加
熱炉を提供することができた。さらに、従来不可能であ
った酸素を含む雰囲気ガスを使用した試料の500℃を
超える加熱測定が可能になった。
EFFECT OF THE INVENTION With the sample heating furnace for X-ray measurement using a glassy carbon material in the X-ray transmitting part according to the present invention, a wide X-ray transmitting partition wall for heating experiments exceeding 500 ° C., which was impossible in the past. It has become possible to easily provide a sample heating furnace having the above. Further, the X-ray transmission part can be freely provided in the furnace body, and the sample heating furnace adapted to the X-ray measuring device can be provided without limiting the function of the measuring device by the structure of the heating furnace. . Furthermore, it has become possible to perform heating measurement of a sample using an atmosphere gas containing oxygen, which has been impossible in the past, at a temperature higher than 500 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】球形ガラス状炭素材料製X線透過隔壁の斜視概
念図(a)および断面図(b)である。
FIG. 1 is a perspective conceptual view (a) and a cross-sectional view (b) of an X-ray transparent partition made of a spherical glassy carbon material.

【図2】本発明の実施例の1つである、半球形ガラス状
炭素製覆蓋を有する試料加熱炉の斜視図である。
FIG. 2 is a perspective view of a sample heating furnace having a hemispherical glassy carbon cover, which is one of embodiments of the present invention.

【図3】本発明による球形ガラス状炭素製覆蓋の斜視図
である。
FIG. 3 is a perspective view of a spherical glassy carbon cover according to the present invention.

【図4】円筒形ガラス状炭素材料製X線透過隔壁の斜視
概念図である。
FIG. 4 is a perspective conceptual view of an X-ray transparent partition wall made of a cylindrical glassy carbon material.

【図5】本発明の実施例の1つである、横円筒形ガラス
状炭素製覆蓋を有する試料加熱炉の斜視図である。
FIG. 5 is a perspective view of a sample heating furnace having a horizontal cylindrical glassy carbon cover, which is one of embodiments of the present invention.

【図6】本発明による縦円筒形ガラス状炭素製覆蓋の斜
視図である。
FIG. 6 is a perspective view of a vertical cylindrical glassy carbon cover according to the present invention.

【図7】本発明の実施例の1つである、円筒形ガラス状
炭素製X線透過窓を有する試料加熱炉の斜視図である。
FIG. 7 is a perspective view of a sample heating furnace having a cylindrical glassy carbon X-ray transmission window, which is one of the examples of the present invention.

【図8】図7のA−A線断面図である。8 is a cross-sectional view taken along the line AA of FIG.

【符号の説明】[Explanation of symbols]

1 細いX線 2 試料 3 ガラス状炭素製X線透過隔壁 4 半球形ガラス状炭素製X線透過隔壁 5 試料加熱炉の基部への覆蓋の装着部 6 半球形ガラス状炭素製覆蓋 7 球形ガラス状炭素製覆蓋 8 円筒形ガラス状炭素製X線透過壁 9 幅広のX線 10 横円筒形ガラス状炭素製覆蓋 11 縦円筒形ガラス状炭素製覆蓋 12 円筒形ガラス状炭素製X線透過窓 13 石英ガラス製窓 14 X線測定装置への取付部 15 試料取付部 16 試料加熱部 17 試料加熱炉の基部 18 雰囲気導入管 19 排気管 20 オーリング 21 水冷管 22 円筒形の炉壁下部 23 円筒形の炉壁上部 24 炉蓋 25 炉体上部 1 Thin X-ray 2 Sample 3 X-ray transparent partition made of glassy carbon 4 Hemispherical glassy X-ray transparent partition 5 Mounting part of cover on base of sample heating furnace 6 Hemispherical glassy carbon cover 7 Spherical glass Carbon cover 8 Cylindrical glassy carbon X-ray transmission wall 9 Wide X-ray 10 Horizontal cylindrical glassy carbon cover 11 Vertical cylindrical glassy carbon cover 12 Cylindrical glassy carbon X-ray window 13 Quartz Glass window 14 Mounting part to X-ray measuring device 15 Sample mounting part 16 Sample heating part 17 Base part of sample heating furnace 18 Atmosphere introducing pipe 19 Exhaust pipe 20 O-ring 21 Water cooling pipe 22 Lower part of cylindrical furnace wall 23 Cylindrical shape Upper part of furnace wall 24 Upper part of furnace 25 Upper part of furnace body

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試料取付部および加熱部、X線測定装置
への取付部を含む基部と、該基部に装着され試料を覆う
覆蓋から構成されるX線測定用試料加熱炉において、該
覆蓋部が一体成形したガラス状炭素材料製覆蓋であるこ
とを特徴としたX線測定用試料加熱炉。
1. A sample heating furnace for X-ray measurement, comprising: a base portion including a sample mounting portion, a heating portion, and a mounting portion for an X-ray measuring device; and a cover lid that is mounted on the base portion and covers the sample. A sample heating furnace for X-ray measurement, which is a cover made of a glassy carbon material integrally molded with.
【請求項2】 覆蓋のX線透過隔壁として用いる領域
が、厚さ一定の球の一部の形状であり、かつ、試料取り
付け位置が該球の中心に配置されることを特徴とする、
請求項1記載のX線測定用試料加熱炉。
2. The region used as the X-ray transmission partition of the cover is in the shape of a part of a sphere having a constant thickness, and the sample mounting position is arranged at the center of the sphere.
The sample heating furnace for X-ray measurement according to claim 1.
【請求項3】 覆蓋のX線透過隔壁として用いる領域
が、厚さ一定の円筒形または厚さ一定の円筒の一部の形
状であり、かつ、試料取り付け位置が該円筒の中心線上
に配置されることを特徴とする、請求項1記載のX線測
定用試料加熱炉。
3. The region used as the X-ray transmission partition of the cover is a cylindrical shape having a constant thickness or a part of a cylindrical shape having a constant thickness, and the sample mounting position is arranged on the center line of the cylinder. The sample heating furnace for X-ray measurement according to claim 1, wherein:
【請求項4】 加熱時に密封される円筒形の試料室を有
し、該試料室の円筒の中心線上に試料取付部が位置して
おり、該試料室を囲む円筒形の炉壁の試料取り付け高さ
の円筒帯部分が、一定厚みの円筒形ガラス状炭素製X線
透過窓であることを特徴とするX線測定用試料加熱炉。
4. A sample mounting chamber having a cylindrical sample chamber that is sealed during heating, a sample mounting portion is located on a center line of the cylinder of the sample chamber, and a sample mounting is provided on a cylindrical furnace wall surrounding the sample chamber. A sample heating furnace for X-ray measurement, wherein a cylindrical band portion of height is a cylindrical glassy carbon X-ray transmission window having a constant thickness.
JP7196867A 1995-08-01 1995-08-01 X-ray measuring sample heating furnace Withdrawn JPH0943169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7196867A JPH0943169A (en) 1995-08-01 1995-08-01 X-ray measuring sample heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7196867A JPH0943169A (en) 1995-08-01 1995-08-01 X-ray measuring sample heating furnace

Publications (1)

Publication Number Publication Date
JPH0943169A true JPH0943169A (en) 1997-02-14

Family

ID=16364974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7196867A Withdrawn JPH0943169A (en) 1995-08-01 1995-08-01 X-ray measuring sample heating furnace

Country Status (1)

Country Link
JP (1) JPH0943169A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066121A (en) * 2008-09-10 2010-03-25 Sumitomo Electric Ind Ltd X-ray diffraction device and x-ray diffraction method
WO2011010935A1 (en) 2009-07-20 2011-01-27 Statoil Asa The present invention relates to a method and means for real time hot x-ray inspection of formation of coke on the interior surface (s) in a furnace tube, working at high temperatures
JP2014160040A (en) * 2013-02-20 2014-09-04 Toshiba Corp X-ray transmission apparatus and x-ray inspection apparatus
WO2015194465A1 (en) * 2014-06-17 2015-12-23 橋本鉄工株式会社 Sample storage container for x-ray analyzer
JP2020204595A (en) * 2019-06-19 2020-12-24 株式会社豊田中央研究所 Observation sample holding jig for oblique ct

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066121A (en) * 2008-09-10 2010-03-25 Sumitomo Electric Ind Ltd X-ray diffraction device and x-ray diffraction method
WO2011010935A1 (en) 2009-07-20 2011-01-27 Statoil Asa The present invention relates to a method and means for real time hot x-ray inspection of formation of coke on the interior surface (s) in a furnace tube, working at high temperatures
JP2014160040A (en) * 2013-02-20 2014-09-04 Toshiba Corp X-ray transmission apparatus and x-ray inspection apparatus
WO2015194465A1 (en) * 2014-06-17 2015-12-23 橋本鉄工株式会社 Sample storage container for x-ray analyzer
JPWO2015194465A1 (en) * 2014-06-17 2017-04-20 橋本鉄工株式会社 Sample storage container for X-ray analyzer
JP2020204595A (en) * 2019-06-19 2020-12-24 株式会社豊田中央研究所 Observation sample holding jig for oblique ct

Similar Documents

Publication Publication Date Title
Kampers et al. An in situ cell for transmission EXAFS measurements on catalytic samples
KR0175070B1 (en) Heat processing apparatus
CN202471625U (en) Tubular high-temperature molten salt synchrotron radiation in-situ research device
WO2007043244A1 (en) Fixed-point cell, fixed-point temperature realizing apparatus, and method of thermometer calibration
JP2008202961A (en) Heating furnace, and thermophysical property value measuring device using heating furnace
JPH0943169A (en) X-ray measuring sample heating furnace
US4598005A (en) Thermal insulation
Van der Eerden et al. Apparatus for in situ X-ray absorption fine structure studies on catalytic systems in the energy range 1000 eV< E< 3500 eV
JP2003329619A (en) Sample surface observing device with x ray and method of evaluating crystallized state of metal with x ray
US3973120A (en) Specimen holder for an X-ray diffraction apparatus
JP2018115859A (en) X-ray analysis cell, X-ray analysis container, X-ray analysis apparatus and X-ray analysis method
Darovsky et al. An antiscatter device for low-temperature crystallographic experiments with imaging plates
US4408478A (en) Heatable cell for photoacoustic tests
JPH04315953A (en) Sample high-temperature device
Hägg et al. A high-temperature focusing X-ray powder camera with new features
JP3890412B2 (en) Sample container for X-ray diffraction measurement
JP3584264B2 (en) X-ray diffraction sample cryogenic cooling system
KR100886357B1 (en) Temperature, gas changeable in-situ cell and the controller for X-ray absorption spectroscopy
JP2008277673A (en) Cvd device
US4214117A (en) Furnace heated by radiation
US3877290A (en) Dilatometer
Campbell et al. High-temperature furnaces for X-ray diffractometers
JPH07286945A (en) Sample heating furnace for x-ray measurement
Mikkelsen Jr et al. Sample cell for EXAFS measurements on molten materials at elevated temperatures
Quinn Immersion Substrate Heater for Vacuum Deposition of Films

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001