JP2003329619A - Sample surface observing device with x ray and method of evaluating crystallized state of metal with x ray - Google Patents

Sample surface observing device with x ray and method of evaluating crystallized state of metal with x ray

Info

Publication number
JP2003329619A
JP2003329619A JP2002135586A JP2002135586A JP2003329619A JP 2003329619 A JP2003329619 A JP 2003329619A JP 2002135586 A JP2002135586 A JP 2002135586A JP 2002135586 A JP2002135586 A JP 2002135586A JP 2003329619 A JP2003329619 A JP 2003329619A
Authority
JP
Japan
Prior art keywords
sample
ray
metal
rays
heating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002135586A
Other languages
Japanese (ja)
Inventor
Masao Kimura
正雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002135586A priority Critical patent/JP2003329619A/en
Publication of JP2003329619A publication Critical patent/JP2003329619A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of observing a surface and a structure near the surface at a high temperatures with X rays and a device for actualizing the same. <P>SOLUTION: This sample surface observing device with X rays is a device for analyzing the structure of a sample by irradiating the surface of the sample with X rays and by detecting the spatial distribution at least one of either of energy of the X rays generated from the surface and the intensity thereof. This device is characterized in that its measurement part is provided with at least two X-ray transmission windows, that it comprises a container for controlling a gas atmosphere near the surface of the sample, a sample holding table, a heating body, and a heat insulating cover, that the holding table is placed over the heating body, and the insulating cover is placed on the heating body or on the holding table so as to cover the sample. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、試料表面にX線を
照射し、該表面から発生するX線のエネルギーおよび/
または強度の空間分布を検出することにより試料の構造
を解析する構造解析法の内で、特に、試料の表面、表面
近傍の構造を解析する分野に応用できる。
TECHNICAL FIELD The present invention relates to the irradiation of X-rays on the surface of a sample, and the energy and / or energy of X-rays generated from the surface.
Alternatively, it can be applied to the field of analyzing the structure of the surface of the sample or the structure near the surface, among the structural analysis methods for analyzing the structure of the sample by detecting the spatial distribution of the intensity.

【0002】[0002]

【従来の技術】X線回折法は他の主要な構造解析法のひ
とつである電子線回折法と比較すると、多様な測定雰囲
気が選択でき、その場観察が可能であることや、多重散
乱が少ないために、回折強度の定量が比較的容易である
ので精密な構造解析をしやすいなどの利点を有する。
2. Description of the Related Art Compared to electron diffraction, which is one of the other major structural analysis methods, the X-ray diffraction method allows selection of various measurement atmospheres, in-situ observation, and multiple scattering. Since the number is small, it is relatively easy to quantify the diffraction intensity, which has the advantage of facilitating precise structural analysis.

【0003】高温でのプロセスにより製造される材料の
研究開発には、高温での材料の構造解析が不可欠であ
り、試料を加熱した状態でX線回折法の測定を行うため
に、従来は試料を加熱体の上に配置し試料の底面から加
熱した状態で、X線回折法の測定を実施してきた(特開
平5−188017号公報)。この方法では、材料を加
熱体の上に配置し試料の底面から加熱するため、加熱体
を測定が必要となる材料表面の温度よりも高温に保つ必
要がある。そのため、試料の底面と表面との間に温度勾
配が生じることから、大型の試料を高温で均一に保つこ
とが困難である等の理由のために、高温で大型の試料の
X線回折法による構造解析を行うことは不可能であっ
た。
Structural analysis of a material at a high temperature is indispensable for research and development of a material manufactured by a process at a high temperature. In order to measure an X-ray diffraction method in a state where the sample is heated, a sample has been conventionally used. The X-ray diffractometry has been carried out in the state of being placed on a heating body and being heated from the bottom surface of the sample (JP-A-5-188017). In this method, since the material is placed on the heating body and heated from the bottom surface of the sample, it is necessary to keep the heating body at a temperature higher than the surface temperature of the material at which measurement is required. Therefore, since a temperature gradient is generated between the bottom surface and the surface of the sample, it is difficult to keep the large sample uniform at high temperature. It was impossible to carry out structural analysis.

【0004】また、試料の温度低下を防ぐために、試料
前面に補助ヒータを配置することが試みられている(X
線分析最前線、佐藤編、アグネ、第10章)が、温度の
不均一性や補助ヒータからの妨害X線のために、高精度
の測定が不可能であった。
Further, in order to prevent the temperature of the sample from decreasing, it has been attempted to arrange an auxiliary heater on the front surface of the sample (X
Forefront of line analysis, edited by Sato, Agne, Chapter 10), high-precision measurement was not possible due to non-uniformity of temperature and interfering X-rays from the auxiliary heater.

【0005】[0005]

【発明が解決しようとする課題】X線回折法において大
型の試料の温度を高温で均一に保つために、試料周りを
遮蔽の筒で覆う方法(特開平5−188017号公報)
や、厚い断熱の箱で囲む方法(特開平2000−266
698号公報)が開示されている。しかし、これらの方
法では試料のみならず、試料保持台およびそれを支える
構造体すべてを覆うために、その遮蔽の筒や箱が大型に
なりそのためのスペースが必要であることや、遮蔽体が
容器やそれに直結する構造体に接しているためそこから
の熱伝導のために試料温度をあげることが困難である、
等の問題があった。
In order to keep the temperature of a large sample uniform at high temperature in the X-ray diffraction method, a method of covering the sample with a shielding cylinder (Japanese Patent Laid-Open No. 5-188017).
Alternatively, a method of enclosing it with a thick heat insulating box (Japanese Patent Laid-Open No. 2000-266).
No. 698) is disclosed. However, in these methods, in order to cover not only the sample but also the sample holder and all the structures that support it, the shielding cylinder and box must be large and a space for that is required. It is difficult to raise the sample temperature due to heat conduction from it because it is in contact with or a structure directly connected to it.
There was a problem such as.

【0006】本発明は、上記現状に鑑み、高温での材料
の構造解析に供されるX線回折装置に関し、1000℃
程度の高温域でも、大型の試料の試料の深さ方向や表面
内の温度の不均一性を著しく低下させ、材料の高精度の
構造解析が可能な装置を提供することを目的とする。
In view of the above situation, the present invention relates to an X-ray diffractometer used for structural analysis of materials at high temperatures, and 1000 ° C.
It is an object of the present invention to provide an apparatus capable of performing highly accurate structural analysis of a material by significantly reducing the non-uniformity of the temperature in the depth direction and the surface of a large sample even in a high temperature range.

【0007】[0007]

【課題を解決するための手段】本発明者は、1000℃
程度の高温域でも、大型の試料の試料の深さ方向や表面
内の温度の不均一性を著しく低下させ、材料の高精度の
構造解析が可能な装置を提供すべく鋭意検討した結果、
試料加熱体上方に試料保持台を設置し、該試料保持台上
に試料を配置し、該過熱体に接し、かつ該試料保持台お
よび該試料を覆う保温カバーを設置することにより、従
来、大容量であった保温部が軽量コンパクトになり、測
定部が小型化でき、試料を加熱体で加熱しながら、試料
から反射および/または回折されたX線を保温カバーを
通して観察することで、試料の極表面の原子や分子の構
造が解析できることを見出した。
The present inventor has found that
Even in a high temperature range, the results of diligent studies to significantly reduce the non-uniformity of the temperature in the depth direction and the surface of a large sample and to provide a highly accurate structural analysis of materials,
By installing a sample holder above the sample heating body, arranging the sample on the sample holder, contacting the superheater, and installing a heat insulating cover that covers the sample holder and the sample, conventionally, The heat-retaining part, which had a large capacity, becomes light and compact, and the measuring part can be downsized. By observing the X-rays reflected and / or diffracted from the sample through the heat-retaining cover while heating the sample with the heating body, It was found that the structure of atoms and molecules on the pole surface can be analyzed.

【0008】さらに、従来の、高温での電磁鋼の結晶評
価法としては、試料全体を箱型の炉にいれ、炉全体にX
線を透過させて観察する方法が行われてきたが、試料の
板厚方向の情報が平均されて測定され、表面の情報を選
択的に得ることができなかった(例えば、X線回折・散
乱技術、菊田著、東京大学出版会、1992)。これに
対して、本発明を用いると、電磁鋼の表面付近の結晶評
価が可能になり、工業的に重要な情報が直接得られるこ
とが明らかになった。
Further, as a conventional method for evaluating the crystallinity of electromagnetic steel at high temperature, the whole sample is put in a box-type furnace and the whole furnace is X-rayed.
Although a method of observing by transmitting a ray has been performed, information in the plate thickness direction of the sample is averaged and measured, and surface information cannot be selectively obtained (for example, X-ray diffraction / scattering). Technology, Kikuta, The University of Tokyo Press, 1992). On the other hand, it has been clarified that the use of the present invention makes it possible to evaluate crystals near the surface of electromagnetic steel and directly obtain industrially important information.

【0009】本発明は、以下の態様をその要旨とする。 (1) 試料表面にX線を照射し、該表面から発生する
X線のエネルギーと強度との少なくとも1つの空間分布
を検出することにより、該試料の構造を解析する装置で
あって、測定部が、少なくとも2つのX線透過窓が取付
けられており試料表面付近のガス雰囲気を制御するため
の容器と、試料保持台と、加熱体と、保温カバーとから
構成され、該加熱体の上方に該試料保持台が設置され、
前記試料を覆うように該加熱体または該試料保持台上に
保温カバーが設置されていることを特徴とするX線によ
る試料表面観察装置。 (2) 前記保温カバーとして多孔質カーボンを用いる
ことを特徴とする(1)記載のX線による試料表面観察
装置。 (3) 金属表面にX線を照射し、該金属表面から発生
するX線のエネルギーと強度との少なくとも1つの空間
分布を検出することにより、該金属の構造を解析する方
法であって、(1)または(2)記載の試料表面観察装
置を用い、試料保持台上に金属を配置し、加熱体により
金属を加熱し、該金属から発生するX線を保温カバーを
通して観察することを特徴としたX線による金属の結晶
状態評価方法。 (4) 前記金属が、電磁鋼板である(3)記載の金属
の結晶状態評価方法。 (5) 前記結晶状態評価方法が、電磁鋼板の再結晶化
評価方法である(3)または(4)記載の金属の結晶状
態評価方法。
The gist of the present invention is as follows. (1) An apparatus for analyzing the structure of a sample by irradiating the surface of the sample with X-rays and detecting at least one spatial distribution of energy and intensity of the X-rays generated from the surface, the measuring unit A container for controlling a gas atmosphere in the vicinity of the sample surface, to which at least two X-ray transmission windows are attached, a sample holder, a heating body, and a heat insulating cover, and above the heating body. The sample holder is installed,
An apparatus for observing a sample surface by X-rays, wherein a heat insulating cover is installed on the heating body or the sample holder so as to cover the sample. (2) The sample surface observation apparatus by X-ray according to (1), characterized in that porous carbon is used as the heat insulating cover. (3) A method of analyzing the structure of a metal by irradiating the metal surface with X-rays and detecting at least one spatial distribution of energy and intensity of X-rays generated from the metal surface, Using the sample surface observation device according to 1) or 2), a metal is placed on a sample holder, the metal is heated by a heating body, and X-rays generated from the metal are observed through a heat insulating cover. Method for evaluating the crystalline state of a metal by the X-ray. (4) The method for evaluating a crystalline state of a metal according to (3), wherein the metal is an electromagnetic steel plate. (5) The method for evaluating a crystalline state of a metal according to (3) or (4), wherein the method for evaluating a crystalline state is a method for evaluating recrystallization of an electromagnetic steel sheet.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0011】本発明は、加熱体上方に試料保持台を設置
し、該試料保持台上に試料を配置し、該加熱体に接し、
かつ該試料保持台および該試料を覆う保温カバーを設置
するものであり、試料を加熱体で加熱しながら、試料か
ら反射および/または回折されたX線を保温カバーを通
して観察することで、試料の極表面の原子や分子の構造
を解析するものである。これにより従来、大容量であっ
た保温部が軽量コンパクトになり測定部が小型化でき、
また、保温カバーが、容器やそれに直結する構造体に接
する部分がほとんどなく、そこからの熱伝導のロスもな
く、効果的に試料温度をあげることが可能になった。
According to the present invention, a sample holder is installed above a heating body, a sample is placed on the sample holder, and the sample holder is brought into contact with the heating body.
In addition, the sample holder and the heat insulating cover that covers the sample are installed. By observing the X-rays reflected and / or diffracted from the sample through the heat insulating cover while heating the sample with the heating body, It analyzes the structure of atoms and molecules on the pole surface. As a result, the heat insulation part, which used to have a large capacity, is now lightweight and compact, and the measurement part can be made smaller.
Further, the heat insulating cover has almost no part in contact with the container or the structure directly connected to it, and there is no loss of heat conduction from the part, so that the sample temperature can be effectively raised.

【0012】図1に本発明の試料表面観察装置の一例を
示す。本発明の試料表面観察装置は、加熱体2、測温装
置3、試料保持台4、保温カバー5、容器6、X線透過
窓7、位置制御装置8、及び雰囲気制御装置9、を備え
た構成をなしており、X線源10および、X線検出器1
1を組み合わせて用いる。また、図2には、本発明の試
料表面観察装置の別の例を示す。図1では加熱体2上部
に1mm厚のBN製の板から構成される保温カバー5が
配置され、かつ、できるだけ大きな立体角度で回折X線
を測定可能なように、ドーム型のX線透過窓7が配置さ
れている。図2では、加熱体2上部に多孔質カーボン
(5mm厚)から構成される保温カバー5が配置され、
かつ、できるだけ大きな立体角度で回折X線を測定可能
なように、円盤型のX線透過窓7が配置されている。
FIG. 1 shows an example of the sample surface observation apparatus of the present invention. The sample surface observation device of the present invention includes a heating body 2, a temperature measuring device 3, a sample holder 4, a heat insulating cover 5, a container 6, an X-ray transmission window 7, a position control device 8, and an atmosphere control device 9. The X-ray source 10 and the X-ray detector 1 are configured.
1 is used in combination. Further, FIG. 2 shows another example of the sample surface observation apparatus of the present invention. In FIG. 1, a heat insulating cover 5 composed of a 1 mm thick BN plate is arranged above the heating body 2, and a dome-shaped X-ray transmission window is provided so that diffracted X-rays can be measured at the largest possible solid angle. 7 are arranged. In FIG. 2, a heat insulating cover 5 made of porous carbon (thickness: 5 mm) is arranged above the heating element 2,
In addition, a disc-shaped X-ray transmission window 7 is arranged so that the diffracted X-rays can be measured at the largest possible solid angle.

【0013】容器6は、X線源10から発生したX線
が、容器6に設置されたX線透過窓7を通して試料1の
表面に照射され、そこから反射あるいは回折されたX線
が、別のX線透過窓7を通過し、X線検出器11によ
り、X線のエネルギーや強度の空間分布を検出できるよ
うに配置されている。これを実現するために、位置制御
装置8により、試料1の表面と入射X線との相対位置、
角度を制御する。
In the container 6, the X-ray generated from the X-ray source 10 is irradiated onto the surface of the sample 1 through the X-ray transmission window 7 installed in the container 6, and the X-ray reflected or diffracted from the surface of the sample 1 is separated. The X-ray detector 11 is arranged so that the X-ray detector 11 can detect the spatial distribution of X-ray energy and intensity. In order to realize this, the relative position between the surface of the sample 1 and the incident X-ray,
Control the angle.

【0014】加熱体2の加熱により試料1を効果的に均
一に加熱し、該試料を所定温度で安定に保温するため
に、加熱体2に接し、かつ試料1と試料保持台4を覆う
ように、保温カバー5が配置されている。保温カバー5
としては、X線の吸収率が低くかつ試料の保温効果が高
いものを用いる。具体的には、カーボン、ベリリウム、
ボロンナイトライド、等の原子番号の小さな元素を材料
として用いた薄肉材を用いればよい。該保温カバーの厚
さは、所定温度の上限と用いるX線のエネルギーにより
限定される。所定温度の上限が高いほど、保温効果を高
めるためにより肉厚のものを必要とするため、用いるX
線のエネルギーを大きくして該保温カバーによるX線の
吸収を最小限にすればよい。例えば、所定温度を室温〜
1500℃とし、該保温カバーとしてカーボンを用いる
場合、その厚さは1〜2mm、X線のエネルギーは8〜
15keV程度が望ましい。保温カバー5の内面には、
試料の汚染を防ぐためのコーティングもしくは、保温カ
バー5の内部に高純度石英などでできた汚染防止容器を
設置することができる。
By heating the heating element 2, the sample 1 is effectively and uniformly heated, and in order to keep the sample stable at a predetermined temperature, it is in contact with the heating element 2 and covers the sample 1 and the sample holder 4. The heat insulation cover 5 is arranged in the. Insulation cover 5
As the material, a material having a low X-ray absorption rate and a high heat retention effect on the sample is used. Specifically, carbon, beryllium,
A thin material using an element having a small atomic number such as boron nitride may be used. The thickness of the heat insulating cover is limited by the upper limit of the predetermined temperature and the energy of X-rays used. The higher the upper limit of the predetermined temperature, the thicker one is required to enhance the heat retention effect.
The energy of the rays may be increased to minimize the absorption of X-rays by the heat insulating cover. For example, the predetermined temperature is from room temperature to
When the temperature is set to 1500 ° C. and carbon is used as the heat insulating cover, the thickness is 1 to 2 mm and the X-ray energy is 8 to
About 15 keV is desirable. On the inner surface of the heat insulation cover 5,
A coating for preventing contamination of the sample or a contamination prevention container made of high-purity quartz or the like can be installed inside the heat insulating cover 5.

【0015】特に、保温カバー5として多孔質カーボン
を用いると、実質的なX線の吸収率を低くおさえながら
保温効果を高めることができる。さらに、多孔質カーボ
ンはその形状加工が容易であるため、複雑な形状をした
保温カバーの設計が容易である利点もある。多孔質カー
ボンとしては、気孔率70〜90%程度のものが望まし
い。前記範囲より著しく小さい場合には保温効果が少な
く、一方、著しく大きい場合には保温カバーが大きくな
り省スペース効果がなくなるからである。保温カバーと
して前記材料を用いた場合、保温カバーの形状として、
円筒形、箱型、等の形状とすることができる。保温カバ
ーの形状は試料および加熱体にあわせるのが好ましく、
例えば板状試料の場合は、板状の加熱体および箱型の保
温カバーを用いる。
In particular, when porous carbon is used as the heat insulating cover 5, the heat insulating effect can be enhanced while suppressing the substantial absorption rate of X-rays. Further, since the shape of porous carbon is easily processed, there is an advantage that the heat insulating cover having a complicated shape can be easily designed. The porous carbon preferably has a porosity of about 70 to 90%. If it is significantly smaller than the above range, the heat retaining effect is small, while if it is significantly larger, the heat retaining cover becomes large and the space saving effect is lost. When the above material is used as the heat insulating cover, the shape of the heat insulating cover is
The shape may be cylindrical, box-shaped, or the like. The shape of the heat insulating cover is preferably matched to the sample and heating element,
For example, in the case of a plate-shaped sample, a plate-shaped heating body and a box-shaped heat insulating cover are used.

【0016】加熱体2としては、金属線を発熱体とした
ものや、それをセラミックス等でコーティングしたもの
を用いる。特に、加熱体2として切り込みの入った板状
カーボンを用いると、大型の板状の試料を面内均一性が
高い状態で加熱可能である。但し、板状カーボンを用い
た場合、カーボンによる試料の汚染を防止するために、
表面を例えばSiC等でコーティングすることが望まし
い。
As the heating element 2, a heating element made of a metal wire, or a heating element coated with ceramics is used. In particular, when plate-shaped carbon with a cut is used as the heating body 2, it is possible to heat a large plate-shaped sample with high in-plane uniformity. However, when using plate-like carbon, in order to prevent contamination of the sample by carbon,
It is desirable to coat the surface with, for example, SiC.

【0017】試料保持台の材質としては、試料との反応
がなくかつ熱衝撃に強いことが好ましいが、特に試料が
金属の場合には、試料保持台4としてBNやAl23
の板を用いることが、試料と試料保持台4の反応性防止
および加熱体2の短絡防止等の観点から望ましい。
The material of the sample holder is preferably one that does not react with the sample and is resistant to thermal shock. Especially when the sample is a metal, the sample holder 4 is made of a plate made of BN or Al 2 O 3 . Is preferable from the viewpoint of preventing reactivity between the sample and the sample holder 4 and preventing short circuit of the heating body 2.

【0018】上記構成により、加熱体2および試料1か
ら容器6の外部への熱幅射や熱伝導が最小限になり、効
果的かつ定常的な加熱が可能となる。
With the above structure, the heat radiation and heat conduction from the heating element 2 and the sample 1 to the outside of the container 6 are minimized, and effective and steady heating is possible.

【0019】容器6にはX線透過窓7が設置されてお
り、X線が入射するための窓と、試料から反射あるいは
回折されたX線が透過するための窓の2つが、少なくと
も設置されている。例えば、X線入射用の窓、これと反
対方向に反射X線の測定用の窓、入射X線と回折X線の
なす角度が回折条件を満たす方向に回折X線の測定用の
窓、の計3つを配置する。出射用のX線透過窓7は、反
射あるいは回折の方向に一致するように配置すればよ
い。
An X-ray transmission window 7 is installed in the container 6, and at least two windows are provided, one for entering X-rays and the other for transmitting X-rays reflected or diffracted from the sample. ing. For example, a window for X-ray incidence, a window for measurement of reflected X-rays in the opposite direction, and a window for measurement of diffracted X-rays in a direction where the angle between the incident X-rays and the diffracted X-rays satisfy the diffraction condition. Place a total of three. The X-ray transmission window 7 for emission may be arranged so as to match the direction of reflection or diffraction.

【0020】該X線透過窓としては、X線の透過能が高
く原子番号の小さな元素から構成された材料、例えばベ
リリウム、炭素、等から構成された薄い板を用いて、容
器6と気密性を保った条件で配置する。X線透過窓の厚
さは、X線のエネルギーが8〜15keV程度の場合、
1〜2mmであることが好ましい。この範囲より著しく
小さい場合には、容器内外の圧力差に耐えがたくなり、
著しく大きい場合にはX線の吸収が大きく信号強度が著
しく小さくなるからである。
As the X-ray transmission window, a thin plate made of a material composed of an element having a high X-ray transmissivity and a small atomic number, for example, beryllium, carbon, etc. is used, and airtightness is ensured with the container 6. Place under the condition that keeps. When the X-ray energy is about 8 to 15 keV, the thickness of the X-ray transmission window is
It is preferably 1 to 2 mm. If it is significantly smaller than this range, it becomes difficult to withstand the pressure difference between the inside and outside of the container,
This is because when it is extremely large, X-ray absorption is large and the signal intensity is extremely small.

【0021】位置制御装置8は、測定部全体を動かす方
式や試料保持台4を動かす方式があり、制御方法として
は、例えば直交する3軸の各軸の周りの回転と、各軸の
方向への直線移動の機能をもたせたものがよく、これに
より、試料1の表面に入射するX線の位置および角度を
正確に制御できる。
The position control device 8 has a method of moving the entire measuring section and a method of moving the sample holder 4, and as a control method, for example, rotation around each of the three axes orthogonal to each other and in the direction of each axis. It is preferable to have a function of linear movement of (1), whereby the position and angle of the X-ray incident on the surface of the sample 1 can be accurately controlled.

【0022】雰囲気制御装置9は真空ポンプ、各種ガス
導入装置、及び容器6と接続しているバルブ等から構成
されている。試料表面のガス雰囲気を制御した状態で試
料の加熱を効果的に行うために、容器6に雰囲気制御装
置9が接続されており、雰囲気制御装置9からのガス導
入経路を通じて、導入ガスが試料表面付近に流れ込むよ
うになっており、該試料表面のガス雰囲気が制御され
る。
The atmosphere control device 9 is composed of a vacuum pump, various gas introduction devices, a valve connected to the container 6, and the like. In order to effectively heat the sample while controlling the gas atmosphere on the sample surface, an atmosphere control device 9 is connected to the container 6, and the introduced gas is supplied to the surface of the sample through a gas introduction path from the atmosphere control device 9. The gas atmosphere on the surface of the sample is controlled.

【0023】本発明で用いるX線源としては例えば、実
験室で使用される封入管型や回転陽極型、及び回転軌道
の電子線の制動放射を利用した放射光施設等がある。X
線検出器としては、シンチレーション検出器、イオンチ
ャンバー、イメージングプレート、CCDカメラ等を利
用した二次元型検出器、等がある。
Examples of the X-ray source used in the present invention include a sealed tube type and a rotating anode type used in a laboratory, and a synchrotron radiation facility using bremsstrahlung of an electron beam in a rotating orbit. X
As the line detector, there are a scintillation detector, an ion chamber, an imaging plate, a two-dimensional type detector using a CCD camera, and the like.

【0024】以下に、図1に示す表面観察装置に基づ
き、表面観察を行う方法について説明する。
A method for observing the surface based on the surface observing apparatus shown in FIG. 1 will be described below.

【0025】試料1を該試料の下方に設置する加熱体2
により室温〜1500℃程度の温度範囲で加熱する。該
試料温度を制御するためには、加熱体2の近傍の測温装
置3からの信号を用いる。試料1に直接、測温装置を設
置することも可能であるが、該測温装置が試料から反射
および/または回折されたX線の測定の障害になる場合
もあるため、この場合には、事前に、加熱体2の近傍に
測温装置を設置した場合と、試料1に直接接触して測温
装置を設置した場合の両者の温度の相関を調べておき、
その相関関係により測温装置の温度を補正すればよい。
本発明はX線を用いているため、材料に何ら影響を与え
ない非破壊でのその場観察法であるため、製造ラインの
一部に本装置を設置し、製品表面の測定を行い、得られ
た情報を試料温度等の制御に反映させることによって製
造プロセスのモニターとして活用することが可能であ
る。
Heater 2 for placing sample 1 below the sample
The heating is performed at room temperature to about 1500 ° C. In order to control the sample temperature, a signal from the temperature measuring device 3 near the heating body 2 is used. Although it is possible to install the temperature measuring device directly on the sample 1, the temperature measuring device may sometimes interfere with the measurement of X-rays reflected and / or diffracted from the sample. In this case, In advance, the temperature correlation between the case where the temperature measuring device is installed in the vicinity of the heating body 2 and the case where the temperature measuring device is installed in direct contact with the sample 1 is investigated.
The temperature of the temperature measuring device may be corrected based on the correlation.
Since the present invention uses X-rays, it is a non-destructive in-situ observation method that does not affect the material at all. Therefore, this device is installed in a part of the production line to measure the product surface, It is possible to utilize it as a monitor of the manufacturing process by reflecting the obtained information in the control of the sample temperature and the like.

【0026】反応性が高い試料の場合、容器6内を真空
または不活性ガス雰囲気にすればよい。また、試料と反
応性ガスとの反応を観察するためには、雰囲気制御装置
9により、試料表面付近が反応性ガス中の雰囲気になる
ようにすればよく、該試料の表面層がガスと反応する温
度に保つことにより、試料表面と反応性ガスとの反応を
調べることが可能である。X線は各種ガスの透過能が大
きいため、本発明を反応性ガスとの反応を利用した製造
プロセスのモニターとして活用可能である。
In the case of a highly reactive sample, the inside of the container 6 may be vacuum or an inert gas atmosphere. Further, in order to observe the reaction between the sample and the reactive gas, the atmosphere control device 9 may be used so that the vicinity of the sample surface becomes an atmosphere in the reactive gas, and the surface layer of the sample reacts with the gas. It is possible to investigate the reaction between the surface of the sample and the reactive gas by keeping the temperature at the temperature. Since X-rays have high permeability to various gases, the present invention can be used as a monitor of a manufacturing process utilizing a reaction with a reactive gas.

【0027】さらに、試料が複数の層から構成されてい
る場合には、X線の入射角度やエネルギーを調整し、表
面からの第2層以下の深さまでX線が侵入する条件で、
試料を加熱しながら測定することにより、最表面と表面
からの第2層の界面反応を調べることも可能である。
Further, when the sample is composed of a plurality of layers, the incident angle and energy of X-rays are adjusted so that the X-rays penetrate from the surface to a depth of the second layer or less,
By measuring the sample while heating it, it is also possible to investigate the interfacial reaction between the outermost surface and the second layer from the surface.

【0028】試料表面から反射および/または回折され
たX線のエネルギーおよび/または回折強度の空間分布
を検出するためには、X線源からのX線をX線透過窓7
より入射させて試料に照射し、そこから反射および/ま
たは回折されたX線を別のX線透過窓7を透過させ、検
出器により測定する。
In order to detect the spatial distribution of energy and / or diffraction intensity of X-rays reflected and / or diffracted from the sample surface, X-rays from the X-ray source are transmitted through the X-ray transmission window 7.
The X-ray reflected by and / or diffracted from the sample is made incident further and transmitted through another X-ray transmission window 7, and measured by a detector.

【0029】試料表面からの反射X線のみを検出するた
めには、試料表面に対する入射角度を精密に制御すれば
よい。さらに、試料表面からの回折されたX線も測定す
るためには、測定しようとする回折面の角度がブラッグ
の条件式を満たすように入射X線を入射させる必要があ
るため、位置制御装置8により試料を回転させて回折面
と入射X線の角度を調整する。
In order to detect only the reflected X-rays from the sample surface, the incident angle with respect to the sample surface may be precisely controlled. Further, in order to measure the X-ray diffracted from the sample surface, it is necessary to make the incident X-ray incident so that the angle of the diffracting surface to be measured satisfies the Bragg's conditional expression. The sample is rotated by to adjust the angle between the diffraction surface and the incident X-ray.

【0030】試料表面の形態(凹凸、密度、膜厚)のみ
を測定する場合は、試料表面からの反射X線のみを検出
すればよい。これに加えて、試料表面の原子構造を調べ
るためには、該表面からの回折されたX線もあわせて測
定すればよい。
When only the morphology (concavities and convexities, density, film thickness) of the sample surface is measured, only the reflected X-ray from the sample surface may be detected. In addition to this, in order to investigate the atomic structure of the sample surface, the X-ray diffracted from the surface may also be measured.

【0031】出射用のX線透過窓7は、反射あるいは回
折の方向に一致するように配置すればよい。
The X-ray transmission window 7 for emission may be arranged so as to coincide with the direction of reflection or diffraction.

【0032】次に、試料を加熱した状態で、位置制御装
置8により、試料1の表面と、入射X線の相対位置と角
度とを制御し、X線検出器11により、該表面から反射
および/または回折されたX線のエネルギーおよび/ま
たは回折強度の空間分布を検出する。
Next, while the sample is heated, the position controller 8 controls the relative position and angle of the incident X-ray with the surface of the sample 1, and the X-ray detector 11 reflects and reflects from the surface. Detecting the spatial distribution of the energy and / or diffraction intensity of the diffracted X-rays.

【0033】該試料表面から反射および/または回折さ
れたX線の信号を測定するには、2つの方法がある。第
1の方法は、入射するX線の波長を1つに限定し、反射
および/または回折されたX線の回折強度の空間分布を
検出する方法であり、第2の方法は、複数(またはある
範囲で連続した)波長のX線を同時に入射し、反射およ
び/または回折されたX線の回折強度をエネルギーの関
数として用いる方法である。前者の方法は高い精度で情
報が得られるが、検出器をスキャンさせる必要がある。
後者の方法は検出器をスキャンさせる必要がなく短時間
でのその場観察が可能であるが、分解精度は前者ほど高
くない。目的に応じてこれらを使いわければよい。
There are two methods for measuring the X-ray signal reflected and / or diffracted from the sample surface. The first method is to limit the wavelength of incident X-rays to one and detect the spatial distribution of the diffraction intensity of reflected and / or diffracted X-rays, and the second method is to detect a plurality of (or This is a method in which X-rays having wavelengths (continuous in a certain range) are simultaneously incident and the diffraction intensity of reflected and / or diffracted X-rays is used as a function of energy. The former method can obtain information with high accuracy, but it requires scanning the detector.
The latter method allows in-situ observation in a short time without the need to scan the detector, but the resolution accuracy is not as high as that of the former method. These can be used properly according to the purpose.

【0034】上記構成のX線による試料表面観察装置
を、電磁鋼板の表面付近の結晶評価に用いることも可能
である。具体的には得れた回折図形の強度分布が一様で
あるかが結晶性の分布と対応しており、その分布測定に
より評価を行う。
It is also possible to use the X-ray sample surface observing apparatus having the above-described structure for evaluating crystals near the surface of the electromagnetic steel sheet. Specifically, whether or not the obtained diffraction pattern has a uniform intensity distribution corresponds to the crystallinity distribution, and evaluation is performed by measuring the distribution.

【0035】[0035]

【実施例】(実施例1)試料にブロック状(10×10
×2mm)のNb−25%Al合金を用い、配列の規則
正さを表すパラメータS(完全にランダムで0、完全に
規則正しい場合に1の値をとる)の温度依存性を調べ
た。
Example (Example 1) A block-like (10 × 10
(2 mm) Nb-25% Al alloy was used to examine the temperature dependence of a parameter S (0 which is completely random and takes a value of 1 when completely regular) which represents the regularity of the arrangement.

【0036】測定には、図1の装置を使用した。X線源
10として実験室系のCu回転陽極型の発生装置からの
X線を用い、X線検出器検出器11としては、シンチレ
ーション検出器を用いた。
The apparatus shown in FIG. 1 was used for the measurement. As the X-ray source 10, X-rays from a laboratory Cu rotating anode type generator were used, and as the X-ray detector detector 11, a scintillation detector was used.

【0037】保温カバー5は、厚さ1mmのBN製の板
から構成されている。加熱体2は、Pt線を直径3mm
のらせん状に巻いたものを同心円状に配置したヒータを
セメント内に埋め込んだものを用いた。
The heat insulating cover 5 is composed of a BN plate having a thickness of 1 mm. The heating element 2 has a Pt wire diameter of 3 mm.
A spirally wound heater was concentrically arranged and the heater was embedded in cement.

【0038】前記装置を用いて、Nb−25%Al合金
の加熱に伴う配列の規則正さを表すパラメータS(完全
にランダムで0、完全に規則正しい場合に1の値をと
る)の温度依存性を調べた結果、表1に示すように加熱
に伴いSが増加することが、明瞭に観察された。表1に
本発明による解析により得られたNb−25%Al合金
のパラメータSの変化を示す。
Using the above apparatus, the temperature dependence of the parameter S (completely random, 0, and 1 when completely ordered), which represents the regularity of the array with heating of the Nb-25% Al alloy. As a result of examination, it was clearly observed that S increased with heating as shown in Table 1. Table 1 shows changes in the parameter S of the Nb-25% Al alloy obtained by the analysis according to the present invention.

【0039】[0039]

【表1】 [Table 1]

【0040】(実施例2)試料として、板状(30×8
0×0.2mm)のFe−3%Si合金を熱処理し、直
径2cm程度の結晶粒を有する材料について測定を行っ
た。該試料にあらかじめ先端が尖った金属製のペンで傷
をつけ、歪みが導入されるようにした。
Example 2 As a sample, a plate-like (30 × 8)
(0 × 0.2 mm) Fe-3% Si alloy was heat-treated, and measurement was performed on a material having crystal grains with a diameter of about 2 cm. The sample was scratched in advance with a metal pen having a sharp tip so that strain was introduced.

【0041】測定には、図2の装置を使用した。X線源
10として放射光からの連続X線を用い、試料からのラ
ウエスポットを、X線検出器検出器11としてイメージ
ングプレートを用いて測定した。
The apparatus shown in FIG. 2 was used for the measurement. Continuous X-rays from synchrotron radiation were used as the X-ray source 10, and Laue spots from the sample were measured using an imaging plate as the X-ray detector detector 11.

【0042】保温カバー5は、厚さ10mmの多孔質カ
ーボンから構成されている。気孔率は90%程度であり
実質的な厚さは小さく、実質的なX線の吸収率を低くお
さえながら保温効果を高めることができる。
The heat insulating cover 5 is made of porous carbon having a thickness of 10 mm. The porosity is about 90%, and the substantial thickness is small, and the heat retaining effect can be enhanced while the substantial X-ray absorption rate is suppressed.

【0043】加熱体2は、板状カーボン(厚さ2〜5m
m)に、ジグザグ状に切り込みを入れたものを用いた。
カーボンによる試料の汚染を防止するために表面をSi
Cでコーティングしてある。これにより、80×300
mmのサイズの板状の試料でも面内均一性が高い状態で
加熱可能である。試料と試料保持台4の反応性防止およ
び加熱体2の短絡防止等の観点から、試料保持台4とし
てBNやAl23製の板を用いている。
The heating element 2 is made of plate-like carbon (thickness: 2-5 m).
What was cut in zigzag in m) was used.
Si is used to prevent the sample from being contaminated by carbon.
Coated with C. This gives 80 x 300
Even a plate-shaped sample having a size of mm can be heated with high in-plane uniformity. A plate made of BN or Al 2 O 3 is used as the sample holder 4 from the viewpoint of preventing the reactivity between the sample and the sample holder 4 and the short circuit of the heating body 2.

【0044】図3に得られた試料表面からのラウエスポ
ットを示す。室温では、傷をつけた部分が明瞭に観察さ
れるが、試料温度を800〜1000℃にすると、歪み
が開放された状態になることが明瞭に観察された。 (比較例1)実施例2と同様の装置および試料を用い、
該試料にはあらかじめ先端が尖った金属製のペンで傷を
つけ、歪みが導入されるようにした。該試料を、保温カ
バー5なしで、加熱体2だけで、加熱したが、該試料表
面の温度が600℃までしか上昇せず800℃での測定
は不可能であった。 (比較例2)実施例2と同様の装置および試料を用い、
該試料にはあらかじめ先端が尖った金属製のペンで傷を
つけ、歪みが導入されるようにした。該試料を、保温カ
バー5なしで、加熱体2と試料の温度低下を防ぐための
補助ヒータを試料前面に配置して測定を試みたが、そこ
からの妨害のために、ラウエスポットの測定が不可能で
あった。
FIG. 3 shows the Laue spot from the obtained sample surface. At room temperature, the scratched portion was clearly observed, but when the sample temperature was 800 to 1000 ° C., it was clearly observed that the strain was released. (Comparative Example 1) Using the same device and sample as in Example 2,
The sample was scratched in advance with a metal pen having a sharp tip so that strain was introduced. The sample was heated only by the heating body 2 without the heat insulating cover 5, but the temperature of the sample surface rose only to 600 ° C., and the measurement at 800 ° C. was impossible. (Comparative Example 2) Using the same device and sample as in Example 2,
The sample was scratched in advance with a metal pen having a sharp tip so that strain was introduced. An attempt was made to measure the sample by placing the heating body 2 and an auxiliary heater for preventing the temperature drop of the sample on the front surface of the sample without the heat insulating cover 5, but the Laue spot was measured due to interference from the sample. It was impossible.

【0045】[0045]

【発明の効果】本発明により、大型の試料を1000℃
程度の高温域でも、試料の深さ方向や表面内の温度の不
均一性なし、高精度の構造解析が可能な装置を提供する
ことが可能になった。
According to the present invention, a large sample is heated to 1000 ° C.
It has become possible to provide a device capable of highly accurate structural analysis without unevenness of the temperature in the depth direction of the sample or the surface even in a high temperature range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による結晶状態評価方法に使用する試料
表面観察装置を示す。
FIG. 1 shows a sample surface observing apparatus used for a crystal state evaluation method according to the present invention.

【図2】本発明による結晶状態評価方法に使用する別の
試料表面観察装置を示す。
FIG. 2 shows another sample surface observing apparatus used in the crystal state evaluation method according to the present invention.

【図3】本発明による解析により得られたFe−3%S
i合金の歪み分布の変化を示す。
FIG. 3 Fe-3% S obtained by analysis according to the invention
The change of strain distribution of i alloy is shown.

【符号の説明】[Explanation of symbols]

1…試料 2…加熱体 3…測温装置 4…試料保持台 5…保温カバー 6…容器 7…X線透過窓 8…位置制御装置 9…雰囲気制御装置 10…X線源 11…X線検出器 1 ... Sample 2 ... Heating body 3 ... Temperature measuring device 4 ... Sample holder 5 ... Insulation cover 6 ... Container 7 ... X-ray transmission window 8 ... Position control device 9 ... Atmosphere control device 10 ... X-ray source 11 ... X-ray detector

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 試料表面にX線を照射し、該表面から発
生するX線のエネルギーと強度との少なくとも1つの空
間分布を検出することにより、該試料の構造を解析する
装置であって、 測定部が、少なくとも2つのX線透過窓が取付けられて
おり試料表面付近のガス雰囲気を制御するための容器
と、試料保持台と、加熱体と、保温カバーとから構成さ
れ、該加熱体の上方に該試料保持台が設置され、前記試
料を覆うように該加熱体または該試料保持台上に保温カ
バーが設置されていることを特徴とするX線による試料
表面観察装置。
1. An apparatus for analyzing the structure of a sample by irradiating the surface of the sample with X-rays and detecting at least one spatial distribution of energy and intensity of the X-rays generated from the surface, The measuring unit includes a container to which at least two X-ray transmission windows are attached and which controls the gas atmosphere near the sample surface, a sample holder, a heating body, and a heat insulating cover. An apparatus for observing a sample surface by X-ray, wherein the sample holder is installed above, and a heating cover is installed on the heating body or the sample holder so as to cover the sample.
【請求項2】 前記保温カバーとして多孔質カーボンを
用いることを特徴とする請求項1記載のX線による試料
表面観察装置。
2. The sample surface observing apparatus by X-ray according to claim 1, wherein porous carbon is used as the heat insulating cover.
【請求項3】 金属表面にX線を照射し、該金属表面か
ら発生するX線のエネルギーと強度との少なくとも1つ
の空間分布を検出することにより、該金属の構造を解析
する方法であって、 請求項1または2記載の試料表面観察装置を用い、試料
保持台上に金属を配置し、加熱体により金属を加熱し、
該金属から発生するX線を保温カバーを通して観察する
ことを特徴としたX線による金属の結晶状態評価方法。
3. A method for analyzing the structure of a metal by irradiating the surface of the metal with X-rays and detecting at least one spatial distribution of energy and intensity of the X-rays generated from the surface of the metal. Using the sample surface observation device according to claim 1 or 2, a metal is placed on a sample holder, and the metal is heated by a heating body,
A method for evaluating a crystalline state of a metal by X-ray, which comprises observing X-ray generated from the metal through a heat insulating cover.
【請求項4】 前記金属が、電磁鋼板である請求項3記
載の金属の結晶状態評価方法。
4. The method according to claim 3, wherein the metal is an electromagnetic steel plate.
【請求項5】 前記結晶状態評価方法が、電磁鋼板の再
結晶化評価方法である請求項3または4記載の金属の結
晶状態評価方法。
5. The method for evaluating a crystalline state of a metal according to claim 3, wherein the method for evaluating a crystalline state is a method for evaluating recrystallization of a magnetic steel sheet.
JP2002135586A 2002-05-10 2002-05-10 Sample surface observing device with x ray and method of evaluating crystallized state of metal with x ray Withdrawn JP2003329619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135586A JP2003329619A (en) 2002-05-10 2002-05-10 Sample surface observing device with x ray and method of evaluating crystallized state of metal with x ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135586A JP2003329619A (en) 2002-05-10 2002-05-10 Sample surface observing device with x ray and method of evaluating crystallized state of metal with x ray

Publications (1)

Publication Number Publication Date
JP2003329619A true JP2003329619A (en) 2003-11-19

Family

ID=29697876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135586A Withdrawn JP2003329619A (en) 2002-05-10 2002-05-10 Sample surface observing device with x ray and method of evaluating crystallized state of metal with x ray

Country Status (1)

Country Link
JP (1) JP2003329619A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353712A (en) * 2004-06-09 2005-12-22 Okuhara Electric Inc Soldering equipment including radioscopy camera
JP2006091017A (en) * 2004-09-21 2006-04-06 Jordan Valley Applied Radiation Ltd X-ray reflectometer combined with diffractometer
JP2007285993A (en) * 2006-04-20 2007-11-01 Rigaku Corp Crystal orientation measuring method and device thereof
JP2008203046A (en) * 2007-02-19 2008-09-04 National Institute Of Advanced Industrial & Technology Precise membrane analyzer
JP2009074800A (en) * 2007-09-18 2009-04-09 Bridgestone Corp Heater unit and x-ray analyzer
US8243878B2 (en) 2010-01-07 2012-08-14 Jordan Valley Semiconductors Ltd. High-resolution X-ray diffraction measurement with enhanced sensitivity
US8437450B2 (en) 2010-12-02 2013-05-07 Jordan Valley Semiconductors Ltd. Fast measurement of X-ray diffraction from tilted layers
US8687766B2 (en) 2010-07-13 2014-04-01 Jordan Valley Semiconductors Ltd. Enhancing accuracy of fast high-resolution X-ray diffractometry
US8781070B2 (en) 2011-08-11 2014-07-15 Jordan Valley Semiconductors Ltd. Detection of wafer-edge defects
US9726624B2 (en) 2014-06-18 2017-08-08 Bruker Jv Israel Ltd. Using multiple sources/detectors for high-throughput X-ray topography measurement

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353712A (en) * 2004-06-09 2005-12-22 Okuhara Electric Inc Soldering equipment including radioscopy camera
JP2006091017A (en) * 2004-09-21 2006-04-06 Jordan Valley Applied Radiation Ltd X-ray reflectometer combined with diffractometer
JP2007285993A (en) * 2006-04-20 2007-11-01 Rigaku Corp Crystal orientation measuring method and device thereof
JP2008203046A (en) * 2007-02-19 2008-09-04 National Institute Of Advanced Industrial & Technology Precise membrane analyzer
JP2009074800A (en) * 2007-09-18 2009-04-09 Bridgestone Corp Heater unit and x-ray analyzer
US8243878B2 (en) 2010-01-07 2012-08-14 Jordan Valley Semiconductors Ltd. High-resolution X-ray diffraction measurement with enhanced sensitivity
US8731138B2 (en) 2010-01-07 2014-05-20 Jordan Valley Semiconductor Ltd. High-resolution X-ray diffraction measurement with enhanced sensitivity
US8687766B2 (en) 2010-07-13 2014-04-01 Jordan Valley Semiconductors Ltd. Enhancing accuracy of fast high-resolution X-ray diffractometry
US8693635B2 (en) 2010-07-13 2014-04-08 Jordan Valley Semiconductor Ltd. X-ray detector assembly with shield
US8437450B2 (en) 2010-12-02 2013-05-07 Jordan Valley Semiconductors Ltd. Fast measurement of X-ray diffraction from tilted layers
US8781070B2 (en) 2011-08-11 2014-07-15 Jordan Valley Semiconductors Ltd. Detection of wafer-edge defects
US9726624B2 (en) 2014-06-18 2017-08-08 Bruker Jv Israel Ltd. Using multiple sources/detectors for high-throughput X-ray topography measurement

Similar Documents

Publication Publication Date Title
EP2126553B1 (en) X-ray analysis instrument
JP5517559B2 (en) Charged particle beam apparatus and display method of three-dimensional information in charged particle beam apparatus
EP0523566B1 (en) Apparatus for solid surface analysis using x-ray spectroscopy
US7978821B1 (en) Laue crystallographic orientation mapping system
JP2003329619A (en) Sample surface observing device with x ray and method of evaluating crystallized state of metal with x ray
Margulies et al. New high temperature furnace for structure refinement by powder diffraction in controlled atmospheres using synchrotron radiation
JP2004239802A (en) X-ray analysis apparatus and x-ray analysis method
Matz et al. A two magnetron sputter deposition chamber for in situ observation of thin film growth by synchrotron radiation scattering
JP2006194888A (en) Instrument for measuring in-situ temperature using x-ray diffusion
TWI229404B (en) Method and apparatus for thin film thickness mapping
JP2000266698A (en) Method and apparatus for surface observation by x-rays
JP2006250642A (en) X-ray diffraction analyzing method and x-ray diffraction analyzer
Löchner et al. Synchrotron powder diffractometry at Hasylab/DORIS reviewed
RU2419088C1 (en) X-ray spectrometer
JP2008058233A (en) X-ray diffraction device
JP3027074B2 (en) X-ray diffraction dynamic measurement device
Marks et al. Instrument for in situ hard x-ray nanobeam characterization during epitaxial crystallization and materials transformations
JPH1048159A (en) Method and apparatus for analyzing structure
Rood et al. Photodimerization of anthracene single crystals in situ in the electron microscope
Kamada et al. A high temperature X-ray diffractometer using a solar furnace
JP2006017543A (en) X-ray diffractometer and specimen measurement method
JP6205711B2 (en) Structure evaluation method by X-ray diffraction method
JP2670394B2 (en) Surface analysis method and surface analysis device
JPH07286945A (en) Sample heating furnace for x-ray measurement
JP5381925B2 (en) Oxide structure evaluation method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802