JPH0941053A - Production of silicon carbide fiber reinforced titanium-aluminum composite material - Google Patents

Production of silicon carbide fiber reinforced titanium-aluminum composite material

Info

Publication number
JPH0941053A
JPH0941053A JP20999195A JP20999195A JPH0941053A JP H0941053 A JPH0941053 A JP H0941053A JP 20999195 A JP20999195 A JP 20999195A JP 20999195 A JP20999195 A JP 20999195A JP H0941053 A JPH0941053 A JP H0941053A
Authority
JP
Japan
Prior art keywords
tial
composite material
sic fiber
sic
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20999195A
Other languages
Japanese (ja)
Other versions
JP2784161B2 (en
Inventor
Mamoru Imuda
守 伊牟田
Hiroshi Nakatani
浩 中谷
Yukio Shimada
幸雄 島田
Yoji Mizuhara
洋治 水原
Keizo Hashimoto
敬三 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Nippon Steel Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7209991A priority Critical patent/JP2784161B2/en
Publication of JPH0941053A publication Critical patent/JPH0941053A/en
Application granted granted Critical
Publication of JP2784161B2 publication Critical patent/JP2784161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an SiC fiber reinforced Ti-Al composite material by which deterioration in the characteristics of SiC fibers caused by excessive boundary reaction can be suppressed without need of a material other than a fiber and matrix, and furthermore, the generation of matrix cracks caused by the mismatch of the coefficient of thermal expansion(CTE) can be suppressed. SOLUTION: In a state in which SiC fiber layers are interposed between Ti-Al base alloy foils having superplastic characteristics (SPF characteristics), and their lamination is numerously executed. The Ti-Al base alloy foils are subjected to plastic deformation under the temp. conditions of 900 to 1,100 deg.C in a vacuum under pressure to bury the gaps among fibers in the SiC fiber layers. Moreover, the Ti-Al base alloy foils are diffusedly joined with each other and are compounded to produce the SiC fiber reinforced Ti-Al composite material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、航空機用ガスター
ビンエンジンの圧縮機、タービン部品として適用でき、
また軽量化が必須条件となる超音速輸送機用の耐熱機体
材料としての適用が期待されるSiC繊維強化TiAl
複合材料の製造方法に関する。
The present invention is applicable to compressors and turbine parts of aircraft gas turbine engines.
Also, SiC fiber reinforced TiAl is expected to be used as a heat-resistant airframe material for supersonic transports where weight reduction is an essential condition.
The present invention relates to a method for producing a composite material.

【0002】[0002]

【従来の技術】従来のSiC繊維強化金属のマトリック
スの形態としては、箔形態、または粉末形態を用いる
が、TiAl金属間化合物合金は従来の金属に比べ脆性
な材料でるため、一般的に粉末形態を用いることが多
い。このTiAl基合金の粉末や箔をそれぞれ焼結また
は拡散結合するためには、1250℃以上の温度条件が
必要である。
2. Description of the Related Art As a conventional SiC fiber reinforced metal matrix form, a foil form or a powder form is used. However, since TiAl intermetallic compound alloy is a brittle material as compared with a conventional metal, it is generally in the powder form. Is often used. In order to sinter or diffusion bond the powder or foil of the TiAl-based alloy, a temperature condition of 1250 ° C. or higher is required.

【0003】従来、SiC繊維とTiAl粉末を複合化
するには、前記温度条件で行うわけであるが、この温度
領域ではSiC繊維とTiAlマトリックスが界面で過
剰に反応し、極端な場合には繊維形態をとどめないほど
であり、SiC繊維の特性劣化が懸念される。図2に1
250℃の温度条件でHIP成形したSiC繊維/粉末
焼結TiAl複合材料の断面顕微鏡写真を示す。
Conventionally, the compounding of SiC fiber and TiAl powder is performed under the above-mentioned temperature conditions. In this temperature range, the SiC fiber and the TiAl matrix react excessively at the interface. Since the shape is not kept, there is a concern that the characteristics of the SiC fiber may deteriorate. 1 in FIG.
3 shows a cross-sectional micrograph of a SiC fiber / powder sintered TiAl composite material that has been HIP-molded at a temperature of 250 ° C.

【0004】SiC繊維(SCS−6、TEXTRON 社製)
の熱膨張率(CTE)は約2.3×10-6/℃であるの
に対して、TiAlマトリックスの熱膨張率(CTE)
は約11×10-6/℃であり、両者のCTEの間に大き
なミスマッチが存在する。このため、高温での複合化に
よって複合材料内部には大きな残留応力が発生すること
になるが、このときTiAlマトリックスには引張側の
残留応力(歪み)が発生する。また、粉末焼結したTi
Alマトリックスは脆性で、引張破断歪みは0.5%以
下であることが確認されている。
SiC fiber (SCS-6, manufactured by TEXTRON)
Has a coefficient of thermal expansion (CTE) of about 2.3 × 10 −6 / ° C., while the coefficient of thermal expansion (CTE) of the TiAl matrix is
Is about 11 × 10 −6 / ° C., and there is a large mismatch between both CTEs. Therefore, a large residual stress is generated inside the composite material due to the composite at a high temperature. At this time, a residual stress (strain) on the tensile side is generated in the TiAl matrix. Also, powder sintered Ti
It has been confirmed that the Al matrix is brittle and the tensile strain at break is 0.5% or less.

【0005】繊維の含有率Vfの高い複合材料では、熱
膨張率(CTE)のミスマッチが原因となって、外部応
力が無負荷の状態でも複合化による残留歪みが0.5%
を超えて、TiAlマトリックスにクラックが発生し、
完全な複合化が達成できない。
[0005] In a composite material having a high fiber content Vf, residual strain due to compounding is 0.5% even when no external stress is applied, due to a mismatch in the coefficient of thermal expansion (CTE).
Over, cracks occur in the TiAl matrix,
Complete compounding cannot be achieved.

【0006】発明者らの実験によると、このTiAlマ
トリックスにクラックが発生しないVfの最高値は約1
1%で、複合材料の室温での曲げ応力は270〜400
MPaであり、TiAl粉末焼結材の室温引張り強さの3
90MPaに比べて低い。
According to experiments by the inventors, the maximum value of Vf at which no crack occurs in this TiAl matrix is about 1
At 1%, the bending stress of the composite at room temperature is 270-400.
MPa, which is 3 at room temperature tensile strength of the TiAl powder sintered material.
Low compared to 90MPa.

【0007】一方、米国特許4847044号にはSi
C繊維とTiAlマトリックスの間に延性に富み、かつ
低温で粉末焼結または箔の拡散結合が可能な金属を挟ん
で複合化する方法が示されている。この方法では、Ti
Alマトリックスが塑性変形するのに必要な条件よりも
低温、低圧力条件下で柔らかいインサート金属が塑性変
形して、繊維層の繊維間の隙間を埋め、かつインサート
金属同士が拡散接合して複合化を達成するものである。
しかし、この方法を用いる場合には、SiC繊維、Ti
Alマトリックス以外にインサート金属を必要とし、複
合化後に繊維/マトリックス間に挟んだ金属を変質させ
るための熱処理の工程が必要であるとともに、熱処理
後、マトリックス組成の不均一性や組織の不均質などの
問題が予想される。
On the other hand, US Pat. No. 4,847,044 discloses Si
A method is described in which a composite material is sandwiched between a C fiber and a TiAl matrix with a metal having high ductility and capable of powder sintering or diffusion bonding of a foil at a low temperature. In this method, Ti
The soft insert metal is plastically deformed under conditions of lower temperature and lower pressure than the conditions required for the Al matrix to plastically deform, filling the gaps between the fibers of the fiber layer, and diffusion bonding between the insert metals to form a composite. Is to achieve.
However, when using this method, SiC fibers, TiC
In addition to the Al matrix, an insert metal is required, and a heat treatment step is required to alter the metal sandwiched between the fiber and the matrix after compounding, and after the heat treatment, the matrix composition becomes non-uniform or the structure becomes heterogeneous. The problem is expected.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明は、繊
維、マトリックス以外の材料を必要とせずに、過剰な界
面反応によるSiC繊維の特性劣化を抑制でき、且つ熱
膨張率(CTE)のミスマッチによるマトリックス・ク
ラックの発生を抑制することのできるSiC繊維強化T
iAl複合材料の製造方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION Therefore, the present invention can suppress the characteristic deterioration of the SiC fiber due to an excessive interfacial reaction without using any material other than the fiber and the matrix, and can provide a thermal expansion coefficient (CTE) mismatch. Fiber reinforced T that can suppress the occurrence of matrix cracks
It is intended to provide a method for manufacturing an iAl composite material.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明のSiC繊維強化TiAl複合材料の製造方法
は、超塑性特性(SPF特性)を有するTiAl基合金
箔の間にSiC繊維層を挟んで多数積層し、900〜1
100℃の温度条件で、真空中、加圧下にて前記TiA
l基合金箔を塑性変形させて、SiC繊維層の繊維間の
隙間を埋め、且つTiAl基合金箔同士を拡散接合して
複合化することを特徴とするものである。このSiC繊
維強化TiAl複合材料の製造方法に於いて、加圧下の
条件は、500kgf/cm2 以上の圧力を所定時間かけるも
のであることが好ましい。
A method for producing a SiC fiber-reinforced TiAl composite material of the present invention for solving the above-mentioned problems comprises a SiC fiber layer between TiAl-based alloy foils having superplastic characteristics (SPF characteristics). Multiple layers sandwiched between 900-1
The TiA under pressure in vacuum at a temperature of 100 ° C.
The l-based alloy foil is plastically deformed to fill the gaps between the fibers of the SiC fiber layer, and the TiAl-based alloy foils are diffusion-bonded to form a composite. In this method for producing a SiC fiber-reinforced TiAl composite material, the condition under pressure is preferably such that a pressure of 500 kgf / cm 2 or more is applied for a predetermined time.

【0010】本発明のSiC繊維強化TiAl複合材料
の製造方法において用いるTiAl基合金箔は、超塑性
特性(SPF特性)を有するもの、たとえばTiAlC
rの三元系で加工熱処理によって組織、構成相を制御し
た結果、約2%の室温延性を有する材料である。
The TiAl-based alloy foil used in the method for producing a SiC fiber-reinforced TiAl composite material of the present invention has superplastic characteristics (SPF characteristics), such as TiAlC.
As a result of controlling the structure and constituent phases by thermomechanical processing in the ternary system of r, the material has room temperature ductility of about 2%.

【0011】[0011]

【発明の実施の形態】上記のように本発明のSiC繊維
強化TiAl複合材料の製造方法は、SPF特性を有す
るTiAl基合金箔をマトリックスとして用い、SiC
繊維層をTiAl基合金箔の間に挟んで多数積層し、9
00〜1100℃の温度範囲で真空中加圧下にて前記T
iAl基合金箔を塑性変形させて、SiC繊維層の繊維
間の隙間を埋め、且つTiAl基合金箔同士を拡散接合
して複合化するのである。この時に使用するTiAl基
合金箔は、熱間加工プロセスを用いて組織の微細結晶化
処理を施すことにより超塑性特性を示すものである。中
でもβ相安定元素を添加した合金系で同様な加工熱処理
を施した場合では、γ結晶粒の粒界にβ相が析出するた
め、900〜1100℃の温度範囲においても超塑性特
性が得られる。その合金は、優れたSPF特性を加えて
約2%の室温延性も兼ね備えている。そこで従来のTi
Al粉末を固化したマトリックスの場合よりも200℃
以上低い温度でTiAl基合金のSPF特性が発現する
ことになり、複合化の課題である成型時の温度低減を可
能にし、TiAl/SiCの界面反応を抑制できる。さ
らに、インサート材を必要とせず、マトリックス自体の
変形を複合化に利用するため、インサート材を用いた場
合の熱処理の工程を必要とせず、組成の不均一性や組織
の不均質の問題もない。さらに、拡散接合部の長時間の
加圧力保持により十分な接合性を確保できる。また、室
温延性にも優れるためSiCとTiAlの熱膨張の違い
によって発生する残留応力によるマトリックスの破断を
防ぐ作用がある。以上述べた作用により、過剰な界面反
応によるSiC繊維の特性劣化を抑制でき、且つ熱膨張
率のミスマッチによるマトリックス・クラックの発生を
抑制することができるため、TiAl基合金とSiC繊
維との完全複合化が達成される。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the method for producing a SiC fiber-reinforced TiAl composite material of the present invention uses a TiAl-based alloy foil having SPF characteristics as a matrix, and a SiC
Multiple fiber layers are sandwiched between TiAl-based alloy foils,
The above T under pressure in vacuum in the temperature range of 00 to 1100 ° C.
The iAl-based alloy foil is plastically deformed to fill the gaps between the fibers of the SiC fiber layer, and the TiAl-based alloy foils are diffusion-bonded to form a composite. The TiAl-based alloy foil used at this time exhibits superplasticity characteristics by subjecting the structure to fine crystallization treatment using a hot working process. Above all, when a similar working heat treatment is applied to an alloy system to which a β-phase stable element is added, since a β-phase precipitates at a grain boundary of a γ crystal grain, superplastic properties can be obtained even in a temperature range of 900 to 1100 ° C. . The alloy combines excellent SPF properties with room temperature ductility of about 2%. Therefore, conventional Ti
200 ° C more than in the case of a matrix in which Al powder is solidified
Since the SPF characteristics of the TiAl-based alloy are exhibited at the above low temperature, it is possible to reduce the temperature at the time of molding, which is a problem of compounding, and it is possible to suppress the TiAl / SiC interface reaction. Furthermore, since the insert material is not required and the deformation of the matrix itself is used for compounding, there is no need for a heat treatment step when the insert material is used, and there is no problem of non-uniform composition or structure. . Further, a sufficient bonding property can be ensured by maintaining the pressing force of the diffusion bonding portion for a long time. Also, since it has excellent room temperature ductility, it has an action of preventing the matrix from breaking due to residual stress generated by the difference in thermal expansion between SiC and TiAl. With the above-described action, the characteristic deterioration of the SiC fiber due to the excessive interfacial reaction can be suppressed, and the occurrence of matrix cracks due to the mismatch of the coefficient of thermal expansion can be suppressed, so that the TiAl-based alloy and the SiC fiber can be completely combined. Is achieved.

【0012】また、上記のように200℃以上低い温度
での複合化が達成されるので、TiAl基合金箔の組織
変化が抑制でき、マトリックスが本来保有している約2
%の室温延性が損なわれず、マトリックス・クラックの
発生もなく、Vf=25%の複合材料が得られる。
Further, since the compounding is achieved at a temperature lower than 200 ° C. as described above, the structural change of the TiAl-based alloy foil can be suppressed, and the matrix originally possesses about 2%.
% Room temperature ductility is not impaired, matrix cracks are not generated, and a composite material with Vf = 25% is obtained.

【0013】[0013]

【実施例】本発明のSiC繊維強化TiAl複合材料の
製造方法の一実施例を説明する。超塑性特性(SPF特
性)を有するTi−45Al−5Cr(at%)合金を
厚さ150μmに加工した箔の間に、繊維径140μ
m,厚さ約230μmのSiC繊維層、即ち縦糸SiC
繊維(密度130本/25mmW ),横糸Ti−Nb合金
リボン(密度5本/25mmW )の平織のSiC繊維層
(SCS−6、TEXTRON 社製)を挟んで三回繰り返し積
層し、1050℃の温度条件でプレス圧力700kgf/cm
2 の負荷を真空中4時間かけて、前記Ti−45Al−
5Cr(at%)合金箔を塑性変形させて、SiC繊維
層の繊維間の隙間を埋め、且つ二枚のTi−45Al−
5Cr(at%)合金箔を拡散接合して複合化した。こ
の実施例に於いて、繊維径は140μmであるが、50
〜200μmの範囲内にあれば良い。その理由は、50
μm未満では一本の繊維を一定方向に引き揃えて一層の
繊維プリフォームを製作しにくくなり、200μmを超
えるとVfの制御、厚みの制御がしにくくなるからであ
る。また、上記実施例に於いて、温度条件は1050℃
であるが、900〜1100℃の範囲内にあればよい。
その理由は、900℃はマトリックスのSPFの下限温
度であり、900℃よりも低いと欠陥が発生し、110
0℃はSiCとTiAlの界面反応を抑制する上限温度
であり、1100℃を超えるとSiCとTiAlの界面
反応が著しく進行するからである。さらに、上記実施例
に於いて、加圧条件は700kgf/cm2 であるが、500
kgf/cm2 以上あれば良い。その理由は、500kgf/cm2
がマトリックスの塑性変形に必要な下限値であるからで
ある。また、上記実施例に於いて、加圧時間は4時間で
あるが、1〜8時間程度で良い。その理由は、1時間は
拡散接合に要する最小時間であり、8時間は界面反応が
著しく進行し始める時間であるからである。但し、時間
は温度,圧力に依存するため、この限りではない。例え
ば、900℃ならば8時間以上でも良く、1100℃な
らば4時間以内が限度となる。
An embodiment of the method for producing a SiC fiber reinforced TiAl composite material of the present invention will be described. A fiber diameter of 140 μm is formed between foils formed by processing a Ti-45Al-5Cr (at%) alloy having superplastic properties (SPF properties) to a thickness of 150 μm.
m, thickness of about 230 μm SiC fiber layer, that is, warp SiC
A plain weave SiC fiber layer (SCS-6, manufactured by TEXTRON Corporation) of fibers (density 130/25 mm W ) and weft Ti-Nb alloy ribbon (density 5/25 mm W ) is sandwiched and laminated three times, and 1050 ° C. Pressing pressure 700kgf / cm under the temperature condition
The load of 2 was applied in a vacuum for 4 hours to obtain the Ti-45Al-
The 5Cr (at%) alloy foil is plastically deformed to fill the gaps between the fibers of the SiC fiber layer, and two Ti-45Al-
A 5Cr (at%) alloy foil was diffusion bonded to form a composite. In this example, the fiber diameter is 140 μm, but 50
It suffices if it is in the range of 200 μm. The reason is 50
This is because if it is less than μm, it becomes difficult to fabricate a single fiber preform by aligning one fiber in a certain direction, and if it exceeds 200 μm, it becomes difficult to control Vf and thickness. In the above embodiment, the temperature condition is 1050 ° C.
However, it may be in the range of 900 to 1100 ° C.
The reason is that 900 ° C. is the lower limit temperature of the SPF of the matrix, and when the temperature is lower than 900 ° C., defects occur,
This is because 0 ° C. is the upper limit temperature that suppresses the interface reaction between SiC and TiAl, and if it exceeds 1100 ° C., the interface reaction between SiC and TiAl remarkably progresses. Further, in the above embodiment, the pressurizing condition is 700 kgf / cm 2 , but 500
It should be kgf / cm 2 or more. The reason is 500 kgf / cm 2
Is the lower limit required for plastic deformation of the matrix. In the above embodiment, the pressurizing time is 4 hours, but may be about 1 to 8 hours. The reason is that one hour is the minimum time required for the diffusion bonding, and eight hours is the time at which the interfacial reaction starts to progress remarkably. However, this is not the case because the time depends on the temperature and pressure. For example, if it is 900 ° C., it may be 8 hours or longer, and if it is 1100 ° C., it is limited to 4 hours or less.

【0014】こうして複合化したSiC繊維強化TiA
l複合材料は、界面反応層の厚みが約4μmであり、過
剰な界面反応が抑制されていた。また、拡散接合部は、
長時間のプレス圧力保持により十分な接合性を確保でき
た。さらに、Ti−45Al−5Cr(at%)合金の
組織変化が抑制され、マトリックスが本来保有している
約2%の室温延性が損なわれず、マトリックス・クラッ
クの発生もなく、Vf=25%の複合材料が得られた。
マトリックスに要求される室温延性は、残留歪みの緩和
分1%とSiC繊維の破断歪み1%の計2%以上あれ
ば、Vf=30%程度の複合化は可能であると事前予測
した結果と一致している。図1に本発明の製造方法によ
り製造したSiC繊維強化TiAl複合材料の断面顕微
鏡写真を示す。
The SiC fiber reinforced TiA thus composited
In the 1 composite material, the thickness of the interface reaction layer was about 4 μm, and excessive interface reaction was suppressed. Also, the diffusion joint is
Sufficient bondability was secured by holding the press pressure for a long time. Further, the structural change of the Ti-45Al-5Cr (at%) alloy is suppressed, the room temperature ductility of about 2% originally held by the matrix is not impaired, no matrix cracks are generated, and the composite of Vf = 25% is not generated. The material was obtained.
The room-temperature ductility required for the matrix was predicted in advance assuming that a composite of about Vf = 30% is possible if the relaxation of residual strain is 1% and the breaking strain of SiC fiber is 1%, a total of 2% or more. Match. FIG. 1 shows a cross-sectional micrograph of a SiC fiber reinforced TiAl composite material produced by the production method of the present invention.

【0015】また、このSiC繊維強化TiAl複合材
料に対して、室温での引張試験を行った結果、破断強さ
約750MPaの優れたデータが得られた。この値は、T
iAl粉末焼結材の室温引張り強さ390MPaの約2倍
の強度に匹敵する。
As a result of performing a tensile test at room temperature on this SiC fiber reinforced TiAl composite material, excellent data of a breaking strength of about 750 MPa was obtained. This value is T
The room temperature tensile strength of the iAl powder sintered material is about twice the strength of 390 MPa.

【0016】尚、従来の研究例における室温引張強さ
は、240MPaが本系の唯一のデータである〔先行技術
文献として、第4回超耐環境性先進材料シンポジウム講
演集(平成5年6月1日発行)の第325 頁〜第334 頁に
記載のV−11.SiC(CVD)/TiAl複合材料
の製造技術がある〕。
Regarding the room temperature tensile strength in the conventional research example, 240 MPa is the only data of this system [as a prior art document, the 4th super environment resistant advanced material symposium lecture collection (June 1993) (Issued on the 1st), pages 325 to 334, V-11. There is a manufacturing technology of SiC (CVD) / TiAl composite material].

【0017】この場合の複合素材の組み合わせは、Hf
被覆のSiC繊維にTi−48Al(本当は46Alで
あると思われるが、文献に48Alと記載されてい
る。)−2Cr−2Nb(at%)粉末を溶射してプリ
フォーム化したものを用いており、1100℃の温度条
件でHIP成形して得られた複合材料(後述の表1の従
来例1)のVfは10〜15%程度であると推測される
が、整列性が悪く、十分な複合化が達成できているとは
判断できない。
In this case, the combination of the composite materials is Hf
Ti-48Al (it seems to be 46Al in reality, but is described as 48Al in the literature) is coated on the SiC fiber of the coating and used as a preform formed by thermal spraying a 2Cr-2Nb (at%) powder. The Vf of the composite material obtained by HIP molding under the temperature condition of 1100 ° C. (conventional example 1 in Table 1 to be described later) is estimated to be about 10 to 15%. It cannot be determined that the conversion has been achieved.

【0018】下記の表1に各種のTi−Al金属間化合
物基複合材料の室温引張特性を示す。従来例2は、Wワ
イヤー(線径100μm)にTiAl粉末を溶射してプ
リフォームしたものをHIP成形して得られた複合材料
である。
Table 1 below shows room temperature tensile properties of various Ti-Al intermetallic compound matrix composite materials. Conventional example 2 is a composite material obtained by performing HIP molding on a preform formed by spraying TiAl powder on a W wire (wire diameter 100 μm).

【0019】[0019]

【表1】 [Table 1]

【0020】上記の表1で明らかなように実施例1のS
iC繊維強化TiAl複合材料は、従来例1,2のSi
C繊維/TiAl粉末焼結複合材に比べ、Vfが高く、
引張り強さ、引張弾性率も高く、室温引張強さに優れて
いることが判る。従来例3は、本発明に用いたマトリッ
クスの室温引張特性である。
As is clear from Table 1 above, S in Example 1
The iC fiber reinforced TiAl composite material is the SiC of the first and second conventional examples.
Vf is higher than C fiber / TiAl powder sintered composite,
It can be seen that the tensile strength and tensile modulus are high and the tensile strength at room temperature is excellent. Conventional Example 3 shows the room-temperature tensile properties of the matrix used in the present invention.

【0021】[0021]

【発明の効果】以上の説明で判るように本発明のSiC
繊維強化TiAl複合材料の製造方法によれば、過剰な
界面反応によるSiC繊維の特性劣化を抑制でき、且つ
熱膨張率(CTE)のミスマッチによるTiAlマトリ
ックスのクラックの発生を抑制でき、Vfが高く、室温
引張強さに優れ、しかも密度が低くて軽量で高強度,耐
熱性に優れた複合材料が得られ、航空機用ガスタービン
エンジンの圧縮機,タービン部品の素材として極めて有
用で、将来の超音速輸送機用の耐熱機体材料としても期
待されるものである。
As can be seen from the above description, the SiC of the present invention
According to the method for producing a fiber-reinforced TiAl composite material, it is possible to suppress the characteristic deterioration of the SiC fiber due to an excessive interfacial reaction, and it is possible to suppress the occurrence of cracks in the TiAl matrix due to the mismatch of the coefficient of thermal expansion (CTE), and the Vf is high, A composite material with excellent tensile strength at room temperature, low density, light weight, high strength and excellent heat resistance is obtained, which is extremely useful as a material for compressors and turbine parts of gas turbine engines for aircraft. It is also expected as a heat-resistant body material for transport aircraft.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法により得られたSiC繊維強
化TiAl複合材料の断面顕微鏡写真を示す。
FIG. 1 shows a cross-sectional micrograph of a SiC fiber reinforced TiAl composite material obtained by a production method of the present invention.

【図2】従来の製造方法により得られたSiC繊維/粉
末焼結TiAl複合材料の断面顕微鏡写真を示す。
FIG. 2 shows a cross-sectional micrograph of a SiC fiber / powder sintered TiAl composite material obtained by a conventional manufacturing method.

フロントページの続き (72)発明者 中谷 浩 岐阜県各務原市川崎町1番地 川崎重工業 株式会社岐阜工場内 (72)発明者 島田 幸雄 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 水原 洋治 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部先端技術研究 所内 (72)発明者 橋本 敬三 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部先端技術研究 所内(72) Inventor Hiroshi Nakatani 1 Kawasaki-cho, Kakamigahara-shi, Gifu Kawasaki Heavy Industries, Ltd. Gifu Factory Co., Ltd. (72) Inventor Yukio Shimada 1-1 Kawasaki-cho, Akashi City, Hyogo Kawasaki Heavy Industries Ltd. Akashi Factory (72) Inventor Yoji Mizuhara 1618, Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Corporation Advanced Technology Research Center (72) Inventor Keizo Hashimoto 1618, Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Steel Technology Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超塑性特性を有するTiAl基合金箔の
間にSiC繊維層を挟んで多数積層し、900〜110
0℃の温度条件で、真空中、加圧下にて前記TiAl基
合金箔を塑性変形させて、SiC繊維層の繊維間の隙間
に埋め、且つTiAl基合金箔同士を拡散接合して複合
化することを特徴とするSiC繊維強化TiAl複合材
料の製造方法。
1. A plurality of SiC fiber layers are sandwiched between TiAl-based alloy foils having superplastic properties, and 900 to 110 are laminated.
The TiAl-based alloy foil is plastically deformed under pressure in a vacuum at a temperature of 0 ° C. to fill the gaps between the fibers of the SiC fiber layer, and the TiAl-based alloy foils are diffusion-bonded to form a composite. A method for producing a SiC fiber reinforced TiAl composite material, comprising:
【請求項2】 請求項1記載のSiC繊維強化TiAl
複合材料の製造方法に於いて、加圧下の条件が、500
kgf/cm2 以上の圧力を所定時間かけるものであることを
特徴とするSiC繊維強化TiAl複合材料の製造方
法。
2. The SiC fiber reinforced TiAl according to claim 1.
In the manufacturing method of the composite material, the condition under pressure is 500
A method for producing a SiC fiber reinforced TiAl composite material, which comprises applying a pressure of kgf / cm 2 or more for a predetermined time.
JP7209991A 1995-07-26 1995-07-26 Method for producing SiC fiber reinforced TiAl composite material Expired - Fee Related JP2784161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7209991A JP2784161B2 (en) 1995-07-26 1995-07-26 Method for producing SiC fiber reinforced TiAl composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7209991A JP2784161B2 (en) 1995-07-26 1995-07-26 Method for producing SiC fiber reinforced TiAl composite material

Publications (2)

Publication Number Publication Date
JPH0941053A true JPH0941053A (en) 1997-02-10
JP2784161B2 JP2784161B2 (en) 1998-08-06

Family

ID=16582053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7209991A Expired - Fee Related JP2784161B2 (en) 1995-07-26 1995-07-26 Method for producing SiC fiber reinforced TiAl composite material

Country Status (1)

Country Link
JP (1) JP2784161B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744928A (en) * 2012-07-25 2012-10-24 哈尔滨工业大学 Preparation method for Ti3Al-TiAl laminated composite material
JP2017043518A (en) * 2015-08-27 2017-03-02 国立研究開発法人物質・材料研究機構 SiC FIBER-CONTAINING HYBRID COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME
CN111270234A (en) * 2020-03-10 2020-06-12 昆明理工大学 Method for preparing titanium-aluminum enhanced coating on surface of titanium alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288731A (en) * 1988-09-20 1990-03-28 General Electric Co <Ge> Silicon carbide reinforced composite of titanium aluminate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288731A (en) * 1988-09-20 1990-03-28 General Electric Co <Ge> Silicon carbide reinforced composite of titanium aluminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744928A (en) * 2012-07-25 2012-10-24 哈尔滨工业大学 Preparation method for Ti3Al-TiAl laminated composite material
JP2017043518A (en) * 2015-08-27 2017-03-02 国立研究開発法人物質・材料研究機構 SiC FIBER-CONTAINING HYBRID COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME
CN111270234A (en) * 2020-03-10 2020-06-12 昆明理工大学 Method for preparing titanium-aluminum enhanced coating on surface of titanium alloy
CN111270234B (en) * 2020-03-10 2022-04-19 昆明理工大学 Method for preparing titanium-aluminum enhanced coating on surface of titanium alloy

Also Published As

Publication number Publication date
JP2784161B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
JP5550245B2 (en) Method for manufacturing metal-ceramic matrix hybrid composite structure, method for manufacturing composite structure, and laminated composite structure
US4847044A (en) Method of fabricating a metal aluminide composite
JP5200283B2 (en) Brazed joint between titanium-based metal piece and silicon carbide (SiC) and / or carbon-based ceramic piece
US4816347A (en) Hybrid titanium alloy matrix composites
US4469757A (en) Structural metal matrix composite and method for making same
US5260137A (en) Infiltrated fiber-reinforced metallic and intermetallic alloy matrix composites
US4896815A (en) Method for forming titanium aluminide-ductile titanium aluminum alloy matrix composites
US5425494A (en) Method for forming infiltrated fiber-reinforced metallic and intermetallic alloy matrix composites
US4893743A (en) Method to produce superplastically formed titanium aluminide components
WO1996009266A1 (en) Bonded body of aluminum and silicon nitride and production method thereof
US4733816A (en) Method to produce metal matrix composite articles from alpha-beta titanium alloys
US4293619A (en) Silicon-nitride and metal composite
US5326525A (en) Consolidation of fiber materials with particulate metal aluminide alloys
US5104460A (en) Method to manufacture titanium aluminide matrix composites
Metcalfe Fibre Reinforced Titanium Alloys
JP2784161B2 (en) Method for producing SiC fiber reinforced TiAl composite material
US5261940A (en) Beta titanium alloy metal matrix composites
US5403411A (en) Method for increasing the fracture resistance of titanium composites
WO2004052573A1 (en) Composite material member and method for producing the same
JP2803111B2 (en) Ceramic joining method
JP3504716B2 (en) Ceramic bonded body with stress buffer metal layer
JPH06508794A (en) Superplastic deformation of diffusion bonded aluminum structures
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
US5508115A (en) Ductile titanium alloy matrix fiber reinforced composites
US5578148A (en) Method to produce high temperature oxidation resistant metal matrix composites by fiber diameter grading

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980428

LAPS Cancellation because of no payment of annual fees