JP2784161B2 - Method for producing SiC fiber reinforced TiAl composite material - Google Patents

Method for producing SiC fiber reinforced TiAl composite material

Info

Publication number
JP2784161B2
JP2784161B2 JP7209991A JP20999195A JP2784161B2 JP 2784161 B2 JP2784161 B2 JP 2784161B2 JP 7209991 A JP7209991 A JP 7209991A JP 20999195 A JP20999195 A JP 20999195A JP 2784161 B2 JP2784161 B2 JP 2784161B2
Authority
JP
Japan
Prior art keywords
tial
composite material
sic fiber
matrix
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7209991A
Other languages
Japanese (ja)
Other versions
JPH0941053A (en
Inventor
守 伊牟田
浩 中谷
幸雄 島田
洋治 水原
敬三 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Kawasaki Motors Ltd
Original Assignee
Nippon Steel Corp
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Kawasaki Jukogyo KK filed Critical Nippon Steel Corp
Priority to JP7209991A priority Critical patent/JP2784161B2/en
Publication of JPH0941053A publication Critical patent/JPH0941053A/en
Application granted granted Critical
Publication of JP2784161B2 publication Critical patent/JP2784161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、航空機用ガスター
ビンエンジンの圧縮機、タービン部品として適用でき、
また軽量化が必須条件となる超音速輸送機用の耐熱機体
材料としての適用が期待されるSiC繊維強化TiAl
複合材料の製造方法に関する。
The present invention is applicable to compressors and turbine parts of aircraft gas turbine engines.
Also, SiC fiber reinforced TiAl is expected to be used as a heat-resistant airframe material for supersonic transports where weight reduction is an essential condition.
The present invention relates to a method for producing a composite material.

【0002】[0002]

【従来の技術】従来のSiC繊維強化金属のマトリック
スの形態としては、箔形態、または粉末形態を用いる
が、金属間化合物TiAl基合金は従来の金属に比べ脆
性な材料であるため、一般的に粉末形態を用いることが
多い。この金属間化合物TiAl基合金の粉末を焼結す
ためには、1250℃以上の温度条件が必要である。
2. Description of the Related Art A conventional SiC fiber reinforced metal matrix is formed in a foil form or a powder form. However, since an intermetallic compound TiAl-based alloy is a brittle material compared to a conventional metal, it is generally used. Often a powder form is used. Sintering the powder of this intermetallic compound TiAl-based alloy
For that, it is necessary to temperature above 1250 ° C..

【0003】従来、SiC繊維とTiAl粉末を複合化
するには、前記温度条件で行うわけであるが、この温度
領域ではSiC繊維とTiAlマトリックスが界面で過
剰に反応し、極端な場合には繊維形態をとどめないほど
であり、SiC繊維の特性劣化が懸念される。図2に1
250℃の温度条件でHIP成形したSiC繊維/粉末
焼結TiAl複合材料の断面顕微鏡写真を示す。
Conventionally, the compounding of SiC fiber and TiAl powder is performed under the above-mentioned temperature conditions. In this temperature range, the SiC fiber and the TiAl matrix react excessively at the interface. Since the shape is not kept, there is a concern that the characteristics of the SiC fiber may deteriorate. 2 in FIG.
3 shows a cross-sectional micrograph of a SiC fiber / powder sintered TiAl composite material that has been HIP-molded at a temperature of 250 ° C.

【0004】SiC繊維(SCS−6 TEXTRON
社製)の熱膨張率(CTE)は約2.3×10−6/℃
であるのに対して、TiAlマトリックスの熱膨張率
(CTE)は約11×10−6/℃であり、両者のCT
Eの間に大きなミスマッチが存在する。このため、高温
での複合化によって複合材料内部には大きな残留応力が
発生することになるが、このときTiAlマトリックス
には引張側の残留応力(歪み)が発生する。また、粉末
焼結したTiAlマトリックスは脆性で、引張破断歪み
は0.5%以下であることが確認されている。
[0004] SiC fiber (SCS-6 TEXTRON)
Co., Ltd.) has a coefficient of thermal expansion (CTE) of about 2.3 × 10 −6 / ° C.
Whereas the coefficient of thermal expansion (CTE) of the TiAl matrix is about 11 × 10 −6 / ° C.
There is a large mismatch between E. Therefore, a large residual stress is generated inside the composite material due to the composite at a high temperature. At this time, a residual stress (strain) on the tensile side is generated in the TiAl matrix. It has also been confirmed that the powder-sintered TiAl matrix is brittle, and the tensile strain at break is 0.5% or less.

【0005】繊維の含有率Vfの高い複合材料では、熱
膨張率(CTE)のミスマッチが原因となって、外部応
力が無負荷の状態でも複合化による残留歪みが0.5%
を超えて、TiAlマトリックスにクラックが発生し、
完全な複合化が達成できない。
[0005] In a composite material having a high fiber content Vf, residual strain due to compounding is 0.5% even when no external stress is applied, due to a mismatch in the coefficient of thermal expansion (CTE).
Over, cracks occur in the TiAl matrix,
Complete compounding cannot be achieved.

【0006】発明者らの実験によると、このTiAlマ
トリックスにクラックが発生しないVfの最高値は約1
1%で、複合材料の室温での曲げ応力は270〜400
MPaであり、TiAl粉末焼結材の室温引張り強さの
390MPaに比べて低い。
According to experiments by the inventors, the maximum value of Vf at which no crack occurs in this TiAl matrix is about 1
At 1%, the bending stress of the composite at room temperature is 270-400.
MPa, which is lower than the room temperature tensile strength of the TiAl powder sintered material of 390 MPa.

【0007】一方、米国特許4847044号にはSi
C繊維とTiAlマトリックスの間に延性に富み、かつ
低温で粉末焼結または箔の拡散結合が可能な金属を挟ん
で複合化する方法が示されている。この方法では、Ti
Alマトリックスが塑性変形するのに必要な条件よりも
低温、低圧力条件下で柔らかいインサート金属が塑性変
形して、繊維層の繊維間の隙間を埋め、かつインサート
金属同士が拡散接合して複合化を達成するものである。
しかし、この方法を用いる場合には、SiC繊維、Ti
Alマトリックス以外にインサート金属を必要とし、複
合化後に繊維/マトリックス間に挟んだ金属を変質させ
るための熱処理の工程が必要であるとともに、熱処理
後、マトリックス組成の不均一性や組織の不均質などの
問題が予想される。
On the other hand, US Pat. No. 4,847,044 discloses Si
A method is described in which a composite material is sandwiched between a C fiber and a TiAl matrix with a metal having high ductility and capable of powder sintering or diffusion bonding of a foil at a low temperature. In this method, Ti
The soft insert metal is plastically deformed under conditions of lower temperature and lower pressure than the conditions required for the Al matrix to plastically deform, filling the gaps between the fibers of the fiber layer, and diffusion bonding between the insert metals to form a composite. Is to achieve.
However, when using this method, SiC fibers, TiC
In addition to the Al matrix, an insert metal is required, and a heat treatment step is required to alter the metal sandwiched between the fiber and the matrix after compounding, and after the heat treatment, the matrix composition becomes non-uniform or the structure becomes heterogeneous. The problem is expected.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明は、繊
維、マトリックス以外の材料を必要とせずに、過剰な界
面反応によるSiC繊維の特性劣化を抑制でき、且つ熱
膨張率(CTE)のミスマッチによるマトリックス・ク
ラックの発生を抑制することのできるSiC繊維強化T
iAl複合材料の製造方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION Therefore, the present invention can suppress the characteristic deterioration of the SiC fiber due to an excessive interfacial reaction without using any material other than the fiber and the matrix, and can provide a thermal expansion coefficient (CTE) mismatch. Fiber reinforced T that can suppress the occurrence of matrix cracks
It is intended to provide a method for manufacturing an iAl composite material.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明のSiC繊維強化TiAl複合材料の製造方法
は、超塑性特性(SPF特性)を有する金属間化合物
iAl基合金箔の間にSiC繊維層を挟んで多数積層
し、900〜1100℃の温度条件で、真空中、加圧下
にて前記金属間化合物TiAl基合金箔を塑性変形させ
て、SiC繊維層の繊維間の隙間を埋め、且つ金属間化
合物TiAl基合金箔同士を拡散接合して複合化するこ
とを特徴とするものである。このSiC繊維強化TiA
l複合材料の製造方法に於いて、加圧下の条件は、50
0kgf/cm以上の圧力を所定時間かけるものであ
ることが好ましい。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a method for producing a SiC fiber-reinforced TiAl composite material according to the present invention comprises an intermetallic compound T having superplastic characteristics (SPF characteristics).
A large number of SiC fiber layers are interposed between iAl-based alloy foils, and the intermetallic compound TiAl-based alloy foil is plastically deformed under vacuum and pressure at a temperature of 900 to 1100 ° C. to form a SiC fiber layer. Fill gaps between fibers and metallize
The composite TiAl-based alloy foils are combined by diffusion bonding. This SiC fiber reinforced TiA
l In the method of manufacturing a composite material, the condition under pressure is 50
Preferably, a pressure of 0 kgf / cm 2 or more is applied for a predetermined time.

【0010】本発明のSiC繊維強化TiAl複合材料
の製造方法において用いる金属間化合物TiAl基合金
箔は、超塑性特性(SPF特性)を有するもの、たとえ
金属間化合物TiAl−Crの三元系で加工熱処理に
よって組織、構成相を制御した結果、約2%の室温延性
を有する材料である。
The intermetallic compound TiAl-based alloy foil used in the method for producing a SiC fiber reinforced TiAl composite material of the present invention has a superplastic characteristic (SPF characteristic), such as a ternary system of the intermetallic compound TiAl-Cr. The material has a room temperature ductility of about 2% as a result of controlling the structure and constituent phases by thermomechanical treatment.

【0011】[0011]

【発明の実施の形態】上記のように本発明のSiC繊維
強化TiAl複合材料の製造方法は、SPF特性を有す
金属間化合物TiAl基合金箔をマトリックスとして
用い、SiC繊維層を金属間化合物TiAl基合金箔の
間に挟んで多数積層し、900〜1100℃の温度範囲
で真空中加圧下にて前記金属間化合物TiAl基合金箔
を塑性変形させて、SiC繊維層の繊維間の隙間を埋
め、且つ金属間化合物TiAl基合金箔同士を拡散接合
して複合化するのである。この時に使用する金属間化合
TiAl基合金箔は、熱間加工プロセスを用いて組織
の微細結晶化処理を施すことにより超塑性特性を示すも
のである。中でもβ相安定元素を添加した合金系で同様
な加工熱処理を施した場合では、γ結晶粒の粒界にβ相
が析出するため、900〜1100℃の温度範囲におい
ても超塑性特性が得られる。その合金は、優れたSPF
特性加えて約2%の室温延性も兼ね備えている。そこ
で従来のTiAl粉末を固化したマトリックスの場合よ
りも200℃以上低い温度で金属間化合物TiAl基合
金のSPF特性が発現することになり、複合化の課題で
ある成型時の温度低減を可能にし、TiAl/SiCの
界面反応を抑制できる。さらに、インサート材を必要と
せず、マトリックス自体の変形を複合化に利用するた
め、インサート材を用いた場合の熱処理の工程を必要と
せず、組成の不均一性や組織の不均質の問題もない。さ
らに、拡散接合部の長時間の加圧力保持により十分な接
合性を確保できる。また、室温延性にも優れるためSi
CとTiAlの熱膨張率のミスマッチによって発生する
残留応力によるマトリックスの破断を防ぐ作用がある。
以上述べた作用により、過剰な界面反応によるSiC繊
維の特性劣化を抑制でき、且つ熱膨張率のミスマッチに
よるマトリックス・クラックの発生を抑制することがで
きるため、金属間化合物TiAl基合金とSiC繊維と
の完全複合化が達成される。
DETAILED DESCRIPTION OF THE INVENTION As described above, the method for producing a SiC fiber-reinforced TiAl composite material of the present invention uses an intermetallic compound TiAl-based alloy foil having SPF characteristics as a matrix, and forms an SiC fiber layer on an intermetallic compound TiAl-based material. Many layers are sandwiched between alloy foils, and the intermetallic compound TiAl-based alloy foil is plastically deformed under pressure in a vacuum at a temperature range of 900 to 1100 ° C. to fill gaps between fibers of the SiC fiber layer, In addition, the intermetallic compound TiAl-based alloy foils are diffused and bonded to form a composite. The intermetallic compound used at this time
The product TiAl-based alloy foil exhibits superplastic properties by subjecting the structure to fine crystallization using a hot working process. Above all, when a similar working heat treatment is applied to an alloy system to which a β-phase stable element is added, since a β-phase precipitates at a grain boundary of a γ crystal grain, superplastic properties can be obtained even in a temperature range of 900 to 1100 ° C. . The alloy is an excellent SPF
It has about 2% room temperature ductility in addition to its properties. Therefore, the SPF characteristics of the intermetallic compound TiAl-based alloy will be exhibited at a temperature 200 ° C. or more lower than the case of the matrix obtained by solidifying the conventional TiAl powder, and the temperature reduction during molding, which is a problem of compounding, is enabled. The interface reaction of TiAl / SiC can be suppressed. Furthermore, since the insert material is not required and the deformation of the matrix itself is used for compounding, there is no need for a heat treatment step when the insert material is used, and there is no problem of non-uniform composition or structure. . Further, a sufficient bonding property can be ensured by maintaining the pressing force of the diffusion bonding portion for a long time. In addition, because of its excellent ductility at room temperature, Si
This has the effect of preventing matrix breakage due to residual stress generated due to a mismatch in the coefficient of thermal expansion between C and TiAl.
By the action described above, can suppress deterioration of characteristics of the SiC fiber due to excessive interfacial reactions, since and it is possible to suppress the generation of the matrix cracking due to a mismatch in thermal expansion coefficient, and the SiC fibers intermetallic compound TiAl-based alloys Is achieved.

【0012】また、上記のように200℃以上低い温度
での複合化が達成されるので、金属間化合物TiAl基
合金箔の組織変化が抑制でき、マトリックスが本来保有
している約2%の室温延性が損なわれず、マトリックス
・クラックの発生もなく、Vf=25%の複合材料が得
られる。
[0012] Further, since the composite at a temperature lower than 200 ° C is achieved as described above, the change in the structure of the intermetallic compound TiAl-based alloy foil can be suppressed, and the room temperature of about 2% originally held by the matrix is maintained. A composite material having Vf = 25% is obtained without impairing ductility and without generation of matrix cracks.

【0013】[0013]

【実施例】本発明のSiC繊維強化TiAl複合材料の
製造方法の一実施例を説明する。超塑性特性(SPF特
性)を有するTi−45Al−5Cr(at%)合金を
厚さ150μmに加工した箔の間に、繊維径140μ
m、厚さ約230μmのSiC繊維層、即ち縦糸SiC
繊維(密度130本/25mm)、横糸Ti−Nb合
金リボン(密度5本/25mm)の平織のSiC繊維
層(SCS−6、TEXTRON社製)を挟んで三回繰
り返し積層し、1050℃の温度条件でプレス圧力70
0kgf/cmの負荷を真空中4時間かけて、前記T
i−45Al−5Cr(at%)合金箔を塑性変形させ
て、SiC繊維層の繊維間の隙間を埋め、且つ二枚のT
i−45Al−5Cr(at%)合金箔を拡散接合して
複合化した。この実施例に於いて、繊維径は140μm
であるが、50〜200μmの範囲内にあれば良い。そ
の理由は、50μm未満では一本の繊維を一定方向に引
き揃えて一層の繊維プリフォームを製作しにくくなり、
200μmを超えるとVfの制御、厚みの制御がしにく
くなるからである。また、上記実施例に於いて、温度条
件は1050℃であるが、900〜1100℃の範囲内
にあればよい。その理由は、900℃はマトリックスの
SPFの下限温度であり、900℃よりも低いと欠陥が
発生し、1100℃はSiCとTiAlの界面反応を抑
制する上限温度であり、1100℃を超えるとSiCと
TiAlの界面反応が著しく進行するからである。さら
に、上記実施例に於いて、加圧条件は700kgf/c
であるが、500kgf/cm以上あれば良い。
その理由は、500kgf/cmがマトリックスの塑
性変形に必要な下限値であるからである。また、上記実
施例に於いて、加圧時間は4時間であるが、1〜8時間
程度で良い。その理由は、1時間は拡散接合に要する最
小時間であり、8時間は界面反応が著しく進行し始める
時間であるからである。但し、時間は温度、圧力に依存
するため、この限りではない。例えば、900℃ならば
8時間以上でも良く、1100℃ならば4時間以内が限
度となる。
An embodiment of the method for producing a SiC fiber reinforced TiAl composite material of the present invention will be described. A fiber diameter of 140 μm is formed between foils formed by processing a Ti-45Al-5Cr (at%) alloy having superplastic properties (SPF properties) to a thickness of 150 μm.
m, about 230 μm thick SiC fiber layer, ie, warp SiC
A plain weave SiC fiber layer (SCS-6, manufactured by TEXTRON) of fibers (density of 130/25 mm W ) and weft Ti-Nb alloy ribbon (density of 5/25 mm W ) is repeatedly laminated three times at 1050 ° C. Press pressure 70
0 kgf / cm 2 under vacuum for 4 hours,
The i-45Al-5Cr (at%) alloy foil is plastically deformed to fill the gap between the fibers of the SiC fiber layer, and the two T
An i-45Al-5Cr (at%) alloy foil was composited by diffusion bonding. In this example, the fiber diameter is 140 μm
However, it suffices if it is within the range of 50 to 200 μm. The reason is that if it is less than 50 μm, it becomes difficult to fabricate one fiber preform by aligning one fiber in a certain direction,
If the thickness exceeds 200 μm, it becomes difficult to control Vf and control the thickness. In the above embodiment, the temperature condition is 1050 ° C., but may be in the range of 900 to 1100 ° C. The reason is that 900 ° C. is the lower limit temperature of the SPF of the matrix, if it is lower than 900 ° C., defects occur, 1100 ° C. is the upper limit temperature for suppressing the interface reaction between SiC and TiAl, and This is because the interface reaction between Ti and TiAl proceeds significantly. Further, in the above embodiment, the pressurizing condition is 700 kgf / c.
m 2 , but may be 500 kgf / cm 2 or more.
The reason is that 500 kgf / cm 2 is the lower limit required for the plastic deformation of the matrix. In the above embodiment, the pressurizing time is 4 hours, but may be about 1 to 8 hours. The reason is that one hour is the minimum time required for the diffusion bonding, and eight hours is the time at which the interfacial reaction starts to progress remarkably. However, the time is not limited because it depends on the temperature and the pressure. For example, at 900 ° C., the time may be 8 hours or more, and at 1100 ° C., the time is within 4 hours.

【0014】こうして複合化したSiC繊維強化TiA
l複合材料は、界面反応層の厚みが約4μmであり、過
剰な界面反応が抑制されていた。また、拡散接合部は、
長時間のプレス圧力保持により十分な接合性を確保でき
た。さらに、Ti−45Al−5Cr(at%)合金の
組織変化が抑制され、マトリックスが本来保有している
約2%の室温延性が損なわれず、マトリックス・クラッ
クの発生もなく、Vf=25%の複合材料が得られた。
マトリックスに要求される室温延性は、残留歪みの緩和
分1%とSiC繊維の破断歪み1%の計2%以上あれ
ば、Vf=30%程度の複合化は可能であると事前予測
した結果と一致している。図1に本発明の製造方法によ
り製造したSiC繊維強化TiAl複合材料の断面顕微
鏡写真を示す。
The SiC fiber reinforced TiA thus composited
In the 1 composite material, the thickness of the interface reaction layer was about 4 μm, and excessive interface reaction was suppressed. Also, the diffusion joint is
Sufficient bondability was secured by holding the press pressure for a long time. Further, the structural change of the Ti-45Al-5Cr (at%) alloy is suppressed, the room temperature ductility of about 2% originally held by the matrix is not impaired, no matrix cracks are generated, and the composite of Vf = 25% is not generated. The material was obtained.
The room-temperature ductility required for the matrix was predicted in advance assuming that a composite of about Vf = 30% is possible if the relaxation of residual strain is 1% and the breaking strain of SiC fiber is 1%, a total of 2% or more. Match. FIG. 1 shows a cross-sectional micrograph of a SiC fiber reinforced TiAl composite material produced by the production method of the present invention.

【0015】また、このSiC繊維強化TiAl複合材
料に対して、室温での引張試験を行った結果、破断強さ
約750MPaの優れたデータが得られた。この値は、
TiAl粉末焼結材の室温引張り強さ390MPaの約
2倍の強度に匹敵する。
Further, as a result of performing a tensile test at room temperature on the SiC fiber reinforced TiAl composite material, excellent data having a breaking strength of about 750 MPa was obtained. This value is
This is equivalent to about twice the room temperature tensile strength of 390 MPa of the TiAl powder sintered material.

【0016】尚、従来の研究例における室温引張強さ
は、240MPaが本系の唯一のデータである〔先行技
術文献として、第4回超耐環境性先進材料シンポジウム
講演集(平成5年6月1日発行)の第325頁〜第33
4頁に記載のV−11.SiC(CVD)/TiAl複
合材料の製造技術がある。〕
As for the tensile strength at room temperature in the conventional research examples, 240 MPa is the only data of the present system. [As a prior art document, the 4th Symposium on Advanced Environmentally Resistant Advanced Materials (June 1993) 325-33
V-11. Described on page 4. There is a manufacturing technique of SiC (CVD) / TiAl composite material. ]

【0017】この場合の複合素材の組み合わせは、Hf
被覆のSiC繊維にTi−48Al(本当は46Alで
あると思われるが、文献に48Alと記載されてい
る。)−2Cr−2Nb(at%)粉末を溶射してプリ
フォーム化したものを用いており、1100℃の温度条
件でHIP成形して得られた複合材料(後述の表1の従
来例1)のVfは10〜15%程度であると推測される
が、整列性が悪く、十分な複合化が達成できているとは
判断できない。
In this case, the combination of the composite materials is Hf
Ti-48Al (it seems to be 46Al in reality, but is described as 48Al in the literature) is coated on the SiC fiber of the coating and used as a preform formed by thermal spraying a 2Cr-2Nb (at%) powder. The Vf of the composite material obtained by HIP molding under the temperature condition of 1100 ° C. (conventional example 1 in Table 1 to be described later) is estimated to be about 10 to 15%. It cannot be determined that the conversion has been achieved.

【0018】下記の表1に各種の繊維強化TiAl複合
材料の室温引張特性を示す。従来例2は、Wワイヤー
(線径100μm)にTiAl粉末を溶射してプリフォ
ームしたものをHIP成形して得られた複合材料であ
る。
Table 1 below shows the room temperature tensile properties of various fiber reinforced TiAl composite materials. Conventional example 2 is a composite material obtained by performing HIP molding on a preform formed by spraying TiAl powder on a W wire (wire diameter 100 μm).

【0019】[0019]

【表1】 [Table 1]

【0020】上記の表1で明らかなように実施例1のS
iC繊維強化TiAl複合材料は、従来例1,2のSi
C繊維/TiAl粉末焼結複合材に比べ、Vfが高く、
引張り強さ、引張弾性率も高く、室温引張強さに優れて
いることが判る。従来例3は、本発明に用いたマトリッ
クスの室温引張特性である。
As is clear from Table 1 above, S in Example 1
The iC fiber reinforced TiAl composite material is the SiC of the first and second conventional examples.
Vf is higher than C fiber / TiAl powder sintered composite,
It can be seen that the tensile strength and tensile modulus are high and the tensile strength at room temperature is excellent. Conventional Example 3 shows the room-temperature tensile properties of the matrix used in the present invention.

【0021】[0021]

【発明の効果】以上の説明で判るように本発明のSiC
繊維強化TiAl複合材料の製造方法によれば、過剰な
界面反応によるSiC繊維の特性劣化を抑制でき、且つ
熱膨張率(CTE)のミスマッチによる金属間化合物T
iAl基合金マトリックスのクラックの発生を抑制で
き、Vfが高く、室温引張強さに優れ、しかも密度が低
くて軽量で高強度、耐熱性に優れた複合材料が得られ、
航空機用ガスタービンエンジンの圧縮機、タービン部品
の素材として極めて有用で、将来の超音速輸送機用の耐
熱機体材料としても期待されるものである。
As can be seen from the above description, the SiC of the present invention
According to the method for producing a fiber-reinforced TiAl composite material, deterioration of characteristics of SiC fibers due to excessive interfacial reaction can be suppressed, and intermetallic compound T due to mismatch in coefficient of thermal expansion (CTE).
It is possible to suppress the occurrence of cracks in the iAl-based alloy matrix, to obtain a composite material having high Vf, excellent tensile strength at room temperature, low density, light weight, high strength, and excellent heat resistance.
It is extremely useful as a material for compressors and turbine parts of aircraft gas turbine engines, and is also expected as a heat-resistant aircraft material for future supersonic transports.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法により得られたSiC繊維強
化TiAl複合材料の断面顕微鏡写真を示す。
FIG. 1 shows a cross-sectional micrograph of a SiC fiber reinforced TiAl composite material obtained by a production method of the present invention.

【図2】従来の製造方法により得られたSiC繊維/粉
末焼結TiAl複合材料の断面顕微鏡写真を示す。
FIG. 2 shows a cross-sectional micrograph of a SiC fiber / powder sintered TiAl composite material obtained by a conventional manufacturing method.

フロントページの続き (72)発明者 島田 幸雄 兵庫県明石市川崎町1番1号 川崎重工 業株式会社明石工場内 (72)発明者 水原 洋治 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式会社 技術開発本部 先端 技術研究所内 (72)発明者 橋本 敬三 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式会社 技術開発本部 先端 技術研究所内 (56)参考文献 特開 平2−88731(JP,A) 特開 昭47−12951(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 1/09Continued on the front page (72) Inventor Yukio Shimada 1-1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries, Ltd. Inside Akashi Plant (72) Inventor Yoji Suhara 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Pref. (72) Inventor Keizo Hashimoto 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Nippon Steel Corporation Advanced Technology Research Center (56) Reference JP-A-2-88731 (JP) , A) JP-A-47-12951 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 1/09

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超塑性特性を有する金属間化合物TiA
l基合金箔の間にSiC繊維層を挟んで多数積層し、9
00〜1100℃の温度条件で、真空中、加圧下にて前
金属間化合物TiAl基合金箔を塑性変形させて、S
iC繊維層の繊維間の隙間に埋め、且つ金属間化合物
iAl基合金箔同士を拡散接合して複合化することを特
徴とするSiC繊維強化TiAl複合材料の製造方法。
1. An intermetallic compound TiO having superplastic properties
A large number of layers are laminated with an SiC fiber layer interposed between
The intermetallic compound TiAl-based alloy foil is plastically deformed under vacuum and under pressure at a temperature of 00 to 1100 ° C.
Fill in gaps between fibers of iC fiber layer and intermetallic compound T
A method for producing a SiC fiber-reinforced TiAl composite material, wherein iAl-based alloy foils are diffused and bonded to form a composite.
【請求項2】 請求項1記載のSiC繊維強化TiAl
複合材料の製造方法に於いて、加圧下の条件が、500
kgf/cm上の圧力を所定時間かけるものであるこ
とを特徴とするSiC繊維強化TiAl複合材料の製造
方法。
2. The SiC fiber reinforced TiAl according to claim 1.
In the method for producing a composite material, the condition under pressure is 500
A method for producing a SiC fiber reinforced TiAl composite material, wherein a pressure on kgf / cm 2 is applied for a predetermined time.
JP7209991A 1995-07-26 1995-07-26 Method for producing SiC fiber reinforced TiAl composite material Expired - Fee Related JP2784161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7209991A JP2784161B2 (en) 1995-07-26 1995-07-26 Method for producing SiC fiber reinforced TiAl composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7209991A JP2784161B2 (en) 1995-07-26 1995-07-26 Method for producing SiC fiber reinforced TiAl composite material

Publications (2)

Publication Number Publication Date
JPH0941053A JPH0941053A (en) 1997-02-10
JP2784161B2 true JP2784161B2 (en) 1998-08-06

Family

ID=16582053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7209991A Expired - Fee Related JP2784161B2 (en) 1995-07-26 1995-07-26 Method for producing SiC fiber reinforced TiAl composite material

Country Status (1)

Country Link
JP (1) JP2784161B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744928B (en) * 2012-07-25 2014-09-24 哈尔滨工业大学 Preparation method for Ti3Al-TiAl laminated composite material
JP6551059B2 (en) * 2015-08-27 2019-07-31 国立研究開発法人物質・材料研究機構 Hybrid composite material including SiC fiber and method for producing the same
CN111270234B (en) * 2020-03-10 2022-04-19 昆明理工大学 Method for preparing titanium-aluminum enhanced coating on surface of titanium alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783813B2 (en) * 1988-09-20 1998-08-06 ゼネラル・エレクトリック・カンパニイ Method for producing fiber-reinforced metal matrix material and composite structure

Also Published As

Publication number Publication date
JPH0941053A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
US4847044A (en) Method of fabricating a metal aluminide composite
US6214134B1 (en) Method to produce high temperature oxidation resistant metal matrix composites by fiber density grading
JP5200283B2 (en) Brazed joint between titanium-based metal piece and silicon carbide (SiC) and / or carbon-based ceramic piece
US4499156A (en) Titanium metal-matrix composites
US4746374A (en) Method of producing titanium aluminide metal matrix composite articles
US4469757A (en) Structural metal matrix composite and method for making same
US5260137A (en) Infiltrated fiber-reinforced metallic and intermetallic alloy matrix composites
Alman et al. Processing, structure and properties of metal-intermetallic layered composites
US4733816A (en) Method to produce metal matrix composite articles from alpha-beta titanium alloys
US4896815A (en) Method for forming titanium aluminide-ductile titanium aluminum alloy matrix composites
US5425494A (en) Method for forming infiltrated fiber-reinforced metallic and intermetallic alloy matrix composites
US4293619A (en) Silicon-nitride and metal composite
US5326525A (en) Consolidation of fiber materials with particulate metal aluminide alloys
JP2017043518A (en) SiC FIBER-CONTAINING HYBRID COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME
US5104460A (en) Method to manufacture titanium aluminide matrix composites
US5030277A (en) Method and titanium aluminide matrix composite
Metcalfe Fibre Reinforced Titanium Alloys
JP2784161B2 (en) Method for producing SiC fiber reinforced TiAl composite material
US5403411A (en) Method for increasing the fracture resistance of titanium composites
US5261940A (en) Beta titanium alloy metal matrix composites
US5232525A (en) Post-consolidation method for increasing the fracture resistance of titanium composites
WO2004052573A1 (en) Composite material member and method for producing the same
US5879760A (en) Titanium aluminide articles having improved high temperature resistance
Mehan et al. Nickel Alloys Reinforced with a-A1203 Filaments
JP3504716B2 (en) Ceramic bonded body with stress buffer metal layer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980428

LAPS Cancellation because of no payment of annual fees