JPH09325122A - Method for inspecting foreign matter in transparent container - Google Patents

Method for inspecting foreign matter in transparent container

Info

Publication number
JPH09325122A
JPH09325122A JP8163759A JP16375996A JPH09325122A JP H09325122 A JPH09325122 A JP H09325122A JP 8163759 A JP8163759 A JP 8163759A JP 16375996 A JP16375996 A JP 16375996A JP H09325122 A JPH09325122 A JP H09325122A
Authority
JP
Japan
Prior art keywords
container
liquid
light
foreign matter
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8163759A
Other languages
Japanese (ja)
Inventor
Takahiro Yamamoto
隆弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUINKU KK
Original Assignee
SUINKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUINKU KK filed Critical SUINKU KK
Priority to JP8163759A priority Critical patent/JPH09325122A/en
Publication of JPH09325122A publication Critical patent/JPH09325122A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9018Dirt detection in containers
    • G01N21/9027Dirt detection in containers in containers after filling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9036Investigating the presence of flaws or contamination in a container or its contents using arrays of emitters or receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to inspect the mixing of a foreign body with the liquid in a transparent cylindrical container while discriminating the relation between proper lighting and a proper image pickup position and also discriminating between the foreign body and an air bubble. SOLUTION: Light sources 81 and 82 by the container 1 are switched to project illumination light having a specific diffusion angle on the liquid 2 in the container 1, and cameras 91, 92, 93, and 94 are arranged at positions having certain angles to a right-angled direction to the center of the luminous flux of the said illumination and pick up images of the liquid 2 in the container 1 from the container flank where the illumination light is neither made incident nor reflected. A foreign body candidate is detected by processing the images and the illumination light is switched to pick up images of the liquid 2 in the container from the said container flank; and an air bubble 7 is detected by processing the images and a foreign body candidate in an image at a position which does not correspond to the corresponding position of the air bubble 7 in the image is decided as a foreign body 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、筒状の透明な容器、主と
して円柱状の容器内に封入されている透明な液体中の異
物の混入を画像処理技術によって検査する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical transparent container, and more particularly to a method for inspecting foreign substances in a transparent liquid sealed in a cylindrical container by an image processing technique.

【0002】[0002]

【従来の技術】薬液などの製造過程で、容器内の液体に
異物が混入する事故が起きている。製造物責任法の観点
から、そのような事故は、完全になくしなければならな
い。従来の異物検査は、作業員の目視による観察によっ
て行われているが、容器表面での外部からの散乱光の反
射や輝線の発生によって、その検査精度や検査能率は、
悪いものとなっており、大量生産過程での1つの障害と
なっている。
2. Description of the Related Art In the process of manufacturing a chemical liquid or the like, an accident occurs in which a foreign substance is mixed in the liquid in the container. From the perspective of the Product Liability Act, such an accident must be completely eliminated. Conventional foreign matter inspection is performed by visual observation by an operator, but due to the reflection of scattered light from the outside and the generation of bright lines on the container surface, the inspection accuracy and inspection efficiency are
It is bad and is one obstacle in the mass production process.

【0003】[0003]

【従来技術の課題】このような実情から、製造現場にお
いて、高精度で検査速度の速い検査手段が望まれてい
る。そこで、画像処理技術を利用して、透明容器内の液
体を観察することが試みられているが、上記のように、
外部の散乱光や、容器表面の付着物の存在、液体中の気
泡の識別、小さな異物の光学的拡大上の問題などから、
画像処理による適切な検査方法がまだ確立されていな
い。したがって、従来技術の課題は、どのような照明を
使用して、照明と撮像用のカメラとの位置関係を設定
し、気泡と異物との識別を行うかである。
2. Description of the Related Art Due to such circumstances, there is a demand for a highly accurate inspection means having a high inspection speed at a manufacturing site. Therefore, it has been attempted to observe the liquid in the transparent container using image processing technology.
Due to scattered light from the outside, the presence of deposits on the container surface, the identification of air bubbles in the liquid, the problem of optical expansion of small foreign matter, etc.
An appropriate inspection method by image processing has not been established yet. Therefore, the problem of the conventional technique is to use what kind of illumination is used to set the positional relationship between the illumination and the camera for image pickup, and to distinguish bubbles from foreign matter.

【0004】[0004]

【発明の目的】したがって、本発明の目的は、透明な筒
状の容器内の液体に対する異物の混入を適切な照明、そ
の照明に対する適切な撮像位置の関係、さらに、異物と
気泡とを識別しながら検査できるようにすることであ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to properly detect the mixing of foreign matter into a liquid in a transparent cylindrical container, the relationship between the appropriate imaging position for the lighting, and the foreign matter and bubbles. While being able to inspect.

【0005】[0005]

【発明の解決手段】画像処理による異物検査では、次の
条件が満足されなければならない。 (1)透明な容器の表面の付着物や印刷を避けた状態で
容器の内部が観察できること。 (2)照明の届いている範囲で液体が確実に検査できる
こと。 (3)カメラ側から観察可能な範囲がもれなく検査でき
ること。 (4)カメラの焦点深度が適切で、異物として検出可能
な範囲が充分であること。 (5)透明な容器内の真の異物と気泡との識別が可能と
なること。 (6)透明な容器の内部の照明光の二次反射の影響のな
い状態で撮像が可能となること。
In the foreign matter inspection by image processing, the following conditions must be satisfied. (1) The inside of the container can be observed while avoiding deposits and printing on the surface of the transparent container. (2) The liquid can be reliably inspected within the range of lighting. (3) Being able to inspect without fail the range that can be observed from the camera side. (4) The depth of focus of the camera is appropriate and the range that can be detected as a foreign substance is sufficient. (5) It is possible to distinguish between true foreign matter and bubbles in a transparent container. (6) Capable of imaging without being affected by the secondary reflection of illumination light inside the transparent container.

【0006】そこで、本発明は、前記の条件をすべて満
足するために、容器の側方位置の光源から所定の拡散角
度の照明光を容器および容器内の液体に向けて照射する
とともに、上記照明光の光束の中心に対して直角方向よ
りある角度ふらせた位置で異物からの反射光量の多い位
置に、カメラを配置し、このカメラにより照明光の入射
・反射のない容器側面から容器内の液体を撮像し、その
画像から画像処理により異物候補を検出したとき、上記
光源と対向する容器の側方位置の光源からの所定の拡散
角度の照明光のみを容器内の液体に向けて照射し、液体
中の気泡からの反射光の受光量を増加させて、上記カメ
ラにより容器内の液体の同一視野を撮像し、その画像か
ら画像処理により液体中の気泡を検出し、画像上の気泡
の存在位置と対応しない位置の画像上の異物候補を異物
と判定するようにしている。
Therefore, according to the present invention, in order to satisfy all the above-mentioned conditions, the light source at a lateral position of the container irradiates the container and the liquid in the container with illumination light having a predetermined diffusion angle, and the above-mentioned illumination is performed. A camera is placed at a position where a large amount of light is reflected from a foreign object at a position offset by a certain angle from the direction perpendicular to the center of the light flux, and the camera allows the liquid inside the container to enter from the side of the container where illumination light does not enter or reflect. Is imaged, when a foreign substance candidate is detected by image processing from the image, only the illumination light of a predetermined diffusion angle from the light source at the side position of the container facing the light source is irradiated toward the liquid in the container, The amount of reflected light from the bubbles in the liquid is increased, the same field of view of the liquid in the container is captured by the above camera, the bubbles in the liquid are detected by image processing from the image, and the presence of bubbles on the image Correspondence with position An image on the foreign object candidate without position so that it is determined that the foreign matter.

【0007】[0007]

【発明の実施の形態】図1は、検査対象の透明な容器1
を示している。この容器1は、例えば透明なガラス製の
円筒体であり、内部に薬液などの透明な液体2を収容し
た状態で、中間部分のゴム栓3および底部のゴム栓4に
よって、液体2を封入した状態となっている。なお、容
器1の先端部分は、先細りとなっており、その開口部分
は、キャップ5によって塞がれている。検査事項は、上
記液体2の内部の異物6の混入であり、この異物6の混
入状態は、液体2の中の気泡7の存在時に、それとと識
別しながら検出される。
FIG. 1 shows a transparent container 1 to be inspected.
Is shown. The container 1 is, for example, a transparent glass cylindrical body, and in a state in which a transparent liquid 2 such as a chemical solution is contained, the liquid 2 is sealed by a rubber stopper 3 at an intermediate portion and a rubber stopper 4 at a bottom portion. It is in a state. The tip of the container 1 is tapered, and the opening is closed by a cap 5. The inspection item is the mixing of the foreign matter 6 inside the liquid 2, and the mixed state of the foreign matter 6 is detected when the bubble 7 in the liquid 2 is present, while distinguishing from the presence of the bubble 7.

【0008】次に、図2は、容器1に対する照明と撮像
位置との位置関係の具体例を示している。この具体例
は、一例として、多くの撮像範囲を短時間に処理するた
めに、2つの照明用の光源81、82および4台の撮像
用のカメラ91、92、93、94を使用している。
Next, FIG. 2 shows a specific example of the positional relationship between the illumination of the container 1 and the image pickup position. This specific example uses two illumination light sources 81 and 82 and four imaging cameras 91, 92, 93, and 94 in order to process a large number of imaging ranges in a short time. .

【0009】照明用の光源81、82は、強力な照明光
を得るために、例えばキセノンランプを使用しており、
その光束は、光ファイバー10の内部を通り、適当な拡
散角度の照明光として、容器1の側面に向けて照射され
る。ここで、光源81、82は、容器1の両側方位置、
すなわち容器1の中心を通る中心線14上で、容器1を
挟む各位置にそれぞれ設けられている。それぞれの照明
光は、シャッター11の開放時に、容器1の対向外周面
に向けて投射され、空気とガラスとの屈折、ガラスと液
体との屈折率にもとづいて、容器1の内部に進入する。
The light sources 81 and 82 for illumination use, for example, a xenon lamp in order to obtain strong illumination light.
The light flux passes through the inside of the optical fiber 10 and is emitted toward the side surface of the container 1 as illumination light having an appropriate diffusion angle. Here, the light sources 81 and 82 are located on both sides of the container 1,
That is, it is provided at each position sandwiching the container 1 on the center line 14 passing through the center of the container 1. When the shutter 11 is opened, the respective illumination lights are projected toward the opposing outer peripheral surface of the container 1, and enter the inside of the container 1 based on the refraction index of air and glass and the refraction index of glass and liquid.

【0010】図3は、光源81からの照明光の光路、お
よび異物6や気泡7からのカメラ91、92、カメラ9
3、94に対する光量分布を示している。照明光の光束
のうち、中心の部分は、光束の中心線14にほぼ平行な
状態で容器1の内部に入る。また、中心から離れた位置
のほとんどの照明光は、容器1の内周面に内接するよう
な経路を経て外部に進み、さらに他の少しの照明光は、
容器1の表面で反射して外部に進む。この結果、照明光
の中心に対して直角の方向で、容器1の外周部分に照明
光の入射・反射のない側面が形成される。
FIG. 3 shows the optical path of the illumination light from the light source 81 and the cameras 91, 92 and the camera 9 from the foreign matter 6 and bubbles 7.
The light intensity distributions for 3 and 94 are shown. A central portion of the luminous flux of the illumination light enters the inside of the container 1 in a state substantially parallel to the center line 14 of the luminous flux. Further, most of the illumination light at a position away from the center travels to the outside through a path that is inscribed in the inner peripheral surface of the container 1, and a little other illumination light is
It reflects on the surface of the container 1 and travels to the outside. As a result, a side surface that does not enter or reflect the illumination light is formed on the outer peripheral portion of the container 1 in a direction perpendicular to the center of the illumination light.

【0011】カメラ91、92、93、94は、照明光
の入射・反射のない容器1の側面を撮像窓として、その
撮像窓に対向する撮像位置で、光源81、82からの照
明光の使い分けにより、異物6からの反射光量の多い位
置、および気泡7からの反射光量の多い位置で、容器1
の内部の視野に向けてそれぞれ配置されてい
る。
The cameras 91, 92, 93, 94 use the illumination light from the light sources 81, 82 at the image pickup position facing the image pickup window, with the side surface of the container 1 which does not enter or reflect the illumination light as the image pickup window. Therefore, at the position where the amount of reflected light from the foreign matter 6 is large and the position where the amount of reflected light from the bubble 7 is large,
Are arranged toward the internal visual field.

【0012】ここで、異物6および気泡7からの反射光
量の多い位置は、それぞれ実験的に求める。薬品などの
製造過程で、混入が予測される異物6やその液体2とし
ての薬液中の気泡7は、それぞれ特有の光学的特性を有
する。したがって、混入が予測される異物6について、
反射光量の多い位置は、その外形や、光の反射表面の光
学的特性、光の吸収率などにより特徴づけられる。
Here, the positions where the amount of reflected light from the foreign matter 6 and the bubbles 7 is large are experimentally obtained. The foreign matter 6 that is expected to be mixed in during the manufacturing process of chemicals and the bubbles 7 in the chemical liquid as the liquid 2 have unique optical characteristics. Therefore, regarding the foreign matter 6 that is expected to be mixed,
The position with a large amount of reflected light is characterized by its outer shape, optical characteristics of the light reflecting surface, light absorptance, and the like.

【0013】図3は、異物6として、最も一般的な形状
すなわち不透明な立方体で、不規則でなめらかな表面を
有する試料からの反射光量の分布を示している。実験結
果によれば、異物6が照明光に対して如何なる姿勢の状
態にあったとしても、その光量分布は、照明光の中心線
14に対して直交する直線15から照明光寄りに多くな
っている。また、水に近い屈折率の液体2の中の気泡7
によると、その大きさにかかわらず、それからの反射光
量は、上記直線15を中心として、照明光から離れる方
向に従って急激に多くなる。これは、気泡表面で、普通
の反射から全反射に切り換わることによるものと推測さ
れる。
FIG. 3 shows the distribution of the amount of reflected light from a sample having the most general shape, that is, an opaque cube as the foreign matter 6 and having an irregular and smooth surface. According to the experimental results, even if the foreign matter 6 is in any posture with respect to the illumination light, the light amount distribution increases from the straight line 15 orthogonal to the center line 14 of the illumination light toward the illumination light. There is. Also, bubbles 7 in the liquid 2 having a refractive index close to that of water
According to the above, regardless of the size, the amount of reflected light from the straight line 15 increases sharply in the direction away from the illumination light with the straight line 15 as the center. It is presumed that this is due to switching from normal reflection to total reflection on the bubble surface.

【0014】上記の実験結果にもとづいて、カメラ9
1、92、93、94は、照明光の入射・反射のない方
向の位置で異物6からの反射光量の多い位置および気泡
7からの反射光量の多い位置として、直線15よりある
角度αだけふらせた位置で、それぞれ容器1のほぼ中心
位置に向けられ、液体2の視野を合焦範囲とし
ている。
Based on the above experimental results, the camera 9
Reference numerals 1, 92, 93, and 94 are positions in a direction in which illumination light is not incident / reflected, where the amount of reflected light from the foreign matter 6 is large and the amount of reflected light from the bubble 7 is large, and the angle is shifted by a certain angle α from the straight line 15. At different positions, they are directed substantially to the central position of the container 1, respectively, and the field of view of the liquid 2 is in the focusing range.

【0015】ここで、カメラ91は、照明81からの照
明光の照射時に、視野について異物6を検出するため
に、容器1の内部の液体2を撮像し、光源82からの照
明光の照射時に、視野について気泡7を検出するため
に、容器1の内部の液体2を撮像する。また、カメラ9
2は、照明81からの照明光の照射時に、視野につい
て異物6を検出するために、容器1の内部の液体2を撮
像し、光源82からの照明光の照射時に、視野につい
て気泡7を検出するために、容器1の内部の液体2を撮
像する。
Here, the camera 91 takes an image of the liquid 2 inside the container 1 in order to detect the foreign matter 6 in the visual field when the illumination light is emitted from the illumination 81, and when the illumination light is emitted from the light source 82. , The liquid 2 inside the container 1 is imaged in order to detect the bubbles 7 in the field of view. Also, the camera 9
2 images the liquid 2 inside the container 1 in order to detect the foreign matter 6 in the visual field when the illumination light is emitted from the illumination 81, and detects the bubbles 7 in the visual field when the illumination light is emitted from the light source 82. To do this, the liquid 2 inside the container 1 is imaged.

【0016】さらに、カメラ93は、照明82からの照
明光の照射時に、視野について異物6を検出するため
に、容器1の内部の液体2を撮像し、光源81からの照
明光の照射時に、視野について気泡7を検出するため
に、容器1の内部の液体2を撮像する。また、カメラ9
4は、照明82からの照明光の照射時に、視野につい
て異物6を検出するために、容器1の内部の液体2を撮
像し、光源81からの照明光の照射時に、視野につい
て気泡7を検出するために、容器1の内部の液体2を撮
像する。
Further, the camera 93 images the liquid 2 inside the container 1 in order to detect the foreign matter 6 in the visual field when the illumination light is emitted from the illumination 82, and when the illumination light is emitted from the light source 81, The liquid 2 inside the container 1 is imaged in order to detect the bubbles 7 in the field of view. Also, the camera 9
Reference numeral 4 images the liquid 2 inside the container 1 in order to detect the foreign matter 6 in the visual field when the illumination light is emitted from the illumination 82, and detects the bubbles 7 in the visual field when the illumination light is emitted from the light source 81. To do this, the liquid 2 inside the container 1 is imaged.

【0017】なお、カメラ91、92、93、94は、
ともに直線15に対して、同一の角度αで各光源81、
82の方向寄りに片寄りを持っているため、光源81、
82の切り換えにより異物6の検出、気泡7の検出の両
目的を果たすことになる。
The cameras 91, 92, 93 and 94 are
Both of the light sources 81 at the same angle α with respect to the straight line 15,
Since the light source 81 has a bias toward the direction of 82,
The switching of 82 serves both purposes of detecting the foreign matter 6 and detecting the bubble 7.

【0018】まず、光源81のみが容器1の内部に照明
光を照射しているときに、カメラ91、92は、異物6
を検出するために、高倍率で容器1の内部の視野を
合焦状態として撮像し、また、カメラ93、94は、気
泡7を検出するために、高倍率で容器1の内部の視野
を合焦状態として撮像する。
First, when only the light source 81 is illuminating the inside of the container 1 with the illumination light, the cameras 91 and 92 detect the foreign matter 6
In order to detect the air bubbles, the visual field inside the container 1 is imaged in a focused state at a high magnification, and the cameras 93 and 94 focus the visual field inside the container 1 at a high magnification to detect the bubbles 7. The image is taken in a focused state.

【0019】つぎに、照明光の切り換えることにより、
光源82のみが容器1の内部に照明光を照射していると
きに、カメラ93、94は、異物6を検出するために、
高倍率で容器1の内部の視野を合焦状態として撮像
し、また、カメラ91、92は、気泡7を検出するため
に、高倍率で容器1の内部の視野を合焦状態として
撮像する。
Next, by switching the illumination light,
When only the light source 82 is illuminating the inside of the container 1 with the illumination light, the cameras 93 and 94 detect the foreign matter 6 in order to detect the foreign matter 6.
The field of view inside the container 1 is imaged at a high magnification as an in-focus state, and the cameras 91 and 92 image the field of view inside the container 1 at a high magnification as an in-focus state in order to detect the bubbles 7.

【0020】なお、撮像時に、これらのカメラ91、9
2、93、94に対する外部からの散乱光が撮像の障害
となるとき、遮光状態の撮像窓を形成するために、必要
に応じ、容器1とカメラ91、92、93、94との間
に、適当な開口板状のしゃ光体12が設けられる。
Note that these cameras 91 and 9 are used at the time of image pickup.
When scattered light from the outside with respect to 2, 93, and 94 interferes with imaging, in order to form an imaging window in a light-shielded state, between the container 1 and the cameras 91, 92, 93, and 94, if necessary, A suitable aperture plate-shaped light shield 12 is provided.

【0021】このようにして、4つのカメラ91、9
2、93、94からの画像データは、画像処理装置13
の内部の画像メモリに記憶され、その後、画像処理プロ
グラムにもとづいて処理される。画像処理装置13は、
異物検出用の画像データを例えば微分処理によって、信
号レベルの変化から異物6の候補の信号を検出するとと
もに、照明光の切り換えにより気泡7からの強化された
反射光についての画像データを同様に微分処理によっ
て、気泡7の信号を検出した後、画像上の気泡7に対応
しない画像上の異物6の候補を真の異物6と判定する。
In this way, the four cameras 91, 9
The image data from 2, 93, and 94 are sent to the image processing device 13
It is stored in the image memory inside and is processed according to the image processing program. The image processing device 13
The image data for detecting the foreign matter is detected, for example, by a differentiating process to detect a candidate signal of the foreign matter 6 from the change in the signal level, and the image data on the reflected light enhanced from the bubble 7 is similarly differentiated by switching the illumination light. After the signal of the bubble 7 is detected by the processing, the candidate of the foreign substance 6 on the image that does not correspond to the bubble 7 on the image is determined to be the true foreign substance 6.

【0022】以上の撮像・画像処理によって、容器1の
内部の液体2に混入した異物6が検出できるが、容器1
の内部の検査範囲が不充分なときに、照明用の光源8
1、82およびカメラ91、92、93、94の設置台
数を増やし、検査可能の範囲を拡大するか、または容器
1を適切な角度例えば90度だけ回転させて、上記の装
置により前回の検査範囲と交差する方向の検査範囲につ
いて検査を実行するか、あるいは光源81、82および
カメラ91、92、93、94の設置台数を増やして、
上記実施例で検査した範囲と交差する方向の範囲につい
ても同時に検査を実行するようにしてもよい。
By the above-mentioned image pickup and image processing, the foreign matter 6 mixed in the liquid 2 inside the container 1 can be detected.
Light source 8 for illumination when the inspection range inside the
1, 82 and the number of cameras 91, 92, 93, 94 installed to increase the range that can be inspected, or the container 1 is rotated by an appropriate angle, for example, 90 degrees, and the previous inspection range is obtained by the above device. The inspection is performed on the inspection range in the direction intersecting with, or the number of installed light sources 81, 82 and cameras 91, 92, 93, 94 is increased,
The inspection may be simultaneously performed on the range in the direction crossing the range inspected in the above embodiment.

【0023】また、上記実施例は、2つの光源81、8
2に対して、4台のカメラ91、92、93、94を配
置しているが、カメラ91、92、93、94の倍率に
もよるが、その合焦範囲、すなわち焦点深度が容器1の
直径の範囲で確保できるならば、2つの光源81、82
に対して1台のカメラ91、または2つの光源81、8
2に対して2台のカメラ91、93により検査を実行す
ることもできる。
In the above embodiment, the two light sources 81 and 8 are used.
4 cameras 91, 92, 93, 94 are arranged for 2, but the focusing range, that is, the depth of focus of the container 1 depends on the magnification of the cameras 91, 92, 93, 94. Two light sources 81 and 82 if they can be secured within the diameter range
For one camera 91 or two light sources 81, 8
It is also possible to carry out the inspection for two with two cameras 91, 93.

【0024】また、液体2に気泡7の混入があり得ない
ならば、気泡7の検出用のプログラムは、必要なく、そ
の処理を省略することもできる。さらに、上記実施例
は、互いに異なる方向から照明光を投射しているが、一
方向からの照明光のみで充分な検査が可能であれば、光
源は1つだけであってもよい。さらに、容器1は、円筒
状に限らず、楕円筒状あるいは四角柱状などであっても
よい。
Further, if the liquid 2 cannot contain the bubbles 7, the program for detecting the bubbles 7 is not necessary and the process can be omitted. Further, in the above embodiment, the illumination light is projected from different directions, but if the illumination light from one direction alone is sufficient for the inspection, only one light source may be used. Further, the container 1 is not limited to the cylindrical shape, and may be an elliptic cylindrical shape or a quadrangular prism shape.

【0025】[0025]

【発明の効果】本発明では、前述の条件を満足できる状
態で、透明容器内の液体の異物混入の検査が可能となる
ため、しかもその検査が小さな異物に対しても高速で実
行できるため、薬液などの製造速度に合わせて全製品に
ついての検査が高速で確実に行える。
As described above, according to the present invention, it is possible to inspect the liquid contained in the transparent container for foreign matter while satisfying the above-mentioned conditions, and the inspection can be performed at high speed even for small foreign matter. All products can be inspected quickly and reliably according to the manufacturing speed of chemicals.

【図面の簡単な説明】[Brief description of drawings]

【図1】検査対象の容器の断面図である。FIG. 1 is a cross-sectional view of a container to be inspected.

【図2】透明な容器に対する照明用の光源、撮像用のカ
メラの配置の平面図である。
FIG. 2 is a plan view showing the arrangement of a light source for illumination and a camera for imaging with respect to a transparent container.

【図3】容器内の異物および気泡からの反射光の光量分
布の説明図である。
FIG. 3 is an explanatory diagram of a light amount distribution of reflected light from foreign matter and bubbles in a container.

【符号の説明】[Explanation of symbols]

1 透明な容器 2 液体 3 ゴム栓 4 ゴム栓 5 キャップ 6 異物 7 気泡 81、82 光源 91、92、93、94 カメラ 10 光ファイバー 11 シャッター 12 しゃ光体 13 画像処理装置 14 中心線 15 直線 1 transparent container 2 liquid 3 rubber stopper 4 rubber stopper 5 cap 6 foreign matter 7 bubbles 81, 82 light sources 91, 92, 93, 94 camera 10 optical fiber 11 shutter 12 light shield 13 image processor 14 center line 15 straight line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 透明な筒状の容器内に封入されている液
体中の異物の混入を検査する方法であって、 容器の側方位置の光源から所定の拡散角度の照明光を容
器内の液体に向けて照射するとともに、上記照明光の光
束の中心に対して直角方向よりある角度ふらせた位置で
異物からの反射光量の多い位置に、カメラを配置し、こ
のカメラにより照明光の入射・反射のない容器側面から
容器内の液体を撮像し、その画像から画像処理により異
物を検出することを特徴とする透明容器内の異物検査方
法。
1. A method for inspecting the mixture of foreign matter in a liquid enclosed in a transparent cylindrical container, comprising illuminating light at a predetermined diffusion angle from a light source at a lateral position of the container. While irradiating the liquid, the camera is placed at a position where a large amount of light is reflected from the foreign matter at a position offset by a certain angle from the direction perpendicular to the center of the luminous flux of the illuminating light. A method for inspecting foreign matter in a transparent container, which comprises imaging a liquid in the container from a side surface of the container without reflection and detecting foreign matter from the image by image processing.
【請求項2】 透明な筒状の容器内に封入されている液
体中の異物の混入を検査する方法であって、 容器の側方位置の光源から所定の拡散角度の照明光を容
器内の液体に向けて照射するとともに、上記照明光の光
束の中心に対して直角方向よりある角度ふらせた位置で
異物からの反射光量の多い位置に、カメラを配置し、こ
のカメラにより照明光の入射・反射のない容器側面から
容器内の液体を撮像し、その画像から画像処理により異
物候補を検出したとき、上記光源と対向する容器の側方
位置の光源から所定の拡散角度の照明光のみを容器内の
液体に向けて照射し、液体中の気泡からの反射光の受光
量を増加させて、上記カメラにより容器内の液体の同一
視野を撮像し、その画像から画像処理により液体中の気
泡を検出し、画像上の気泡の存在位置と対応しない位置
の画像上の異物候補を異物と判定することを特徴とする
透明容器内の異物検査方法。
2. A method for inspecting the mixture of foreign matter in a liquid enclosed in a transparent cylindrical container, wherein illumination light of a predetermined diffusion angle is emitted from a light source at a lateral position of the container. While irradiating the liquid, the camera is placed at a position where a large amount of light is reflected from the foreign matter at a position offset by a certain angle from the direction perpendicular to the center of the luminous flux of the illuminating light. When the liquid inside the container is imaged from the side surface of the container without reflection and a foreign substance candidate is detected by image processing from the image, only the illumination light of a predetermined diffusion angle is emitted from the light source at the side position of the container facing the light source. The liquid in the liquid is irradiated to increase the amount of light received from the bubbles in the liquid, the same field of view of the liquid in the container is captured by the camera, and the bubbles in the liquid are image-processed from the image. Detect and detect air bubbles on the image Particle inspection method of a transparent container, characterized by determining a foreign object candidate on the image of a position that does not correspond to the standing position as foreign.
JP8163759A 1996-06-04 1996-06-04 Method for inspecting foreign matter in transparent container Pending JPH09325122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8163759A JPH09325122A (en) 1996-06-04 1996-06-04 Method for inspecting foreign matter in transparent container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8163759A JPH09325122A (en) 1996-06-04 1996-06-04 Method for inspecting foreign matter in transparent container

Publications (1)

Publication Number Publication Date
JPH09325122A true JPH09325122A (en) 1997-12-16

Family

ID=15780169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8163759A Pending JPH09325122A (en) 1996-06-04 1996-06-04 Method for inspecting foreign matter in transparent container

Country Status (1)

Country Link
JP (1) JPH09325122A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114645A (en) * 2003-10-10 2005-04-28 Asahi Techno Glass Corp Apparatus and system for inspecting glass tube
WO2006011803A2 (en) * 2004-07-30 2006-02-02 Eagle Vision Systems B.V. Apparatus and method for checking of containers
JP2008510169A (en) * 2004-08-19 2008-04-03 ベクトン・ディキンソン・アンド・カンパニー A device that performs optical measurements on blood culture bottles
CN103930771A (en) * 2011-11-10 2014-07-16 克朗斯股份公司 Inspection and recycling of containers
JP2016197130A (en) * 2011-08-29 2016-11-24 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
US10088660B2 (en) 2017-02-10 2018-10-02 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
JP2018205199A (en) * 2017-06-07 2018-12-27 株式会社 日立産業制御ソリューションズ Foreign matter inspection device and method
GB2572495A (en) * 2018-03-29 2019-10-02 Sita Messtechnik Gmbh Foam analysis device and method thereof
JP2020193895A (en) * 2019-05-29 2020-12-03 キョーラク株式会社 Inspection method for molded article
CN113833583A (en) * 2021-06-28 2021-12-24 北京航天动力研究所 Device and method for detecting leakage amount of gas tightness
EP3943922A4 (en) * 2019-03-19 2022-04-06 Nec Corporation Inspection device, inspection method, and non-transitory computer-readable medium
CN113833583B (en) * 2021-06-28 2024-05-31 北京航天动力研究所 Device and method for detecting leakage amount of gas tightness

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114645A (en) * 2003-10-10 2005-04-28 Asahi Techno Glass Corp Apparatus and system for inspecting glass tube
WO2006011803A2 (en) * 2004-07-30 2006-02-02 Eagle Vision Systems B.V. Apparatus and method for checking of containers
WO2006011803A3 (en) * 2004-07-30 2006-04-20 Eagle Vision Systems B V Apparatus and method for checking of containers
JP2008508513A (en) * 2004-07-30 2008-03-21 イーグル・ヴィジョン・システムズ・ベスローテン・フェンノートシャップ Apparatus and method for inspecting containers
JP4724182B2 (en) * 2004-07-30 2011-07-13 イーグル・ヴィジョン・システムズ・ベスローテン・フェンノートシャップ Method and apparatus for inspecting containers
US7982868B2 (en) 2004-07-30 2011-07-19 Eagle Vision Systems B.V. Apparatus and method for checking of containers
JP2008510169A (en) * 2004-08-19 2008-04-03 ベクトン・ディキンソン・アンド・カンパニー A device that performs optical measurements on blood culture bottles
US9892523B2 (en) 2011-08-29 2018-02-13 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
JP2016197130A (en) * 2011-08-29 2016-11-24 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
US9842408B2 (en) 2011-08-29 2017-12-12 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US10832433B2 (en) 2011-08-29 2020-11-10 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US9922429B2 (en) 2011-08-29 2018-03-20 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US11803983B2 (en) 2011-08-29 2023-10-31 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
KR20190057426A (en) * 2011-08-29 2019-05-28 암젠 인크 Methods and apparati for nondestructive detection of undissolved particles in a fluid
US11501458B2 (en) 2011-08-29 2022-11-15 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US9372180B2 (en) 2011-11-10 2016-06-21 Krones Ag Inspection and recycling of containers
CN103930771B (en) * 2011-11-10 2017-02-22 克朗斯股份公司 Inspection and recycling of containers
CN103930771A (en) * 2011-11-10 2014-07-16 克朗斯股份公司 Inspection and recycling of containers
US10088660B2 (en) 2017-02-10 2018-10-02 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
US10539773B2 (en) 2017-02-10 2020-01-21 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
US10962756B2 (en) 2017-02-10 2021-03-30 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
JP2018205199A (en) * 2017-06-07 2018-12-27 株式会社 日立産業制御ソリューションズ Foreign matter inspection device and method
US10684223B2 (en) 2018-03-29 2020-06-16 Sita Messtechnik Gmbh Foam analysis device
GB2572495B (en) * 2018-03-29 2021-10-06 Sita Messtechnik Gmbh Foam analysis device and method thereof
GB2572495A (en) * 2018-03-29 2019-10-02 Sita Messtechnik Gmbh Foam analysis device and method thereof
EP3943922A4 (en) * 2019-03-19 2022-04-06 Nec Corporation Inspection device, inspection method, and non-transitory computer-readable medium
JP2020193895A (en) * 2019-05-29 2020-12-03 キョーラク株式会社 Inspection method for molded article
CN113833583A (en) * 2021-06-28 2021-12-24 北京航天动力研究所 Device and method for detecting leakage amount of gas tightness
CN113833583B (en) * 2021-06-28 2024-05-31 北京航天动力研究所 Device and method for detecting leakage amount of gas tightness

Similar Documents

Publication Publication Date Title
US7663742B2 (en) Lens inspection system using phase contrast imaging
US4555635A (en) Surface flaw inspection apparatus for a convex body
JP7490655B2 (en) Sheet illumination for particle detection in pharmaceutical containers
US8514385B2 (en) Device and method for inspecting an object
JPH09325122A (en) Method for inspecting foreign matter in transparent container
US7310143B2 (en) NIST traceable automated visual inspection system for an inspection of particles in solution
JP2006017685A (en) Surface defect inspection device
KR20020065480A (en) Floodlight for appearance inspection
KR20080019395A (en) A defect detecting apparatus for flat panel display
KR20230024646A (en) An apparatus for detecting defect on surface of a secondary battery and method at the same
EP1692485A2 (en) Lens inspection
JPH08240529A (en) Apparatus and method for detecting minute foreign article in container containing liquid
JP4685569B2 (en) Particle reaction pattern determination device
JPH10185829A (en) Method and device for inspecting defect on surface of transparent flat body
WO2023276555A1 (en) Optical lens inspection device and optical lens inspection method
CN220438126U (en) Detection device for bottle flaws
JPH0466849A (en) Inspecting apparatus of external appearance
JPH04309850A (en) Inspection of defective of glass cylindrical body
TWI839846B (en) Detection method and detection system for determining whether a defect on the surface of a transparent film is located on the surface of the film or on the back of the film
JP2003121385A (en) Method and device for inspecting inside of vitreous silica material for defect
JP3102362U (en) Mirror inspection equipment
JPH10185828A (en) Method and device for inspecting defect of transparent flat body surface
JP2023018757A (en) Inspection device, method for inspection, method for manufacturing item by using inspection device, program, and recording medium
JPH04344447A (en) Detecting device for defect in transparent glass substrate
JPH03225264A (en) Method for inspecting inside of container