JPH09316692A - Alumina film having fine pore and its production - Google Patents

Alumina film having fine pore and its production

Info

Publication number
JPH09316692A
JPH09316692A JP17535896A JP17535896A JPH09316692A JP H09316692 A JPH09316692 A JP H09316692A JP 17535896 A JP17535896 A JP 17535896A JP 17535896 A JP17535896 A JP 17535896A JP H09316692 A JPH09316692 A JP H09316692A
Authority
JP
Japan
Prior art keywords
film
alumina
electrolyte
oxide film
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17535896A
Other languages
Japanese (ja)
Inventor
Kenji Inada
健志 稲田
Takehisa Fukui
武久 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS CENTER
Original Assignee
FINE CERAMICS CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS CENTER filed Critical FINE CERAMICS CENTER
Priority to JP17535896A priority Critical patent/JPH09316692A/en
Publication of JPH09316692A publication Critical patent/JPH09316692A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain alumina film having extremely fine pores and to enable the selective separation of a mixture of gas and liq. which has been difficult heretofore, at the time of producing porous aluminum oxide film by subjecting aluminum to electrolysis, by intermittently applying electrolytic voltage thereto. SOLUTION: Al having 99.5 to 99.99% purity is immersed in an electrolyte of sulfuric acid or the like, and, with Al as the anode and the electrode of platinum or the like in the electrolyte as the cathode, intermittent voltage having a rectangular sawtooth or sine wave shape is applied thereto to produce porous alumina film. As for the form of a porous alumina anodically oxidized film producing device, the platinum cathode is set to an A tank on the side of a soln., e.g. composed of sulfuric acid and water and producing the film between two soln. tanks of A and B holding an Al sheet as the raw material. The anodic oxidation treatment is executed in such a manner that the concn. of the electrolyte is regulated to about 0.1 to 2mol/L, and the intermittent voltage of 1 to 50V (with 10 to 10kHz frequency) is applied for 0.1 to 40hr to form the alumina coating on the Al sheet being in contact with the electrolyte in the A tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス及び液体混合物か
ら特定成分の濃縮,回収,分離を行うための膜として利
用される。さらに、選択的触媒反応のための担体として
も利用可能である。
FIELD OF THE INVENTION The present invention is used as a membrane for concentrating, recovering and separating a specific component from a gas and liquid mixture. Further, it can be used as a carrier for a selective catalytic reaction.

【0002】[0002]

【従来の技術】多孔性アルミナ陽極酸化膜は、一般には
アルミニウムを硫酸,リン酸,クロム酸,シュウ酸等の
電解液に浸し、アルミニウムを陽極、電解液中の白金な
どの電極を陰極として、直流電圧を印加することよって
得られている。多孔性アルミナ陽極酸化膜の製造装置の
形態は、図1に模式的に表される。原料となるアルミニ
ウム板を挟むA,B2つの溶液槽、例えばA槽溶液とし
て硫酸,B槽溶液として水からなり、膜を作製する側
(この場合はA槽)に電極が設置される。そして、5〜
20Vの直流電流を印加することによって陽極酸化処理
が行われ、B槽の電解液に接触するアルミニウム板上に
アルミナ膜が形成される。得られる膜は、直径10nm
もしくはそれ以上の井戸状の細孔を有している。細孔は
規則的配列をしており、それぞれの細孔は細孔壁と細孔
の底にあるバリア層からなる。
2. Description of the Related Art A porous alumina anodic oxide film is generally prepared by immersing aluminum in an electrolytic solution such as sulfuric acid, phosphoric acid, chromic acid or oxalic acid, and using aluminum as an anode and an electrode such as platinum in the electrolytic solution as a cathode. It is obtained by applying a DC voltage. The form of an apparatus for producing a porous alumina anodic oxide film is schematically shown in FIG. Two solution tanks A and B sandwiching an aluminum plate as a raw material, for example, sulfuric acid as the solution in the tank A and water as the solution in the tank B are provided, and the electrode is installed on the side where the membrane is prepared (in this case, the tank A). And 5
Anodizing treatment is performed by applying a direct current of 20 V, and an alumina film is formed on the aluminum plate in contact with the electrolytic solution in tank B. The film obtained has a diameter of 10 nm.
Alternatively, it has more well-shaped pores. The pores are in a regular array, each pore consisting of a pore wall and a barrier layer at the bottom of the pore.

【0003】その細孔径は、電解時の印加電圧と正の相
関を持ち一義的に決まる。従って、微細孔を得るには印
加電圧を低くする必要があるが、電解可能な印加電圧に
は下限があり、得られる細孔も5nm付近を下限とする
[小野幸子,馬場宣良,増子昇,表面技術,42,13
3 (1991)]。
The pore diameter has a positive correlation with the applied voltage during electrolysis and is uniquely determined. Therefore, it is necessary to lower the applied voltage in order to obtain micropores, but there is a lower limit to the applied voltage that can be electrolyzed, and the resulting pores also have a lower limit of around 5 nm [Sachiko Ono, Nobuyoshi Baba, Noboru Masuko. , Surface technology, 42, 13
3 (1991)].

【0004】この井戸状細孔を貫通孔とすると、高分子
の分離が可能となる[K.ITAYA,S.SUGAW
ARA,K.ARAI and S.SAITO,J.
Chem.Eng.Japan,17,514(198
4)]。その方法は、井戸状細孔の底の部分及び膜背面
の残存アルミニウムを硫酸,臭化メタノール等によって
溶解除去することによる。
When the well-shaped pores are used as through-holes, polymers can be separated [K. ITAYA, S.M. SUGAW
ARA, K.K. ARAI and S. SAITO, J.
Chem. Eng. Japan, 17, 514 (198
4)]. The method is by dissolving and removing the residual aluminum on the bottom of the well-shaped pores and on the back surface of the membrane with sulfuric acid, methanol bromide or the like.

【0005】この製造法によって得られる膜の細孔のサ
イズは、前述のごとく10nmもしくはそれ以上であ
る。例えば細孔径20nmを有する膜を用いることで、
分子量10,000程度を有する混合物の分離に用いる
ことが出来る。一方、より微細な細孔を有する分子ふる
い材料としては、ゼオライトが知られていが、固有の結
晶構造を有するために任意の細孔を制御することは出来
ない。
The size of the pores of the membrane obtained by this production method is 10 nm or more as described above. For example, by using a film having a pore size of 20 nm,
It can be used for separating a mixture having a molecular weight of about 10,000. On the other hand, zeolite is known as a molecular sieving material having finer pores, but it is not possible to control arbitrary pores because it has a unique crystal structure.

【0006】[0006]

【本発明が解決しようとする課題】前述のごとく、既存
の多孔性アルミナ膜によれば気体状もしくは液体状の分
子径100〜200Åを有する高分子混合物の分離に用
いられるが、例えば20Åといった、より小さな分子径
を有する成分混合物の分離には適さない。また、3〜6
Å程度の混合物の分子ふるい分離には、ゼオライトが工
業的に使用されている。しかしながら、ゼオライトは結
晶構造を有し、その細孔径は結晶固有の構造で決まる。
CVD法でその細孔径を縮小させる技術が提案されてい
るが、その制御可能な細孔径範囲は極めて狭い。従っ
て、ゼオライトによる分子ふるい分離が効率的に行われ
る混合物系も極めて限られている。
As described above, according to the existing porous alumina membrane, it is used to separate a polymer mixture having a molecular diameter of 100 to 200Å in a gaseous or liquid state, for example, 20Å. It is not suitable for separating component mixtures with smaller molecular diameters. Also, 3 to 6
Zeolites are industrially used for molecular sieve separation of Å mixtures. However, zeolite has a crystal structure, and its pore size is determined by the crystal-specific structure.
Although a technique for reducing the pore diameter by the CVD method has been proposed, the controllable pore diameter range is extremely narrow. Therefore, the mixture system in which the molecular sieve separation with zeolite is efficiently performed is extremely limited.

【0007】本発明は、アルミナ陽極酸化膜の新しい作
製技術によって極微細孔を有する新規なアルミナ膜を提
供し、それを用いることでこれまで分離が難しかった混
合物系の分離を可能ならしめるものである。
The present invention provides a novel alumina film having ultrafine pores by a new technique for producing an alumina anodic oxide film, and by using it, it becomes possible to separate a mixture system which has been difficult to separate up to now. is there.

【0008】[0008]

【課題を解決するための手段】本発明者らは、アルミニ
ウムの陽極酸化プロセスにおいて、間欠電圧印加により
陽極酸化膜に極微細孔を形成させうることを見出し、本
発明を完成させるに至った。陽極酸化膜への細孔形成方
法は、電解電圧を間欠的に印加することを特徴とする。
さらに、この印加条件を精密に制御することにより、数
Åオーダーの均一な細孔径を有する多孔質アルミナが得
られる。そして、その多孔質アルミナ膜の細孔径は3〜
100Åの間で制御可能である。この材料を分離膜とし
て用いることにより、COとNが極めて高い選択性
を以て分離される。以下、本発明を詳しく述べる。
The present inventors have found that in the anodic oxidation process of aluminum, it is possible to form ultrafine pores in the anodic oxide film by applying an intermittent voltage, and have completed the present invention. The method of forming pores in the anodic oxide film is characterized by intermittently applying an electrolytic voltage.
Further, by precisely controlling this application condition, it is possible to obtain porous alumina having a uniform pore size of several Å order. And the pore diameter of the porous alumina membrane is 3 to
It can be controlled between 100Å. By using this material as a separation membrane, CO 2 and N 2 are separated with extremely high selectivity. Hereinafter, the present invention will be described in detail.

【0009】[0009]

【発明の実施の形態】基本的な構成は、電解用電源が間
欠電圧印加用であることを除いては従来法と大きな違い
はない。純度99.5〜99.99%のアルミニウムを
硫酸,リン酸,クロム酸,シュウ酸等の電解液に浸し、
アルミニウムを陽極、電解液中の白金などの電極を陰極
として、矩形、鋸歯状もしくは正弦状の波形を有する間
欠電圧を印加することによって多孔質アルミナ膜を作製
する。多孔性アルミナ陽極酸化膜の製造装置の形態は、
原料となるアルミニウム板を挟むA,B2つの溶液槽、
例えばA槽溶液として硫酸,B槽溶液として水からな
り、膜を作製する溶液側(この場合はA槽)に白金陰極
が設置される。電解溶液の濃度は0.1〜2mol/l
程度である。そして、1〜50Vの間欠電圧を0.1〜
40時間印加することによって陽極酸化処理が行われ、
A槽の電解液に接触するアルミニウム板上にアルミナ膜
が形成される。このとき、印加される電圧の周波数は1
0Hz〜10kHzである。この操作によって、0.1
〜1000mA/cm程度の電流が流れる。以上の全
ての操作は0℃〜60℃の範囲で行われ得るが、40℃
以下の操作が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The basic structure is not so different from the conventional method except that the electrolysis power source is for applying an intermittent voltage. Immerse aluminum having a purity of 99.5 to 99.99% in an electrolytic solution such as sulfuric acid, phosphoric acid, chromic acid, oxalic acid,
A porous alumina film is prepared by applying an intermittent voltage having a rectangular, sawtooth or sinusoidal waveform using aluminum as an anode and an electrode such as platinum in an electrolytic solution as a cathode. The form of the porous alumina anodized film manufacturing apparatus is
Two solution tanks A and B sandwiching an aluminum plate as a raw material,
For example, sulfuric acid is used as the A tank solution, and water is used as the B tank solution, and the platinum cathode is installed on the solution side for forming the membrane (in this case, the A tank). The concentration of the electrolytic solution is 0.1 to 2 mol / l
It is a degree. Then, the intermittent voltage of 1 to 50 V is set to 0.1 to
Anodizing treatment is performed by applying for 40 hours,
An alumina film is formed on the aluminum plate that is in contact with the electrolytic solution in tank A. At this time, the frequency of the applied voltage is 1
It is 0 Hz to 10 kHz. By this operation, 0.1
A current of about 1000 mA / cm 2 flows. All of the above operations can be performed in the range of 0 ° C to 60 ° C, but 40 ° C
The following operations are desirable.

【0010】物性評価に関しては、高分解能SEM及び
吸着法によって、得られる多孔性膜の細孔径が測定
される。膜の細孔径が電解条件によって2.5〜500
Åの範囲で変化することが観察される。さらに、得られ
た陽極酸化膜のガス分離性能は、室温〜600℃の範囲
で、2成分系混合ガスによる透過試験によりその分離特
性が評価される。
Regarding the evaluation of physical properties, the pore size of the obtained porous membrane is measured by the high resolution SEM and the N 2 adsorption method. The pore size of the membrane is 2.5 to 500 depending on the electrolysis conditions.
Observed to change in the range of Å. Furthermore, the gas separation performance of the obtained anodic oxide film is evaluated in the range of room temperature to 600 ° C. by a permeation test using a binary gas mixture.

【0011】[0011]

【実施例1】サブナノメートルの微細孔を持つ陽極酸化
膜の製造。 純度99.99%,厚さ0.2mm,25mm×25m
mのアルミニウム板を、5wt%NaOH溶液(50℃
±1℃)で1分間化学研磨した後、クロム酸,リン酸,
硫酸(1:1:1)混合液を用い80℃±5℃,12〜
20V,0.16mA/cmの条件下で鉛対極によっ
て10分間の電解研磨を行った。そして電解セルを用
い、以下の手順によってアルミニウム板の中央部分(直
径13mm)から陽極酸化皮膜を得た。
Example 1 Production of an anodized film having sub-nanometer micropores. Purity 99.99%, thickness 0.2 mm, 25 mm x 25 m
m aluminum plate, 5 wt% NaOH solution (50 ℃
After chemical polishing at ± 1 ℃ for 1 minute, chromic acid, phosphoric acid,
Using sulfuric acid (1: 1: 1) mixture, 80 ℃ ± 5 ℃, 12〜
Electrolytic polishing was performed for 10 minutes with a lead counter electrode under the conditions of 20 V and 0.16 mA / cm 2 . Then, using an electrolytic cell, an anodic oxide film was obtained from the central portion (diameter 13 mm) of the aluminum plate by the following procedure.

【0012】先ず、一方の溶液槽(セルA)に1mol
/lHSO溶液,もう一方(セルB)に蒸留水を満
たし、0℃±3℃,直流電圧25V,15mA/cm
の条件下で3時間の電気分解(行程1)を行った。その
後直ちに、ファンクションジェネレーター(HP811
2A)を用いて、周波数100Hzの間欠電圧1V,
0.2mA/cm,3時間の条件で陽極酸化を行った
(行程2)。
First, 1 mol was added to one solution tank (cell A).
/ LH 2 SO 4 solution, the other (cell B) was filled with distilled water, 0 ° C. ± 3 ° C., DC voltage 25 V, 15 mA / cm 2
Electrolysis (step 1) was carried out for 3 hours under the conditions of. Immediately thereafter, the function generator (HP811
2A), an intermittent voltage of 1 V with a frequency of 100 Hz,
Anodization was performed under conditions of 0.2 mA / cm 2 and 3 hours (step 2).

【0013】次にセルAに蒸留水,セルBに30wt%
+0.1mol/lCuCl溶液を満たし、室温で背
面アルミニウムの除去を行った。電解セルからアルミニ
ウム板を取り外した後、陽極酸化膜の周囲に残存したア
ルミニウムを、9vol%臭化メタノール溶液に室温で
およそ15時間浸すことによって溶解除去し、多孔性ア
ルミナ膜を得た。
Next, cell A has distilled water and cell B has 30 wt%
The back aluminum was removed at room temperature by filling +0.1 mol / l CuCl 2 solution. After removing the aluminum plate from the electrolytic cell, the aluminum remaining around the anodized film was dissolved and removed by immersing it in a 9 vol% methanol bromide solution at room temperature for about 15 hours to obtain a porous alumina film.

【0014】この試料について、N吸着法による細孔
径分布の測定(QUANTACHORME,AUTOS
ORB−1)を行った結果、図2に示すように直径4Å
近辺に鋭いピークが観測された。
The pore size distribution of this sample was measured by the N 2 adsorption method (QUANTACHORME, AUTOS).
As a result of ORB-1), as shown in FIG. 2, the diameter is 4Å
A sharp peak was observed in the vicinity.

【0015】[0015]

【比較例1】実施例1と同様に行程1を行った後に実施
例1とは異なる行程2を行った。即ち、直流5V,0.
1mA/cmの電解条件で6時間の陽極酸化を行っ
た。得られた膜の細孔径は、SEM及びN吸着法によ
って、10nm近辺を中心とするブロードな細孔径分布
を持つことが分かった。あわせて、Åオーダーの細孔は
存在しないことが分かった。
COMPARATIVE EXAMPLE 1 Step 1 was carried out in the same manner as in Example 1, and then step 2 different from Example 1 was carried out. That is, DC 5V, 0.
Anodization was performed for 6 hours under an electrolysis condition of 1 mA / cm 2 . The pore size of the obtained film was found to have a broad pore size distribution centered around 10 nm by SEM and N 2 adsorption method. It was also found that there is no Å-order pore.

【0016】[0016]

【実施例2】アルミナ基材上に間欠法によって作製され
た多孔性アルミナ膜のガス分離特性。 直径3〜5mmの管状のα−アルミナ支持体上にアルミ
ニウムをスパッタし、5μmの厚さの薄膜を形成した。
これを、図3に示す装置を用い、陽極酸化を行った。操
作条件は、実施例1における行程2である。得られた試
料のSEM観察によれば、井戸状の細孔が観察された。
Example 2 Gas separation characteristics of a porous alumina membrane produced by an intermittent method on an alumina substrate. Aluminum was sputtered on a tubular α-alumina support having a diameter of 3 to 5 mm to form a thin film having a thickness of 5 μm.
This was anodized using the apparatus shown in FIG. The operating condition is step 2 in the first embodiment. According to SEM observation of the obtained sample, well-shaped pores were observed.

【0017】得られた試料のガス透過特性を、一般に用
いられるHeスウィープ法によって調べた。室温におい
て、N/CO=9/1なる比率の混合ガスを流速4
00cc/minで円管の内側に流し、円管外部の膜を
透過してくるガスについてガスクロマトグラフと石鹸膜
流量計を用いて各ガスの透過速度を定量した。その結
果、膜におけるCO及びNの透過速度比は60であ
った。また、室温においてエタノールと水の混合液の分
離を行った。エタノールと水の1:1混合物を差圧76
0mmHgで接触させたところ、下流側では水の濃度が
上がり、成分比率は1:10となり、水とエタノールの
分離が可能であることが分かった。
The gas permeation characteristics of the obtained sample were examined by the commonly used He sweep method. At room temperature, a mixed gas with a ratio of N 2 / CO 2 = 9/1 was used at a flow rate of 4
The permeation rate of each gas was quantified using a gas chromatograph and a soap membrane flow meter for the gas flowing through the membrane outside the circular tube at a flow rate of 00 cc / min. As a result, the transmission rate ratio of CO 2 and N 2 in the membrane was 60. Further, a mixture of ethanol and water was separated at room temperature. Differential pressure of 1: 1 mixture of ethanol and water 76
When contacted at 0 mmHg, the concentration of water increased on the downstream side, the component ratio became 1:10, and it was found that water and ethanol could be separated.

【0018】[0018]

【比較例2】従来法のアルミナ膜のガス透過性を実施例
2と比較をするため、直流電解でアルミナ膜を作製し
た。実施例2と等しい膜圧を得る電解条件は、直流5
V,0.2mA/cm,6時間である。得られた膜に
ついて、前述と同様の操作でN/CO混合ガスの分
離性能を測定した。その結果、透過速度比は1.8だっ
た。また、この試料で実施例2と同様、エタノールと水
との混合液について透過性能評価を行ったところ、下流
側組成は、1対1で変化はなかった。
Comparative Example 2 In order to compare the gas permeability of the conventional alumina film with that of Example 2, an alumina film was produced by direct current electrolysis. The electrolytic conditions for obtaining the same membrane pressure as in Example 2 are DC 5
V, 0.2 mA / cm 2 , 6 hours. With respect to the obtained membrane, the separation performance of the N 2 / CO 2 mixed gas was measured by the same operation as described above. As a result, the transmission rate ratio was 1.8. In addition, when the permeation performance of this sample was evaluated with respect to a mixed solution of ethanol and water as in Example 2, the downstream composition did not change 1: 1.

【0019】[0019]

【発明の効果】請求項1に記載の方法を用いて製造され
た膜は、30Å以下の細孔径を有することから、従来法
では不可能であったガス分子の分離を可能とする。この
ことは、最も効率の良いガス分離プロセスを提供し、様
々なプラントにおける省エネルギー化に大きく貢献す
る。更に、環境保全の観点で関心が集まっているCO
の分離に対してもきわめて重要な役割を果たすと期待さ
れる。また、ガスの分離にとどまらず、各種低分子の分
離や新規な触媒としても応用できることから、本法によ
って製造された多孔性アルミナ膜の社会に与える意義は
極めて高いと言える。
Since the membrane produced by the method according to the first aspect has a pore size of 30 Å or less, it enables the separation of gas molecules, which was impossible by the conventional method. This provides the most efficient gas separation process and greatly contributes to energy saving in various plants. Furthermore, CO 2 which has been attracting attention from the viewpoint of environmental conservation
It is also expected to play a very important role in the separation of Moreover, since it can be applied not only to gas separation but also to separation of various low-molecular weight compounds and as a new catalyst, it can be said that the significance of the porous alumina membrane produced by this method for society is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】陽極酸化装置の模式図。FIG. 1 is a schematic diagram of an anodizing device.

【図2】N吸着法によって求めた従来法及び間欠法に
おける細孔径分布。
FIG. 2 is a pore size distribution in a conventional method and an intermittent method obtained by an N 2 adsorption method.

【図3】基材の内側から陽極酸化が可能な装置の模式
図。
FIG. 3 is a schematic diagram of an apparatus capable of anodizing from the inside of a base material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C25D 7/00 C25D 7/00 R ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C25D 7/00 C25D 7/00 R

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】アルミニウムの電気分解によって多孔質の
酸化アルミニウム膜を作製するにあたり、微細な細孔を
保有せしめるために電圧を間欠的に印加することを特徴
とするアルミナ膜の製造法。
1. A method for producing an alumina film, characterized in that a voltage is intermittently applied in order to retain fine pores in producing a porous aluminum oxide film by electrolysis of aluminum.
【請求項2】請求項1によって生成される膜で、直径3
nm以下の微細な細孔構造を有する酸化アルミナ膜。
2. A membrane produced according to claim 1, having a diameter of 3
An alumina oxide film having a fine pore structure of nm or less.
【請求項3】請求項2に記載されるアルミナ膜を用いる
ことを特徴とする、気体もしくは液体混合物の選択的分
離方法。
3. A method for selectively separating a gas or liquid mixture, which comprises using the alumina membrane according to claim 2.
【請求項4】請求項1に記載の製造法により製造される
単独で自立した板状及び円筒状の陽極酸化膜。
4. An independently-supported plate-shaped and cylindrical anodic oxide film manufactured by the manufacturing method according to claim 1.
【請求項5】請求項1に記載の製造法により製造され
る、無機質多孔体上に形成され、無機質多孔体側に開口
部を持つ陽極酸化膜。
5. An anodic oxide film formed on the inorganic porous body and having an opening on the inorganic porous body side, which is produced by the production method according to claim 1.
JP17535896A 1996-05-30 1996-05-30 Alumina film having fine pore and its production Pending JPH09316692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17535896A JPH09316692A (en) 1996-05-30 1996-05-30 Alumina film having fine pore and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17535896A JPH09316692A (en) 1996-05-30 1996-05-30 Alumina film having fine pore and its production

Publications (1)

Publication Number Publication Date
JPH09316692A true JPH09316692A (en) 1997-12-09

Family

ID=15994688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17535896A Pending JPH09316692A (en) 1996-05-30 1996-05-30 Alumina film having fine pore and its production

Country Status (1)

Country Link
JP (1) JPH09316692A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009800A (en) * 1999-04-27 2001-01-16 Canon Inc Nano structure and manufacture thereof
KR100595529B1 (en) * 2005-09-01 2006-07-03 한국화학연구원 Catalyst-doped polymer membranes for the removal of dissolved oxygen in water and preparation methode thereof
CN100343422C (en) * 2004-06-04 2007-10-17 中国科学院化学研究所 Prepn process of solid surface in micron and nanometer structure
WO2013058629A2 (en) * 2011-10-20 2013-04-25 한국전기연구원 Production method for nanoporous alumina separating film having straight through holes of nano-sized diameter open at both ends
JP2015525114A (en) * 2012-05-07 2015-09-03 ジ ユニバーシティ オブ オタワ Fabrication of nanopores using high electric field
JP2016145381A (en) * 2015-02-06 2016-08-12 栗田工業株式会社 Porous film, and method and device for producing the same
JP2016145383A (en) * 2015-02-06 2016-08-12 栗田工業株式会社 Surface treatment method for aluminum or aluminum alloy, and surface treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009800A (en) * 1999-04-27 2001-01-16 Canon Inc Nano structure and manufacture thereof
CN100343422C (en) * 2004-06-04 2007-10-17 中国科学院化学研究所 Prepn process of solid surface in micron and nanometer structure
KR100595529B1 (en) * 2005-09-01 2006-07-03 한국화학연구원 Catalyst-doped polymer membranes for the removal of dissolved oxygen in water and preparation methode thereof
WO2013058629A2 (en) * 2011-10-20 2013-04-25 한국전기연구원 Production method for nanoporous alumina separating film having straight through holes of nano-sized diameter open at both ends
WO2013058629A3 (en) * 2011-10-20 2013-06-13 한국전기연구원 Production method for nanoporous alumina separating film having straight through holes of nano-sized diameter open at both ends
JP2015525114A (en) * 2012-05-07 2015-09-03 ジ ユニバーシティ オブ オタワ Fabrication of nanopores using high electric field
JP2016145381A (en) * 2015-02-06 2016-08-12 栗田工業株式会社 Porous film, and method and device for producing the same
JP2016145383A (en) * 2015-02-06 2016-08-12 栗田工業株式会社 Surface treatment method for aluminum or aluminum alloy, and surface treatment device

Similar Documents

Publication Publication Date Title
Hursán et al. Morphological attributes govern carbon dioxide reduction on N-doped carbon electrodes
US20100219079A1 (en) Methods for making membranes based on anodic aluminum oxide structures
CA1137962A (en) Heterogeneous catalyst and process for its manufacture
US20070256562A1 (en) Composite membranes and methods for making same
JPH07256261A (en) Method and apparatus for forming electrolytic activated water
JPH09316692A (en) Alumina film having fine pore and its production
JPH0967173A (en) Production of porous alumina tube
CN102277607B (en) Method for preparing through hole anode alumina film with controllable aperture and thickness
JPH01262903A (en) Method for producing filter membrane
CN100590233C (en) Self-supporting bi-pass nano-aluminium oxide form and preparing method thereof
JP4222861B2 (en) Anodized porous alumina and method for producing the same
JP4423077B2 (en) Anodized porous alumina and method for producing the same
EP1357626B1 (en) Process for manufacturing a proton conducting membrane having an alumina matrix
JPH02254192A (en) Production of porous material
RU2631780C1 (en) Production method of coatings, based on nanoporous titanium dioxide
JPS6171804A (en) Porous aluminum oxide membrane
Masuda et al. Preparation of Microporous Gold Films by Two-Step Replicating Process Using Anodic Alumina as Template.
JP2009299188A5 (en)
KR20030075227A (en) Porous alumina for metal nano-sized rod and process for preparing the same
TWI272243B (en) Method for manufacturing nano-tube
JP2000008193A (en) Pore material and its production
CN110575759A (en) single-walled carbon nanotube-metal hybrid AlPO4Preparation method of-5 molecular sieve composite membrane
JP3496465B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3974681B2 (en) Method for manufacturing separator for electrochemical device
Mankotia et al. Review of highly ordered anodic porous alumina membrane development

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A02 Decision of refusal

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A02