JPH0931571A - Wear resistant copper base sintered alloy - Google Patents

Wear resistant copper base sintered alloy

Info

Publication number
JPH0931571A
JPH0931571A JP7180344A JP18034495A JPH0931571A JP H0931571 A JPH0931571 A JP H0931571A JP 7180344 A JP7180344 A JP 7180344A JP 18034495 A JP18034495 A JP 18034495A JP H0931571 A JPH0931571 A JP H0931571A
Authority
JP
Japan
Prior art keywords
alloy
matrix
thermal conductivity
wear
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7180344A
Other languages
Japanese (ja)
Inventor
Hideaki Kawada
田 英 昭 河
Norimasa Aoki
木 徳 眞 青
Kunio Maki
木 邦 雄 眞
Akira Fujiki
木 章 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Nissan Motor Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP7180344A priority Critical patent/JPH0931571A/en
Publication of JPH0931571A publication Critical patent/JPH0931571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a wear resistant copper base sintered alloy having wear resistance equal to that of the conventional wear resistant iron base sintered alloy, remarkably excellent in thermal conductivity compared to that of the conventional wear resistant iron base sintered alloy and good in heat radiating characteristics. SOLUTION: This wear resistant copper base alloy is the one in which, in a matrix in which the whole body compsn. is composed of, by weight, 1.7 to 5.9% Ni, 1.7 to 9.5% Co, 0.5 to 1.7% Si, 0.17 to 1.00% Sn, 0.2 to 1.5% Cr, 0.8 to 4.5% Mo, and the balance substantial Cu, and the structure of the alloy excluding pores has a compsn. composed of 2 to 6% Ni, 0.5 to 1.5% Si, 0.2 to 1.0% Sn, and the balance substantial Cu, hard phases having a compsn. composed of 2.2 to 2.7% Si, 7.5 to 9.5% Cr, 27 to 30% Mo, and the balance substantial Co are dispersed by 3 to 15%, and fine Ni2 Si intermetallic compounds having 1 to 10nm grain size are precipitatedly dispersed into the matrix.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐摩耗性および熱伝
導性に優れる銅系焼結合金に関するもので、例えば、内
燃機関の弁座などに利用することができる耐摩耗性銅系
焼結合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper-based sintered alloy having excellent wear resistance and thermal conductivity, and can be used, for example, in a valve seat of an internal combustion engine. It's about money.

【0002】[0002]

【従来の技術】自動車用エンジンのポート部分に設けら
れる弁座は、弁との衝撃や摺動に対する耐摩耗性、燃焼
ガスに対する耐蝕性に優れていることが要求され、これ
らの特性を低温から高温までの広い温度範囲で発揮する
ことが必要とされている。そのため、従来において弁座
用合金としては、合金鋼組成の基地合金中に金属間化合
物が分散した鉄系焼結合金が用いられている。
2. Description of the Related Art A valve seat provided in a port portion of an automobile engine is required to have excellent wear resistance against impact and sliding with a valve and corrosion resistance against combustion gas. It is required to exhibit in a wide temperature range up to high temperature. Therefore, as a valve seat alloy, an iron-based sintered alloy in which an intermetallic compound is dispersed in a base alloy having an alloy steel composition is conventionally used.

【0003】[0003]

【発明が解決しようとする課題】自動車用エンジンは、
燃費および出力向上のため、燃焼効率を高める改良が常
に行われている。そのため、燃焼室内が高温化し、ノッ
キングの発生や燃焼室周りの部品の劣化などの問題が発
生することもありうる。
The engine for automobiles is
To improve fuel efficiency and output, improvements are constantly being made to increase combustion efficiency. Therefore, the temperature inside the combustion chamber becomes high, and problems such as knocking and deterioration of parts around the combustion chamber may occur.

【0004】そこで、燃焼室内の温度を低くするには、
燃焼時に発生する熱を効率良く燃焼室外へ放熱すること
が必要であるが、従来の鉄系焼結合金は、熱伝導性があ
まり良くないため、燃焼時に発生する熱を効率良く燃焼
室外へ放熱することはできがたいものである。
Therefore, in order to lower the temperature in the combustion chamber,
Although it is necessary to efficiently dissipate the heat generated during combustion to the outside of the combustion chamber, conventional iron-based sintered alloys do not have very good thermal conductivity, so the heat generated during combustion is efficiently dissipated to the outside of the combustion chamber. It is hard to do.

【0005】一般的に、熱伝導性の良い材料として知ら
れているのは銅合金であり、その内で耐摩耗性にも優れ
る合金としては、Cu−Ni−Si合金(例えば、Cu
−3〜4重量%Ni−0.8〜1.0重量%SiのCo
rson合金)や2重量%前後のBeを含有するベリリ
ウム銅合金等のように、析出硬化型の合金を挙げること
ができる。
Generally, a material having a good thermal conductivity is a copper alloy. Among them, an alloy having excellent wear resistance is a Cu-Ni-Si alloy (for example, Cu
-3 to 4 wt% Ni-0.8 to 1.0 wt% Si Co
Examples thereof include precipitation hardening type alloys such as a beryllium copper alloy containing about 2 wt% Be.

【0006】しかし、発明者が試験を行った結果によれ
ば、これらの銅系合金は、弁座に用いた場合、凝着によ
る摩耗が発生し、特に、高温環境では摩耗が著しいとい
う難点があり、このような難点を解決することが課題で
あった。
However, according to the results of tests conducted by the inventor, when these copper alloys are used for valve seats, wear occurs due to adhesion, and there is a problem that wear is remarkable especially in a high temperature environment. There is a problem to solve such a difficulty.

【0007】[0007]

【発明の目的】この発明は、このような事情を背景とし
てなされたものであって、銅系合金の良好なる熱伝導性
および粉末冶金法の特徴を活かし、前記した析出硬化型
銅系合金よりもさらに優れた耐摩耗性を有し、従来の耐
摩耗性鉄系焼結合金と同等の優れた耐摩耗性のある銅系
焼結合金を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and takes advantage of the good thermal conductivity of a copper-based alloy and the features of powder metallurgy to obtain the above-mentioned precipitation hardening copper-based alloy. Another object of the present invention is to provide a copper-based sintered alloy having further excellent wear resistance and excellent wear resistance equivalent to that of conventional wear-resistant iron-based sintered alloys.

【0008】[0008]

【課題を解決するための手段】そのため、この発明によ
る銅系焼結合金は、請求項1に記載しているように、重
量比で、全体組成が、Ni:1.7〜5.9%、Co:
1.7〜9.5%、Si:0.5〜1.7%、Sn:
0.17〜1.00%、Cr:0.2〜1.5%、M
o:0.8〜4.5%、残部実質的にCuからなり、気
孔を除く合金組織が、Ni:2〜6%、Si:0.5〜
1.5%、Sn:0.2〜1.0%、残部実質的にCu
からなる組成の基地中に、Si:2.2〜2.7%、C
r:7.5〜9.5%、Mo:27〜30%、残部実質
的にCoからなる組成の硬質相が3〜15%分散してい
るものとしたことを特徴としている。
Therefore, the copper-based sintered alloy according to the present invention has a total composition of Ni: 1.7 to 5.9% by weight, as described in claim 1. , Co:
1.7 to 9.5%, Si: 0.5 to 1.7%, Sn:
0.17-1.00%, Cr: 0.2-1.5%, M
o: 0.8-4.5%, the balance consisting essentially of Cu, the alloy structure excluding pores is Ni: 2-6%, Si: 0.5-
1.5%, Sn: 0.2 to 1.0%, balance substantially Cu
Si: 2.2-2.7%, C
It is characterized in that the hard phase having a composition of r: 7.5 to 9.5%, Mo: 27 to 30%, and the balance being substantially Co is dispersed in an amount of 3 to 15%.

【0009】この銅系焼結合金において、基地中の組成
は各元素ごとの金属粉または二元系合金の形で添加され
た混合粉を圧粉、焼結して調製したものとすることがで
き、硬質相は合金粉の形で添加されたものとすることが
できる。
In this copper-based sintered alloy, the composition in the matrix may be prepared by compacting and sintering a mixed powder added in the form of a metal powder of each element or a binary alloy. The hard phase can be added in the form of alloy powder.

【0010】また、焼結されたままの合金であっても使
用することができるが、基地合金は析出硬化性のある組
成であり、請求項2に記載しているように、より多くの
NiSi金属間化合物が析出したものとなるように、
溶体化および時効処理を行った合金であるものとするこ
とが好ましい。そして、請求項3に記載しているよう
に、基地合金中に析出したNiSi金属間化合物の粒
径は1〜10nm程度の範囲内であるものとすることが
望ましい。また、この場合の溶体化処理は、温度:95
0℃前後の焼結温度から急速冷却するか、焼結体を再加
熱して同様に冷却することによって行われるものとする
ことが望ましい。さらに、時効処理は、温度:450〜
550℃で時間:1〜1.5h程度で保持することによ
って行われるものとすることが望ましい。
Although the as-sintered alloy can be used, the matrix alloy has a composition that is precipitation hardenable, and as described in claim 2, a larger amount of Ni can be used. So that the 2 Si intermetallic compound is deposited,
It is preferable that the alloy is solution-treated and aged. Then, as described in claim 3, it is desirable that the grain size of the Ni 2 Si intermetallic compound precipitated in the matrix alloy is within a range of about 1 to 10 nm. The solution treatment in this case is performed at a temperature of 95.
It is desirable to perform the rapid cooling from the sintering temperature of around 0 ° C., or to reheat the sintered body and similarly cool it. Furthermore, the aging treatment is performed at a temperature of 450-
It is desirable to carry out by holding at 550 ° C. for about 1 to 1.5 hours.

【0011】また、焼結合金の気孔が少ないと耐摩耗性
が向上するので、請求項4に記載しているように、焼結
体を鍛造等により圧縮して気孔を減少させた合金である
ものとすることも場合によっては好ましい。
Further, since the wear resistance is improved when the sintered alloy has few pores, as described in claim 4, it is an alloy in which the sintered body is compressed by forging or the like to reduce the pores. In some cases, it is also preferable to use one.

【0012】[0012]

【発明の作用】この発明による銅系焼結合金は、請求項
1に記載しているように、重量比で、全体組成が、N
i:1.7〜5.9%、Co:1.7〜9.5%、S
i:0.5〜1.7%、Sn:0.17〜1.00%、
Cr:0.2〜1.5%、Mo:0.8〜4.5%、残
部実質的にCuからなり、気孔を除く合金の組織が、N
i:2〜6%、Si:0.5〜1.5%、Sn:0.2
〜1.0%、残部実質的にCuからなる組成の基地中
に、Si:2.2〜2.7%、Cr:7.5〜9.5
%、Mo:27〜30%、残部実質的にCoからなる組
成の硬質相が3〜15%分散しているものであり、高熱
伝導性が期待できる銅合金材料を基地としたものであ
る。そして、基地は、高熱伝導性を維持して強度および
摺動耐摩耗性を付与するためNiおよびSiを添加し、
とくに望ましくは請求項2に記載しているように、Ni
Si金属間化合物を析出させ、Snを添加して基地強
化を図っている。
As described in claim 1, the copper-based sintered alloy according to the present invention has a weight ratio of the whole composition of N.
i: 1.7 to 5.9%, Co: 1.7 to 9.5%, S
i: 0.5 to 1.7%, Sn: 0.17 to 1.00%,
Cr: 0.2 to 1.5%, Mo: 0.8 to 4.5%, the balance consisting essentially of Cu, and the alloy structure excluding pores is N
i: 2 to 6%, Si: 0.5 to 1.5%, Sn: 0.2
.About.1.0%, the balance consisting essentially of Cu, Si: 2.2-2.7%, Cr: 7.5-9.5.
%, Mo: 27 to 30%, the balance being a hard phase having a composition of substantially Co dispersed in 3 to 15%, and is based on a copper alloy material that is expected to have high thermal conductivity. Then, the base is added with Ni and Si in order to maintain high thermal conductivity and impart strength and sliding wear resistance,
Particularly preferably, as described in claim 2, Ni
2 Si intermetallic compound is deposited and Sn is added to strengthen the matrix.

【0013】さらに、基地の間にビッカース硬さが60
0〜1100程度のCo基合金の硬質粒子を重量比で3
〜15%分散させることにより、特に高温における凝着
摩耗を防止して、合金全体として高熱伝導性と高耐摩耗
性とを兼ね備えるように合金設計されている。
Further, the Vickers hardness is 60 between the bases.
Hard particles of a Co-based alloy of about 0 to 1100 are used in a weight ratio of 3
The alloy is designed to prevent cohesive wear, especially at high temperatures, by dispersing -15%, and to have high thermal conductivity and high wear resistance as the whole alloy.

【0014】各組成の限定理由は下記の通りである。含
有量は重量%である。
The reasons for limiting each composition are as follows. The content is% by weight.

【0015】(1)基地中のNiおよびSi NiとSiは、NiSi金属間化合物となって析出す
ることで、硬さ、材料強度、摺動に対する耐摩耗性の向
上に寄与する。そして、このNiSi金属間化合物は
熱伝導性をあまり低下させない利点がある。しかし、N
i、Siが銅のα相中に固溶されたままの場合は、熱伝
導性が低下するので好ましくない。
(1) Ni and Si in the matrix Ni and Si are deposited as an Ni 2 Si intermetallic compound to contribute to improvement of hardness, material strength, and abrasion resistance against sliding. And, this Ni 2 Si intermetallic compound has an advantage that the thermal conductivity is not lowered so much. But N
When i and Si remain solid-solved in the α phase of copper, the thermal conductivity is lowered, which is not preferable.

【0016】Niは、2%以上で強度および耐摩耗性が
向上するが、6%を超えて添加しても強度および耐摩耗
性は向上することがなく、熱伝導性は低下する傾向を示
すので、2〜6%とする。
When Ni is added in an amount of 2% or more, the strength and wear resistance are improved. However, when Ni is added in an amount of more than 6%, the strength and wear resistance are not improved, and the thermal conductivity tends to decrease. Therefore, it is set to 2 to 6%.

【0017】Siは、0.5%以上で耐摩耗性が向上す
るが、1.5%を超えても耐摩耗性がそれ以上向上しな
いと共にSiの多量添加は焼結時の液相発生量が多くな
って寸法精度上の問題が出てくるので、0.5〜1.5
%とする。
When Si is 0.5% or more, the wear resistance is improved, but when it exceeds 1.5%, the wear resistance is not further improved, and addition of a large amount of Si causes the amount of liquid phase generated during sintering. 0.5 to 1.5 because there are many
%.

【0018】(2)基地中のSn SnはCuに固溶して基地を強化し、凝着摩耗を減少す
る効果がある。そして、0.2%以上でその効果が認め
られる。一方、Sn含有量の増加により、熱伝導率はほ
ぼ一次関数的に低下する。そして、熱伝導率がSnを含
有しない場合の50%以上となるSn含有量は1%以下
である。このことから、Sn含有量を0.2〜1%とす
る。
(2) Sn Sn in the matrix has the effect of forming a solid solution with Cu to strengthen the matrix and reduce adhesive wear. And the effect is recognized at 0.2% or more. On the other hand, as the Sn content increases, the thermal conductivity decreases almost linearly. The Sn content, which is 50% or more when the thermal conductivity does not contain Sn, is 1% or less. From this, the Sn content is set to 0.2 to 1%.

【0019】(3)Co基硬質粒子 前記の基地合金中に硬さの高い合金粒子を所定量分散さ
せると、凝着摩耗が減少する。この場合、3%以上の分
散で効果が認められるが、15%を超えて分散させても
それ以上の効果はなく、かえって熱伝導率が低下するの
で、硬質粒子の分散量は3〜15%とする。
(3) Co-based hard particles When a predetermined amount of high hardness alloy particles are dispersed in the matrix alloy, cohesive wear is reduced. In this case, the effect is recognized with the dispersion of 3% or more, but even if the dispersion exceeds 15%, there is no further effect, and the thermal conductivity is rather lowered. Therefore, the dispersion amount of the hard particles is 3 to 15%. And

【0020】その硬質粒子としては、基地合金中に拡散
しないもので、マイクロビッカース硬さが600〜11
00程度であり、かつ粒子径が44μm以下(350メ
ッシュ篩下)のものが好ましく、Co基耐熱合金が最適
である。Co基耐熱合金の粉末組成は、Cr:7.5〜
9.5%、Mo:27〜30%、Si:2.2〜2.7
%および残部実質的にCoからなり、この組成の粉末を
用いることにより、いずれも同等の作用効果がある。
The hard particles are those which do not diffuse into the matrix alloy and have a micro Vickers hardness of 600-11.
It is preferable that the particle size is about 00 and the particle size is 44 μm or less (under 350 mesh sieve), and the Co-based heat resistant alloy is most suitable. The powder composition of the Co-based heat-resistant alloy is Cr: 7.5
9.5%, Mo: 27-30%, Si: 2.2-2.7.
% And the balance consisting essentially of Co, and by using a powder of this composition, both have equivalent effects.

【0021】(4)全体組成 前記した基地中のNi、Si、Snの含有量とCo基硬
質粒子の組成および含有量の特定により、全体組成は、
Ni:1.7〜5.9%、Co:1.7〜9.5%、S
i:0.5〜1.7%、Sn:0.17〜1.00%、
Cr:0.2〜1.5%、Mo:0.8〜4.5%、残
部実質的にCuからなるものとなる。
(4) Overall composition By specifying the contents of Ni, Si and Sn in the matrix and the composition and content of Co-based hard particles, the overall composition is
Ni: 1.7 to 5.9%, Co: 1.7 to 9.5%, S
i: 0.5 to 1.7%, Sn: 0.17 to 1.00%,
Cr: 0.2 to 1.5%, Mo: 0.8 to 4.5%, and the balance substantially consists of Cu.

【0022】(5)溶体化および時効処理 温度:950℃前後で焼結した後、通常の冷却速度の毎
分約10℃程度で冷却された焼結体であっても、基地合
金中にNiSi金属間化合物が析出する。
(5) Solution heat treatment and aging treatment Even if the sintered body is sintered at a temperature of about 950 ° C. and then cooled at a normal cooling rate of about 10 ° C. per minute, Ni is contained in the matrix alloy. 2 Si intermetallic compound precipitates.

【0023】また、焼結中の温度ないし冷却過程の90
0℃程度から急冷するか、または焼結体を950℃程度
に再加熱して急冷することによる溶体化処理を施した
後、温度:450〜550℃で時間:1〜1.5hr加
熱する時効処理を施すと、析出が微細になる。
In addition, the temperature during the sintering or the cooling process 90
Aging is performed by subjecting to a solution treatment by quenching from 0 ° C. or reheating the sintered body to about 950 ° C. and quenching, and then heating at a temperature of 450 to 550 ° C. for a time of 1 to 1.5 hours. The treatment makes the precipitate finer.

【0024】基地合金中に分散するNiSi金属間化
合物の大きさは小さい方がよく、1〜10nmが好まし
い。そのためには、急冷による溶体化処理を施すことが
好ましい。
The size of the Ni 2 Si intermetallic compound dispersed in the matrix alloy is preferably small, and is preferably 1 to 10 nm. For that purpose, it is preferable to perform solution treatment by quenching.

【0025】[0025]

【実施例】以下、実施例により本発明を詳細に説明す
る。なお、配合割合および組成は重量%である。
The present invention will be described in detail below with reference to examples. The mixing ratio and the composition are% by weight.

【0026】実施例1 この実施例1では、下記の粉末を用意した。 Example 1 In this example 1, the following powders were prepared.

【0027】 (1)電解銅粉 粒度:−200メッシュ (2)Ni粉 粒度:10μm以下 (3)Si粉 粒度:10μm以下 (4)Sn粉 粒度:−250メッシュ (5)硬質粒子 粒度:−100メッシュ 組成:28%Mo−8%Cr−2.5%Si−残Co (6)ステアリン酸亜鉛粉 これらの粉末を表1の試料番号No.1〜13に示す割
合となるように混合したのち、各混合粉末を圧力:58
8MPaで圧縮してリング形状の圧粉体を作成し、次い
で、各圧粉体を分解アンモニアガス中で温度:950℃
で焼結し、炉中冷却した。
(1) Electrolytic copper powder Particle size: −200 mesh (2) Ni powder Particle size: 10 μm or less (3) Si powder Particle size: 10 μm or less (4) Sn powder Particle size: −250 mesh (5) Hard particle Particle size: − 100 mesh Composition: 28% Mo-8% Cr-2.5% Si-residual Co (6) Zinc stearate powder These powders were sample No. After mixing so as to have a ratio shown in 1 to 13, each mixed powder is pressurized: 58
A ring-shaped green compact is created by compressing at 8 MPa, and then each green compact is decomposed in ammonia gas at a temperature of 950 ° C.
And sintered in a furnace.

【0028】次に、各焼結体を再度分解アンモニアガス
中で温度:950℃に加熱して時間:1h保持したのち
水中に投入して溶体化処理し、さらに分解アンモニアガ
ス中において、温度:500℃で時間:1h加熱して時
効処理した。
Next, each sintered body was heated again in decomposed ammonia gas to a temperature of 950 ° C. and held for 1 hour, and then put into water for solution treatment, and in decomposed ammonia gas, the temperature was changed to: Aging treatment was performed by heating at 500 ° C. for 1 hour.

【0029】また、他の比較試料(No.14)とし
て、特公平5−55593号公報に記載の鉄系焼結合金
で同じ形状の焼結体試料を作成した。このときの基地組
成は、6.5%Co−1.5%Ni−1.5%Mo−
0.8%C−残部Feであり、この基地中に28%Mo
−8%Cr−2.5%Si−残部Coの硬質粒子が15
%分散した組織を有するものであり、密度は6.9g/
cmのものである。
As another comparative sample (No. 14), a sintered body sample having the same shape was prepared from an iron-based sintered alloy described in Japanese Patent Publication No. 5-55593. The matrix composition at this time is 6.5% Co-1.5% Ni-1.5% Mo-.
0.8% C-the balance is Fe, and 28% Mo is contained in this base.
Hard particles of -8% Cr-2.5% Si-balance Co are 15
% Having a dispersed structure and a density of 6.9 g /
It is of the cm 3.

【0030】[0030]

【表1】 [Table 1]

【0031】これらの試料No.1〜14の焼結体につ
いてそれぞれの熱伝導率を測定すると共に、各焼結体を
弁座寸法形状に切削加工し、模擬エンジン台上試験機に
組み込み、運転した後の弁座シート面の摩耗量を測定比
較した。
These sample Nos. The thermal conductivity of each of the sintered bodies 1 to 14 was measured, and each sintered body was machined into a valve seat dimension and shape, incorporated into a simulated engine bench tester, and operated on the valve seat sheet surface. The amount of wear was measured and compared.

【0032】台上試験は、エンジンヘッドに弁座を組み
込み、弁座近傍をプロパンガス燃焼炎で加熱しながらカ
ムシャフトをモータで回転する方法を採用した。
In the bench test, a method was adopted in which a valve seat was incorporated in the engine head, and the cam shaft was rotated by a motor while heating the vicinity of the valve seat with propane gas combustion flame.

【0033】これらの結果を表2に示す。The results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】表1および表2より明らかなように、本発
明材であるNo.1〜11は、従来の鉄系合金試料であ
るNo.14と同等程度の優れた耐摩耗性を示してい
る。一方、熱伝導率は発明材である試料No.1〜11
の方が従来の鉄系合金試料であるNo.14に比べてか
なり高い値を示すことが明らかであり、従来の鉄系合金
を使用した弁座に比べて、燃焼時に発生する燃焼熱を効
率良く燃焼室外へ放熱できるものであった。
As is clear from Tables 1 and 2, the material of the present invention No. Nos. 1 to 11 are conventional iron-based alloy samples. Excellent wear resistance equivalent to 14 is exhibited. On the other hand, the thermal conductivity of sample No. 1 to 11
No. which is a conventional iron-based alloy sample. It is obvious that the value is much higher than that of No. 14, and the combustion heat generated at the time of combustion can be efficiently radiated to the outside of the combustion chamber, as compared with the conventional valve seat using the iron-based alloy.

【0036】また、基地中にSnを含まない試料No.
12では、熱伝導率は著しく高い値を示すものの、凝着
摩耗を生じやすいため、摩耗量はかなり大きな値を示
し、さらに、硬質粒子を含まない試料No.13におい
ても熱伝導率はかなり高い値を示すものの摩耗量は著し
く多いものとなっていた。
In addition, the sample No. containing no Sn in the base.
In Sample No. 12, although the thermal conductivity shows a remarkably high value, adhesive wear is likely to occur, so that the wear amount shows a considerably large value, and further, the sample No. containing no hard particles. Also in No. 13, the thermal conductivity showed a considerably high value, but the wear amount was remarkably large.

【0037】実施例2 実施例1と同じ粉末を用意し、Sn量を0.5%、硬質
粒子量を10%と一定にすると共に、Ni量およびSi
量を図1に示すごとく変化させて各粉末を混合したの
ち、各混合粉末を圧力:588MPaで圧縮してリング
形状の圧粉体を作成し、次いで、各圧粉体を分解アンモ
ニアガス中で温度:950℃で焼結し、炉中冷却した。
Example 2 The same powder as in Example 1 was prepared, the Sn content was kept constant at 0.5%, the hard particle content was kept at 10%, and the Ni content and Si content were adjusted.
After mixing the powders by changing the amounts as shown in FIG. 1, the mixed powders are compressed at a pressure of 588 MPa to form ring-shaped powder compacts, and then the powder compacts are decomposed in decomposed ammonia gas. Temperature: Sintered at 950 ° C. and cooled in furnace.

【0038】次に、各焼結体を再度分解アンモニアガス
中で温度:950℃に加熱して時間:1h保持したのち
水中に投入して溶体化処理し、さらに分解アンモニアガ
ス中において、温度:500℃で時間:1h加熱して時
効処理した。
Next, each sintered body was heated again in decomposed ammonia gas to a temperature of 950 ° C. and held for 1 hour, and then put into water for solution treatment, and in decomposed ammonia gas, the temperature was changed to: Aging treatment was performed by heating at 500 ° C. for 1 hour.

【0039】次いで、これらの各焼結体について熱伝導
率を測定すると共に、実施例1と同様にして弁座シート
面の摩耗量を測定したところ、図1に示す結果であっ
た。
Next, the thermal conductivity of each of these sintered bodies was measured, and the amount of wear of the valve seat seat surface was measured in the same manner as in Example 1. The results are shown in FIG.

【0040】図1は、基地中のNiおよびSi含有量が
熱伝導率および摩耗量に及ぼす影響を示す試験データで
あって、基地中のSn含有量を0.5%、硬質粒子含有
量を10%で一定とした例で示してある。
FIG. 1 is test data showing the effect of the Ni and Si contents in the matrix on the thermal conductivity and the wear amount. The Sn content in the matrix is 0.5% and the hard particle content is It is shown as an example in which it is fixed at 10%.

【0041】図1より明らかなように、熱伝導率は、鉄
系の28W/(m・K)に比べれば、どの試料もかなり
高い値であるが、基地中のSi含有量が0.25%のも
のは、基地中のNi含有量が増加するにつれて熱伝導率
が大きく低下する傾向を示しており、基地中のSi含有
量が0.5%および1.0%のものはNi含有量の増加
による熱伝導率の低下傾向が小さくなり、基地中のSi
含有量が1.5%および2.0%のものは、基地中のN
i含有量が増加するにつれて熱伝導率が上昇し、Ni含
有量が4〜7%で最大値を示している。
As is clear from FIG. 1, the thermal conductivity of each sample is considerably higher than that of iron-based 28 W / (m · K), but the Si content in the matrix is 0.25. %, The thermal conductivity tends to decrease significantly as the Ni content in the matrix increases, and the Ni content in the matrix of 0.5% and 1.0% is the Ni content. The decrease tendency of the thermal conductivity due to the increase of
If the content is 1.5% or 2.0%, N in the base is
The thermal conductivity rises as the i content increases, and the Ni content shows the maximum value at 4 to 7%.

【0042】一方、摩耗量は、基地中のNi含有量が2
%以上で低下し、3〜7%の範囲でほぼ同じ摩耗量を示
す。また、基地中のSi含有量が0.5%以上で耐摩耗
性向上の効果が顕著になっている。
On the other hand, as for the wear amount, the Ni content in the matrix is 2
%, And the wear amount is almost the same in the range of 3 to 7%. Further, the effect of improving the wear resistance is remarkable when the Si content in the matrix is 0.5% or more.

【0043】このことから、基地中のNi含有量は、2
%以上で耐摩耗性および熱伝導性が向上し、6%を超え
ても耐摩耗性の向上がないと共に熱伝導率が低下するこ
とから、2〜6%の範囲が好適である。
From this, the Ni content in the base is 2
% Or more, abrasion resistance and thermal conductivity improve, and even if it exceeds 6%, abrasion resistance does not improve and thermal conductivity decreases, so a range of 2 to 6% is preferable.

【0044】また、基地中のSi含有量は、0.5%以
上で耐摩耗性が向上するが、1.5%を超えて添加する
と、焼結時の液相発生量が多くなり、寸法精度上の問題
が出てくるので、0.5〜1.5%が好適であるという
ことができる。
When the Si content in the matrix is 0.5% or more, the wear resistance is improved. However, if the Si content exceeds 1.5%, the amount of liquid phase generated during sintering increases, and Since there is a problem with accuracy, it can be said that 0.5 to 1.5% is preferable.

【0045】実施例3 実施例1と同じ粉末を用意し、Ni量を4%、Si量を
1%、硬質粒子量を10%と一定にすると共に、Sn量
を図2に示すごとく変化させて各粉末を混合したのち、
各混合粉末を圧力:588MPaで圧縮してリング形状
の圧粉体を作成し、次いで、各圧粉体を分解アンモニア
ガス中で温度:950℃で焼結し、炉中冷却した。
Example 3 The same powder as in Example 1 was prepared, the amount of Ni was 4%, the amount of Si was 1%, the amount of hard particles was 10%, and the amount of Sn was changed as shown in FIG. After mixing each powder,
Each mixed powder was compressed at a pressure of 588 MPa to prepare a ring-shaped green compact, and then each green compact was sintered in decomposed ammonia gas at a temperature of 950 ° C. and cooled in a furnace.

【0046】次に、各焼結体を再度分解アンモニアガス
中で温度:950℃に加熱して時間:1h保持したのち
水中に投入して溶体化処理し、さらに分解アンモニアガ
ス中において、温度:500℃で時間:1h加熱して時
効処理した。
Next, each sintered body was heated again in decomposed ammonia gas to a temperature of 950 ° C. and held for 1 hour, and then put into water for solution treatment, and in decomposed ammonia gas, the temperature was changed to: Aging treatment was performed by heating at 500 ° C. for 1 hour.

【0047】次いで、これらの各焼結体について熱伝導
率を測定すると共に、実施例1と同様にして弁座シート
面の摩耗量を測定したところ、図2に示す結果であっ
た。
Next, the thermal conductivity of each of these sintered bodies was measured, and the amount of wear of the valve seat seat surface was measured in the same manner as in Example 1. The results are shown in FIG.

【0048】図2は、基地中のSn含有量が熱伝導率お
よび摩耗量に及ぼす影響を示す試験データであって、基
地中のNi含有量を4%、基地中のSi含有量を1%、
およびCo基硬質粒子含有量を10%で一定とした例で
示されている。
FIG. 2 is test data showing the influence of the Sn content in the matrix on the thermal conductivity and the wear amount. The Ni content in the matrix is 4% and the Si content in the matrix is 1%. ,
And the content of Co-based hard particles is kept constant at 10%.

【0049】図2より明らかなように、Snは0.2%
以上で耐摩耗性が向上しているが、熱伝導率はSn含有
量が増加すると直線的に低下しており、0.2〜1.0
%が好適ということができる。
As is clear from FIG. 2, Sn is 0.2%.
Although the wear resistance is improved by the above, the thermal conductivity is linearly decreased as the Sn content is increased, and is 0.2 to 1.0.
% Can be said to be suitable.

【0050】実施例4 実施例1と同じ粉末を用意し、Ni量を4%、Si量を
1%、Sn量を0.5%と一定にすると共に、硬質粒子
量を図3に示すごとく変化させて各粉末を混合したの
ち、各混合粉末を圧力:588MPaで圧縮してリング
形状の圧粉体を作成し、次いで、各圧粉体を分解アンモ
ニアガス中で温度:950℃で焼結し、炉中冷却した。
Example 4 The same powder as in Example 1 was prepared, the amount of Ni was 4%, the amount of Si was 1%, the amount of Sn was 0.5%, and the amount of hard particles was as shown in FIG. After changing and mixing each powder, each mixed powder is compressed at a pressure of 588 MPa to form a ring-shaped green compact, and then each green compact is sintered in decomposed ammonia gas at a temperature of 950 ° C. And cooled in the furnace.

【0051】次に、各焼結体を再度分解アンモニアガス
中で温度:950℃に加熱して時間:1h保持したのち
水中に投入して溶体化処理し、さらに分解アンモニアガ
ス中において、温度:500℃で時間:1h加熱して時
効処理した。
Next, each sintered body was heated again in decomposed ammonia gas to a temperature of 950 ° C. and kept for 1 hour, and then put into water for solution treatment, and in decomposed ammonia gas, the temperature was changed to: Aging treatment was performed by heating at 500 ° C. for 1 hour.

【0052】次いで、これらの各焼結体について熱伝導
率を測定すると共に、実施例1と同様にして弁座シート
面の摩耗量を測定したところ、図3に示す結果であっ
た。
Next, the thermal conductivity of each of these sintered bodies was measured, and the amount of wear of the valve seat seat surface was measured in the same manner as in Example 1. The results are shown in FIG.

【0053】図3は、硬質粒子の含有量が熱伝導率およ
び摩耗量に及ぼす影響を示す試験データであって、基地
中のNi含有量を4%、Si含有量を1%、およびSn
含有量を0.5%で一定とした例で示されている。
FIG. 3 is test data showing the effect of the content of hard particles on the thermal conductivity and the amount of wear. The Ni content in the matrix is 4%, the Si content is 1%, and the Sn content is Sn.
It is shown as an example in which the content is constant at 0.5%.

【0054】図3より明らかなように、硬質粒子は、3
%以上で耐摩耗性が向上し、20%程度までほぼ同じ耐
摩耗性を示している。一方、熱伝導率は、硬質粒子の増
加と共にほぼ直線的に低下する。そして、硬質粒子が1
5%を超えると粉末の圧縮性が低下し、成形クラックが
発生し易くなることを考慮すると、3〜15%が適して
いるということができる。
As is clear from FIG. 3, the hard particles are 3
%, The wear resistance is improved, and almost the same wear resistance is exhibited up to about 20%. On the other hand, the thermal conductivity decreases almost linearly with the increase of hard particles. And the hard particles are 1
Considering that if the content exceeds 5%, the compressibility of the powder decreases and molding cracks easily occur, it can be said that 3 to 15% is suitable.

【0055】[0055]

【発明の効果】以上、説明したように、この発明による
銅系焼結合金は、請求項1に記載しているように、重量
比で、全体組成が、Ni:1.7〜5.9%、Co:
1.7〜9.5%、Si:0.5〜1.7%、Sn:
0.17〜1.00%、Cr:0.2〜1.5%、M
o:0.8〜4.5%、残部実質的にCuからなり、気
孔を除く合金の組織が、Ni:2〜6%、Si:0.5
〜1.5%、Sn:0.2〜1.0%、残部実質的にC
uからなる組成の基地中に、Si:2.2〜2.7%、
Cr:7.5〜9.5%、Mo:27〜30%、残部実
質的にCoからなる組成の硬質相が3〜15%分散して
いるものであるから、熱伝導率を悪化させない範囲で、
Ni、SiおよびSnを基地合金中に含有させ、基地強
化とNiSiの析出強化を図り、さらにCo基硬質粒
子を分散した組織を有するものとしたことにより、従来
の耐摩耗性鉄系焼結合金と同等の耐摩耗性があり、そし
てまた従来の耐摩耗性鉄系焼結合金に比べて熱伝導性に
かなり優れているものであるから、内燃機関の弁座に使
用した場合、放熱性と耐摩耗性が良好であり、内燃機関
の性能向上に寄与することができるという顕著な効果が
もたらされる。
As described above, the copper-based sintered alloy according to the present invention has a total weight ratio of Ni: 1.7 to 5.9 as described in claim 1. %, Co:
1.7 to 9.5%, Si: 0.5 to 1.7%, Sn:
0.17-1.00%, Cr: 0.2-1.5%, M
o: 0.8-4.5%, the balance consisting essentially of Cu, and the alloy structure excluding pores is Ni: 2-6%, Si: 0.5
~ 1.5%, Sn: 0.2-1.0%, balance substantially C
Si: 2.2-2.7% in a base having a composition of u,
Cr: 7.5 to 9.5%, Mo: 27 to 30%, the balance is composed of 3 to 15% of a hard phase substantially composed of Co, so that the thermal conductivity is not deteriorated. so,
Since Ni, Si and Sn are contained in the matrix alloy to strengthen the matrix and strengthen the precipitation of Ni 2 Si, and to have a structure in which Co-based hard particles are dispersed, the conventional wear-resistant iron-based calcination is performed. It has wear resistance equivalent to that of bond gold, and it has much better thermal conductivity than conventional wear-resistant iron-based sintered alloys. And the wear resistance are excellent, and the remarkable effect that it can contribute to the performance improvement of the internal combustion engine is brought about.

【0056】そして、請求項2に記載しているように、
基地中にNiSi金属間化合物が析出しているものと
することによって、硬さ、材料強度、摺動に対する耐摩
耗性の向上に有効なものとなり、請求項3に記載してい
るように、NiSi金属間化合物は粒径が1〜10n
mの範囲内であるものとすることによって、基地中にお
けるNiSi金属間化合物の分散効果をより一層顕著
なものとすることが可能であり、請求項4に記載してい
るように、圧縮により気孔が減少しているものとするこ
とによって、焼結合金の気孔が少なくなることによって
耐摩耗性をさらに向上させることが可能であるという著
しく優れた効果がもたらされる。
Then, as described in claim 2,
By prescribing the Ni 2 Si intermetallic compound in the matrix, it becomes effective in improving hardness, material strength, and abrasion resistance against sliding, and as described in claim 3. , Ni 2 Si intermetallic compound has a particle size of 1 to 10 n.
By making it within the range of m, the dispersion effect of the Ni 2 Si intermetallic compound in the matrix can be made more remarkable, and as described in claim 4, compression As a result, the number of pores is reduced, so that it is possible to further improve the wear resistance by reducing the number of pores of the sintered alloy, which is a remarkably excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による銅系焼結合金における基地中の
NiおよびSi含有量と耐摩耗性および熱伝導率との関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the Ni and Si contents in a matrix and the wear resistance and thermal conductivity of a copper-based sintered alloy according to the present invention.

【図2】この発明による銅系焼結合金における基地中の
Sn含有量と耐摩耗性および熱伝導率との関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the Sn content in the matrix and the wear resistance and thermal conductivity of the copper-based sintered alloy according to the present invention.

【図3】この発明による銅系焼結合金における硬質粒子
含有量と耐摩耗性および熱伝導率との関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the content of hard particles and the wear resistance and thermal conductivity in the copper-based sintered alloy according to the present invention.

フロントページの続き (72)発明者 眞 木 邦 雄 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 藤 木 章 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内Front page continued (72) Inventor Kunio Manaki 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Akira Fujiki 2 Takara-cho, Kanagawa, Yokohama, Kanagawa Nissan Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、全体組成が、Ni:1.7〜
5.9%、Co:1.7〜9.5%、Si:0.5〜
1.7%、Sn:0.17〜1.00%、Cr:0.2
〜1.5%、Mo:0.8〜4.5%、残部実質的にC
uからなり、気孔を除く合金組織が、Ni:2〜6%、
Si:0.5〜1.5%、Sn:0.2〜1.0%、残
部実質的にCuからなる組成の基地中に、Si:2.2
〜2.7%、Cr:7.5〜9.5%、Mo:27〜3
0%、残部実質的にCoからなる組成の硬質相が3〜1
5%分散していることを特徴とする耐摩耗性銅系焼結合
金。
1. The weight ratio of the entire composition is Ni: 1.7 to.
5.9%, Co: 1.7 to 9.5%, Si: 0.5 to
1.7%, Sn: 0.17 to 1.00%, Cr: 0.2
~ 1.5%, Mo: 0.8-4.5%, balance substantially C
The alloy structure consisting of u, except for the pores, is Ni: 2 to 6%,
Si: 0.5 to 1.5%, Sn: 0.2 to 1.0%, the balance being substantially Cu, and Si: 2.2.
~ 2.7%, Cr: 7.5-9.5%, Mo: 27-3
The hard phase having a composition of 0% and the balance being substantially Co is 3 to 1
A wear-resistant copper-based sintered alloy characterized by being dispersed at 5%.
【請求項2】 基地中に、NiSi金属間化合物が析
出している請求項1に記載の耐摩耗性銅系焼結合金。
2. The wear-resistant copper-based sintered alloy according to claim 1, wherein a Ni 2 Si intermetallic compound is precipitated in the matrix.
【請求項3】 NiSi金属間化合物は、粒径が1〜
10nmの範囲内のものである請求項2に記載の耐摩耗
性銅系焼結合金。
3. The Ni 2 Si intermetallic compound has a particle size of 1 to 1.
The wear-resistant copper-based sintered alloy according to claim 2, which is in the range of 10 nm.
【請求項4】 圧縮により気孔が減少している請求項1
ないし3のいずれかに記載の耐摩耗性銅系焼結合金。
4. The porosity is reduced by compression.
The wear-resistant copper-based sintered alloy according to any one of 1 to 3.
JP7180344A 1995-07-17 1995-07-17 Wear resistant copper base sintered alloy Pending JPH0931571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7180344A JPH0931571A (en) 1995-07-17 1995-07-17 Wear resistant copper base sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7180344A JPH0931571A (en) 1995-07-17 1995-07-17 Wear resistant copper base sintered alloy

Publications (1)

Publication Number Publication Date
JPH0931571A true JPH0931571A (en) 1997-02-04

Family

ID=16081590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7180344A Pending JPH0931571A (en) 1995-07-17 1995-07-17 Wear resistant copper base sintered alloy

Country Status (1)

Country Link
JP (1) JPH0931571A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939139A3 (en) * 1998-02-26 2000-01-12 Nissan Motor Company Limited Abrasion resistant copper alloy for build-up cladding on engine cylinder head
JP2015160960A (en) * 2014-02-26 2015-09-07 日立化成株式会社 Abrasion resistant copper-based sinter alloy
CN106086518A (en) * 2016-07-05 2016-11-09 宁波博威合金板带有限公司 Copper alloy and application thereof containing nisiloy cobalt
CN106287694A (en) * 2016-08-12 2017-01-04 宁波市鄞州姜山盛旺五金厂 A kind of three ring gas apparatus of gas-cooker
CN106322377A (en) * 2016-08-12 2017-01-11 宁波市鄞州姜山盛旺五金厂 Bothway detachable-type gas burner
CN106439806A (en) * 2016-08-12 2017-02-22 宁波市鄞州姜山盛旺五金厂 Combined-type burner
DE102016109539A1 (en) * 2016-05-24 2017-12-14 Bleistahl-Produktions Gmbh & Co Kg. Valve seat ring
JPWO2017022505A1 (en) * 2015-08-06 2018-05-24 日産自動車株式会社 Sliding member and manufacturing method thereof
WO2020090084A1 (en) * 2018-11-01 2020-05-07 日立化成株式会社 Method for producing copper-based sintered body
WO2023248453A1 (en) * 2022-06-24 2023-12-28 福田金属箔粉工業株式会社 Copper alloy powder for additive manufacturing, additively manufactured copper alloy article, and method for manufacturing copper alloy additively-manufactured article

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939139A3 (en) * 1998-02-26 2000-01-12 Nissan Motor Company Limited Abrasion resistant copper alloy for build-up cladding on engine cylinder head
EP1120472A3 (en) * 1998-02-26 2002-01-02 Nissan Motor Co., Ltd. Abrasion resistant copper alloy for build-up cladding on engine cylinder head
US6531003B2 (en) 1998-02-26 2003-03-11 Mitsui Mining & Smelting Co., Ltd. Abrasion resistant copper alloy, copper alloy powder for build-up cladding, and engine cylinder head
JP2015160960A (en) * 2014-02-26 2015-09-07 日立化成株式会社 Abrasion resistant copper-based sinter alloy
JPWO2017022505A1 (en) * 2015-08-06 2018-05-24 日産自動車株式会社 Sliding member and manufacturing method thereof
DE102016109539A1 (en) * 2016-05-24 2017-12-14 Bleistahl-Produktions Gmbh & Co Kg. Valve seat ring
CN106086518A (en) * 2016-07-05 2016-11-09 宁波博威合金板带有限公司 Copper alloy and application thereof containing nisiloy cobalt
CN106287694A (en) * 2016-08-12 2017-01-04 宁波市鄞州姜山盛旺五金厂 A kind of three ring gas apparatus of gas-cooker
CN106322377A (en) * 2016-08-12 2017-01-11 宁波市鄞州姜山盛旺五金厂 Bothway detachable-type gas burner
CN106439806A (en) * 2016-08-12 2017-02-22 宁波市鄞州姜山盛旺五金厂 Combined-type burner
WO2020090084A1 (en) * 2018-11-01 2020-05-07 日立化成株式会社 Method for producing copper-based sintered body
JPWO2020090084A1 (en) * 2018-11-01 2021-09-24 昭和電工マテリアルズ株式会社 Manufacturing method of copper-based sintered body
WO2023248453A1 (en) * 2022-06-24 2023-12-28 福田金属箔粉工業株式会社 Copper alloy powder for additive manufacturing, additively manufactured copper alloy article, and method for manufacturing copper alloy additively-manufactured article

Similar Documents

Publication Publication Date Title
EP1947208A1 (en) Wear-resistant iron base alloy
US5870989A (en) Abrasion resistant valve seat made of sintered alloy for internal combustion engines
JPH03158445A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JPH0931571A (en) Wear resistant copper base sintered alloy
US6712871B2 (en) Sintered alloy for valve seat having excellent wear resistance and method for producing the same
JPH1171651A (en) Ferrous sintered alloy for valve seat
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
EP1362654B1 (en) Process for producing sintered aluminium alloy
US4332616A (en) Hard-particle dispersion type sintered-alloy for valve seat use
JP2776645B2 (en) High-strength wear-resistant aluminum alloy with excellent cold forgeability
JPH0517839A (en) Bearing alloy for high temperature use and its production
JPS63290249A (en) Ferrous sintered alloy combining heat resistance with wear resistance
JPH0555592B2 (en)
JP2716575B2 (en) Manufacturing method of wear resistant iron-based sintered alloy
JPH0541693B2 (en)
JPS62177159A (en) Sintered alloy member having excellent wear resistance
JPS60251258A (en) Iron system sintered alloy for valve sheet
JPH08193250A (en) Iron-base sintered alloy with high temperature wear resistance and its production
JPH0543998A (en) Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material
JPH0657387A (en) Iron-base sintered alloy for valve seat
JPH0688156A (en) Wear resistant cu series sintered alloy
JPH06145916A (en) Iron-based sintered alloy and its production
JP2571567B2 (en) High temperature wear resistant iron-based sintered alloy
JPH0593241A (en) Production of iron-base sintered alloy for valve seat
JPH07109023B2 (en) Iron-based sintered alloy for valve sheet