JP6315241B2 - Wear-resistant copper-based sintered alloy - Google Patents

Wear-resistant copper-based sintered alloy Download PDF

Info

Publication number
JP6315241B2
JP6315241B2 JP2014035126A JP2014035126A JP6315241B2 JP 6315241 B2 JP6315241 B2 JP 6315241B2 JP 2014035126 A JP2014035126 A JP 2014035126A JP 2014035126 A JP2014035126 A JP 2014035126A JP 6315241 B2 JP6315241 B2 JP 6315241B2
Authority
JP
Japan
Prior art keywords
copper
alloy
hard phase
wear
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014035126A
Other languages
Japanese (ja)
Other versions
JP2015160960A (en
Inventor
英昭 河田
英昭 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014035126A priority Critical patent/JP6315241B2/en
Publication of JP2015160960A publication Critical patent/JP2015160960A/en
Application granted granted Critical
Publication of JP6315241B2 publication Critical patent/JP6315241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐摩耗性に優れた銅基焼結合金に係り、特に、熱伝導性に優れた銅基焼結合金に関する。   The present invention relates to a copper-based sintered alloy having excellent wear resistance, and particularly to a copper-based sintered alloy having excellent thermal conductivity.

自動車用エンジン等に用いられるバルブガイドは、バルブの軸部を支持し、バルブの往復運動を支えるための部品であり、高速で往復運動するバルブと摺動するため優れた耐摩耗性が要求される。バルブガイド用材料としては、従来、鋳鉄や高力黄銅が用いられてきたが、近年では、耐摩耗性に優れる鉄基焼結合金(特許文献1〜3等)が広く用いられてきている。   Valve guides used in automotive engines are parts that support the shaft of the valve and support the reciprocating motion of the valve, and because they slide with a valve that reciprocates at high speed, excellent wear resistance is required. The Conventionally, cast iron and high-strength brass have been used as the valve guide material, but in recent years, iron-based sintered alloys (Patent Documents 1 to 3 and the like) excellent in wear resistance have been widely used.

特公昭55−034858号公報Japanese Patent Publication No. 55-034858 特許第2680927号公報Japanese Patent No. 2680927 特許第4323467号公報Japanese Patent No. 4323467

年々強まる環境意識の中、より一層のエンジンの燃費向上が求められており、エンジンの燃費向上手法の一つとして、エンジンの高圧縮比化が検討されている。すなわち、圧縮比が高ければ高いほど、排気量と投入燃料量が同じでもピストンを押し下げる圧力が大きくなるため燃費は向上する。また、一般的に、同じ系列のエンジンでも高い圧縮比のエンジンは低い圧縮比のエンジンより高出力・高トルクとなる。   Amid ever-increasing environmental awareness, there is a need for further improvements in engine fuel efficiency, and as one of the methods for improving engine fuel efficiency, higher engine compression ratios are being studied. That is, the higher the compression ratio, the higher the fuel consumption because the pressure that pushes down the piston increases even if the exhaust amount and the input fuel amount are equal. In general, even in the same series of engines, a high compression ratio engine has higher output and higher torque than a low compression ratio engine.

しかしながら、従来のバルブガイド用鉄基焼結合金は、熱伝導性が約25W/(m・K)と低く、摺動相手となるバルブの熱をバルブガイドを介して放散する能力が低い。このため、燃焼室に露出するバルブの傘部の熱が放散し難く、燃焼室内の熱がこもり易くなり、燃費向上のため圧縮比を高めると、ノッキングが発生し易くなる。   However, conventional iron-based sintered alloys for valve guides have a low thermal conductivity of about 25 W / (m · K), and have a low ability to dissipate the heat of the valve that is a sliding partner through the valve guide. For this reason, the heat of the valve umbrella exposed to the combustion chamber is difficult to dissipate, the heat in the combustion chamber tends to be trapped, and knocking is likely to occur if the compression ratio is increased to improve fuel efficiency.

また、鋳造で製造した銅基合金(高力黄銅)は、高い熱伝導性を有するが、耐摩耗性が低いため、負荷の小さいエンジンにしか適用することができない。   Moreover, although the copper base alloy (high-strength brass) manufactured by casting has high thermal conductivity, since it has low wear resistance, it can be applied only to engines with a small load.

このため、熱伝導性を高めて摺動相手であるバルブから熱を放散する能力が高く、しかも圧縮比を高めてもノッキングが発生しないようにするとともに、バルブとの摺動環境において充分な耐摩耗性を有する銅基合金のバルブガイド用焼結合金への要望が強まってきている。   For this reason, it has a high ability to dissipate heat from the valve that is the sliding partner by increasing the thermal conductivity, and also prevents knocking from occurring even if the compression ratio is increased, and has sufficient resistance in a sliding environment with the valve. There is an increasing demand for a sintered alloy for valve guides of wear-resistant copper-based alloys.

したがって、本発明は、従来の鉄系焼結合金より高い熱伝導性と、従来の高力黄銅より高い耐摩耗性を兼ね備えたバルブガイド用の焼結合金を提供することを目的とする。   Accordingly, an object of the present invention is to provide a sintered alloy for a valve guide that has higher thermal conductivity than a conventional iron-based sintered alloy and higher wear resistance than a conventional high-strength brass.

本発明は、銅基焼結合金をベースとすることで、焼結合金の熱伝導性を向上させるとともに、銅基焼結合金の基地中に硬質粒子を分散させることにより耐摩耗性を向上させたことを骨子とする。   The present invention is based on a copper-based sintered alloy, thereby improving the thermal conductivity of the sintered alloy and improving the wear resistance by dispersing hard particles in the base of the copper-based sintered alloy. This is the main point.

具体的には、本発明の耐摩耗性銅基焼結合金は、全体組成が、質量比で、Ni:2.0〜16.0%、Si:0.2〜4.0%、かつ全体組成におけるNiとSiの比率がNi:1に対してSi:0.05〜0.35であり、残部がCuおよび不可避不純物からなり、気孔と、銅もしくは銅−ニッケル合金からなる基地と、前記基地中に分散する粒状のニッケル珪化物とからなる金属組織を呈するとともに、前記ニッケル珪化物は2μm以上の大きさのものを金属組織中の面積率で2%以上含むことを特徴とする。 Specifically, the wear-resistant copper-based sintered alloy of the present invention has an overall composition in terms of mass ratio of Ni: 2.0 to 16.0%, Si: 0.2 to 4.0%, and the total The ratio of Ni to Si in the composition is Si: 0.05 to 0.35 with respect to Ni: 1, the balance is made of Cu and inevitable impurities, the pores and the base made of copper or copper-nickel alloy, together exhibit metallic structure consisting of a nickel silicide in distributed granulated in the matrix, wherein the nickel silicide is characterized in that it comprises more than 2% more than a size 2μm at an area ratio of the metal structure.

上記の耐摩耗性銅基焼結合金においては、基地中に、総量として5.0質量%以下の鉄基硬質相、コバルト基硬質相および合金鉄のうち1種以上をさらに分散させることにより、耐摩耗性を更に向上させることができ、また、気孔中に全体組成中のC量として3.0質量%以下の黒鉛相をさらに分散させることにより摺動特性を更に向上させることができる。   In the above wear-resistant copper-based sintered alloy, by further dispersing one or more of iron-base hard phase, cobalt-base hard phase and alloy iron of 5.0 mass% or less as a total amount in the matrix, The wear resistance can be further improved, and the sliding characteristics can be further improved by further dispersing a graphite phase of 3.0% by mass or less as the C content in the entire composition in the pores.

本発明の耐摩耗性銅基焼結合金は、基地が銅基焼結合金であるため、熱伝導性に優れるとともに、基地中に硬質粒子が分散することにより耐摩耗性が向上したものであり、バルブガイドとして使用した場合に、摺動相手となるバルブと良好な摺動を維持できるとともに、摺動相手となるバルブの熱をバルブガイドを介して放散することができ、エンジンの圧縮比を高めてもノッキングの発生を防止でき、もってエンジンの燃費向上に寄与できるという優れた効果を奏する。   The wear-resistant copper-based sintered alloy of the present invention is excellent in thermal conductivity because the base is a copper-based sintered alloy, and the wear resistance is improved by dispersing hard particles in the base. When used as a valve guide, it can maintain good sliding with the valve that is the sliding partner, and can dissipate the heat of the valve that is the sliding partner through the valve guide, thereby reducing the compression ratio of the engine. Even if it is raised, the occurrence of knocking can be prevented, thereby producing an excellent effect that it can contribute to improvement of engine fuel consumption.

本発明の耐摩耗性焼結合金の金属組織を示す図面代用写真である。It is a drawing substitute photograph which shows the metal structure of the wear-resistant sintered alloy of this invention.

Cuは熱伝導率が398W/(m・K)であり、Feの84W/(m・K)に比して4.7倍の高い熱伝導率を示す。また、銅合金は、Cuに比して熱伝導率が低下するものの、Feおよび従来の鉄系焼結合金(約25W/(m・K))に比して高い熱伝導率を示す。このため、焼結合金の熱伝導性を向上させるため、基地を銅もしくは銅合金として構成する。   Cu has a thermal conductivity of 398 W / (m · K), which is 4.7 times as high as that of Fe, which is 84 W / (m · K). In addition, although the copper alloy has a lower thermal conductivity than Cu, it exhibits a higher thermal conductivity than Fe and a conventional iron-based sintered alloy (about 25 W / (m · K)). For this reason, in order to improve the thermal conductivity of the sintered alloy, the base is configured as copper or a copper alloy.

一方、銅および銅合金は、Feおよび従来の鉄系焼結合金に比して耐摩耗性が低いことから、基地のみでは耐摩耗性が不充分である。このため、基地中に硬質粒子を分散させることで耐摩耗性を向上させる。硬質粒子は、基地中に均一に分散することが好ましく、銅合金基地中より析出分散するものが好ましい。   On the other hand, since copper and copper alloys have low wear resistance compared to Fe and conventional iron-based sintered alloys, wear resistance is insufficient only at the base. For this reason, abrasion resistance is improved by dispersing hard particles in the base. The hard particles are preferably dispersed uniformly in the matrix, and those that are precipitated and dispersed from the copper alloy matrix are preferred.

このような観点から検討を進めたところ、Cuと合金化する元素としてNiが好適であり、基地中に析出分散させる硬質粒子をニッケル珪化物とすると、高い熱伝導率と耐摩耗性を確保できることを見出した。以下に、本発明の耐摩耗性銅基焼結合金の成分について限定理由を説明する。   As a result of investigations from such a viewpoint, Ni is suitable as an element to be alloyed with Cu, and if the hard particles to be precipitated and dispersed in the matrix are nickel silicide, high thermal conductivity and wear resistance can be secured. I found. Below, the reason for limitation is demonstrated about the component of the wear-resistant copper base sintered alloy of this invention.

Niは、Cuに固溶して基地を強化する作用がある。また、Niは、後述するSiとニッケル珪化物(NiSi)を形成して基地中に析出分散することで、銅基焼結合金の耐摩耗性を向上させる作用がある。Ni量が2.0質量%に満たないと、上記効果が乏しくなり、銅基焼結合金の耐摩耗性が低くなる。一方、Ni量が16.0質量%を超えると、Cuに固溶するNi量が過多となったり、析出するニッケル珪化物量が過多となったりして、銅基焼結合金の熱伝導率の低下が著しくなる。このため、全体組成におけるNi量を2.0〜16.0質量%とする。 Ni has a function of strengthening the base by dissolving in Cu. Further, Ni is, by precipitating dispersed in the matrix to form a later-described Si and nickel silicide (Ni 2 Si), an effect of improving the wear resistance of Domotosho sintered alloy. When the amount of Ni is less than 2.0% by mass, the above effect is poor, and the wear resistance of the copper-based sintered alloy is lowered. On the other hand, if the amount of Ni exceeds 16.0% by mass, the amount of Ni dissolved in Cu becomes excessive, or the amount of precipitated nickel silicide becomes excessive, and the thermal conductivity of the copper-based sintered alloy The decline is significant. For this reason, the amount of Ni in the overall composition is set to 2.0 to 16.0 mass%.

Siは、Niとニッケル珪化物(NiSi)を形成して基地中に析出分散し、銅基焼結合金の耐摩耗性を向上させるために添加する。また、SiはCuの液相発生温度を低くする作用があるため、焼結を促進して銅基焼結合金を緻密化し、銅基焼結合金の強度の向上に寄与する。Si量は、0.2質量%に満たないと、析出分散するニッケル珪化物の量が乏しくなり、銅基焼結合金の耐摩耗性が低くなる。一方、Si量が4.0質量%を超えると、銅基焼結合金の基地中に析出分散するニッケル珪化物の量が過多となり、銅基焼結合金の熱伝導率が著しく低下する。このため、全体組成におけるSi量を0.2〜4.0質量%とする。 Si forms nickel and nickel silicide (Ni 2 Si), precipitates and disperses in the matrix, and is added to improve the wear resistance of the copper-based sintered alloy. Further, since Si has an action of lowering the liquid phase generation temperature of Cu, it promotes sintering, densifies the copper-based sintered alloy, and contributes to improving the strength of the copper-based sintered alloy. When the amount of Si is less than 0.2% by mass, the amount of nickel silicide that precipitates and disperses decreases, and the wear resistance of the copper-based sintered alloy decreases. On the other hand, if the amount of Si exceeds 4.0% by mass, the amount of nickel silicide deposited and dispersed in the base of the copper-based sintered alloy becomes excessive, and the thermal conductivity of the copper-based sintered alloy is significantly reduced. For this reason, the Si amount in the overall composition is set to 0.2 to 4.0 mass%.

上記のNiとSiの比率は、Niに対してSiが乏しい場合、もしくはSiに対してNiが乏しい場合、析出分散するニッケル珪化物の量が乏しくなり耐摩耗性が低くなるとともに、銅基焼結合金の基地に固溶されるNiもしくはSiの量が多くなって、銅基焼結合金の熱伝導率が低下する。この観点から、全体組成におけるNiとSiの比率は、Ni:1に対してSi:0.05〜0.35とすることが好ましい。   The ratio of Ni to Si is such that when Si is poor with respect to Ni, or when Ni is poor with respect to Si, the amount of nickel silicide deposited and dispersed becomes low, wear resistance is lowered, and copper-based firing is reduced. The amount of Ni or Si dissolved in the bond gold base increases, and the thermal conductivity of the copper-based sintered alloy decreases. From this viewpoint, the ratio of Ni and Si in the overall composition is preferably Si: 0.05 to 0.35 with respect to Ni: 1.

銅基焼結合金の基地中に析出分散するニッケル珪化物は、微細なものであると、相手材となるバルブとの摺動時に、基地ごと塑性流動してしまい、耐摩耗性向上の効果が乏しくなる。このため、ニッケル珪化物は、粒状のものとするとともに、2μm以上の大きさのものを含むものとする必要がある。なお、ここで云うニッケル珪化物の大きさは、ニッケル珪化物の一粒子における最大径である。2μm以上の大きさのニッケル珪化物は、耐摩耗性の観点から金属組織中の面積率で2%以上とすることが好ましい。   If the nickel silicide that precipitates and disperses in the base of the copper-based sintered alloy is fine, it will plastically flow with the base when sliding against the valve that is the counterpart material, and this will have the effect of improving wear resistance. Become scarce. For this reason, nickel silicide is required to be granular and include those having a size of 2 μm or more. The size of nickel silicide referred to here is the maximum diameter of one particle of nickel silicide. The nickel silicide having a size of 2 μm or more is preferably 2% or more in terms of the area ratio in the metal structure from the viewpoint of wear resistance.

以上より、本発明の耐摩耗性銅基焼結合金は、全体組成が、質量比で、Ni:2.0〜16.0%、Si:0.2〜4.0%、かつ全体組成におけるNiとSiの比率がNi:1に対してSi:0.05〜0.35であり、残部がCuおよび不可避不純物からなるものとする。また、金属組織は、焼結合金の製造において不可避の気孔と、銅もしくは銅−ニッケル合金からなる基地と、この基地中に分散し、粒状であって2μm以上の大きさものを金属組織中の面積率で2%以上含むニッケル珪化物とからなる金属組織を呈するものとなる。 From the above, the wear-resistant copper-based sintered alloy of the present invention has an overall composition in terms of mass ratio of Ni: 2.0 to 16.0%, Si: 0.2 to 4.0%, and the overall composition. It is assumed that the ratio of Ni and Si is Si: 0.05 to 0.35 with respect to Ni: 1, and the balance is made of Cu and inevitable impurities. Further, the metal structure is inevitable in the production of a sintered alloy, a base made of copper or a copper-nickel alloy, and dispersed in this base, and is granular and has a size of 2 μm or more in the metal structure. It exhibits a metal structure composed of nickel silicide containing 2% or more in area ratio .

なお、気孔は焼結合金において不可避なものであるが、焼結合金の強度や熱伝導率を低下させるものであるから、なるべく少ないことが好ましく、銅基焼結合金の密度として7.5Mg/m以上とすることが好ましい。 Note that the pores are inevitable in the sintered alloy, but are preferably as small as possible because they reduce the strength and thermal conductivity of the sintered alloy, and the density of the copper-based sintered alloy is 7.5 Mg / m 3 or more is preferable.

本発明の耐摩耗性銅基焼結合金は、次のようにして製造することができる。   The wear-resistant copper-based sintered alloy of the present invention can be produced as follows.

(1)銅粉末とニッケル粉末、(2)銅−ニッケル合金粉末、(3)銅粉末と銅−ニッケル合金粉末のうちのいずれかに、シリコン(Si)粉末を添加し、混合して、原料粉末が、質量比で、Ni:2.0〜16.0%、Si:0.2〜4.0%、および残部がCuおよび不可避不純物の組成となるように調整する。   (1) Copper powder and nickel powder, (2) Copper-nickel alloy powder, and (3) Copper powder and copper-nickel alloy powder, silicon (Si) powder is added, mixed, and raw material It adjusts so that powder may become a composition of Ni: 2.0-16.0%, Si: 0.2-4.0%, and a remainder with Cu and an unavoidable impurity by mass ratio.

このように調整された原料粉末を、略円筒のバルブガイド形状に500〜700MPa程度の成形圧力で成形して、バルブガイド形状の成形体とする。銅粉末や銅−ニッケル合金粉末は比較的軟質であるため、この程度の成形圧力で7.5Mg/m以上とすることができる。 The raw material powder thus adjusted is molded into a substantially cylindrical valve guide shape at a molding pressure of about 500 to 700 MPa to obtain a molded product having a valve guide shape. Since the copper powder and the copper-nickel alloy powder are relatively soft, it can be made 7.5 Mg / m 3 or more with such a molding pressure.

得られた成形体を焼結炉に投入し、非酸化性雰囲気中900〜1050℃程度の温度に加熱し焼結を行い、通常の冷却速度(5〜15℃/分程度)で冷却することで、本発明の金属組織を有する銅基焼結合金を得ることができる。ここで、ニッケル珪化物は、焼結の冷却時に生成して析出して粒状かつ2μm以上の大きさを含むものとなる。このため、溶体化処理や時効処理は不要である。   The obtained molded body is put into a sintering furnace, heated to a temperature of about 900 to 1050 ° C. in a non-oxidizing atmosphere, sintered, and cooled at a normal cooling rate (about 5 to 15 ° C./min). Thus, a copper-based sintered alloy having the metal structure of the present invention can be obtained. Here, the nickel silicide is generated and precipitated during cooling of the sintering and becomes granular and includes a size of 2 μm or more. For this reason, solution treatment and aging treatment are unnecessary.

本発明の耐摩耗性銅基焼結合金の金属組織の一例を図1に示す。図1の銅基焼結合金は全体組成が、Ni:10質量%、Si:2質量%および残部がCuおよび不可避不純物であり、焼結体密度が7.8Mg/mのものである。図1中薄灰色の部分が銅合金基地であり、濃灰色の部分がニッケル珪化物粒子である。図1において、金属組織に占める最大径が2μm以上のニッケル珪化物粒子は、8面積%となっている。なお、図1の銅基焼結合金の熱伝導率は99W/(m・K)であり、従来の鉄系焼結合金(約25W/(m・K))の約4倍の熱伝導率を示す。 An example of the metal structure of the wear-resistant copper-based sintered alloy of the present invention is shown in FIG. The copper-based sintered alloy of FIG. 1 has an overall composition of Ni: 10% by mass, Si: 2% by mass, the balance being Cu and inevitable impurities, and a sintered body density of 7.8 Mg / m 3 . In FIG. 1, the light gray portions are copper alloy bases, and the dark gray portions are nickel silicide particles. In FIG. 1, nickel silicide particles having a maximum diameter of 2 μm or more in the metal structure are 8% by area. The thermal conductivity of the copper-based sintered alloy in FIG. 1 is 99 W / (m · K), which is about four times that of the conventional iron-based sintered alloy (about 25 W / (m · K)). Indicates.

上記により製造される本発明の耐摩耗性銅基焼結合金は、熱伝導率が高く、かつ耐摩耗性に優れたものとなるが、より一層の耐摩耗性の向上を図りたい場合、基地中に、総量として5.0質量%以下の鉄基硬質相、コバルト基硬質相および合金鉄のうち1種以上を、第二硬質相として、さらに分散させることにより、耐摩耗性を更に向上させることができる。ただし、基地中に分散するこれらの硬質相の量が、総量で5質量%を超えると、銅基焼結合金の熱伝導率の低下が著しくなるため、総量で5質量%以下に止めるべきである。   The wear-resistant copper-based sintered alloy of the present invention produced by the above has high thermal conductivity and excellent wear resistance. However, when further improvement of wear resistance is desired, In addition, the wear resistance is further improved by further dispersing at least one of the iron-based hard phase, the cobalt-based hard phase, and the alloy iron in a total amount of 5.0% by mass or less as the second hard phase. be able to. However, if the amount of these hard phases dispersed in the base exceeds 5% by mass in total, the thermal conductivity of the copper-based sintered alloy will decrease significantly, so the total amount should be limited to 5% by mass or less. is there.

上記の硬質相のうち、鉄基硬質相としては、鉄基合金基地中に炭化物粒子が析出分散する硬質相が好ましい。具体的には、(A)質量比で、Cr:4〜25%、C:0.25〜2.4%、および残部がFeおよび不可避不純物からなり、鉄基合金中にCrの炭化物粒子が分散する硬質相、(B)質量比で、Cr:4〜25%、C:0.25〜2.4%と、Mo:0.3〜3.0%、V:0.2〜2.2%の少なくとも1種以上、および残部がFeおよび不可避不純物からなり、鉄基合金中にCr、Mo、Vの炭化物粒子および/またはこれらの元素の複合炭化物粒子が分散する硬質相、および(C)質量比で、Mo:4〜8%、V:0.5〜3%、W:4〜8%、Cr:2〜6%、C:0.6〜1.2%、および残部がFeおよび不可避不純物からなり、鉄基合金中にMo、V、W、Crの炭化物粒子および/またはこれらの元素の複合炭化物粒子が分散する硬質相、が好ましい。   Among the above hard phases, the iron-based hard phase is preferably a hard phase in which carbide particles are precipitated and dispersed in the iron-based alloy matrix. Specifically, (A) by mass ratio, Cr: 4 to 25%, C: 0.25 to 2.4%, and the balance consisting of Fe and inevitable impurities, Cr carbide particles in the iron-based alloy Hard phase to disperse, (B) Mass ratio: Cr: 4-25%, C: 0.25-2.4%, Mo: 0.3-3.0%, V: 0.2-2. A hard phase in which at least one of 2% and the balance is composed of Fe and inevitable impurities, and carbide particles of Cr, Mo, V and / or composite carbide particles of these elements are dispersed in an iron-based alloy, and (C ) By mass ratio, Mo: 4-8%, V: 0.5-3%, W: 4-8%, Cr: 2-6%, C: 0.6-1.2%, and the balance is Fe And carbide particles of Mo, V, W, Cr and / or composite carbide particles of these elements in the iron-based alloy. The hard phase to be distributed, is preferable.

また、鉄基合金基地中にモリブデン珪化物粒子が分散する硬質相が好ましく、具体的には、(D)質量比で、Si:0.5〜10%、Mo:10〜50%、および残部がFeおよび不可避不純物からなり、鉄基合金中にモリブデン珪化物粒子が分散する硬質相、および(E)質量比で、Si:0.5〜10%、Mo:10〜50%と、Cr:0.5〜10%、Ni:0.5〜10%、Mn:0.5〜5%の少なくとも1種以上、および残部がFeおよび不可避不純物からなり、鉄基合金中にモリブデン珪化物粒子が分散する硬質相が、好ましい。   Further, a hard phase in which molybdenum silicide particles are dispersed in an iron-based alloy matrix is preferable. Specifically, (D) by mass ratio, Si: 0.5 to 10%, Mo: 10 to 50%, and the balance Is composed of Fe and inevitable impurities, and a hard phase in which molybdenum silicide particles are dispersed in an iron-based alloy, and (E) by mass ratio, Si: 0.5 to 10%, Mo: 10 to 50%, Cr: At least one of 0.5 to 10%, Ni: 0.5 to 10%, Mn: 0.5 to 5%, and the balance is composed of Fe and inevitable impurities, and molybdenum silicide particles are contained in the iron-based alloy. A dispersed hard phase is preferred.

さらに、コバルト基硬質相としては、コバルト基合金基地中にモリブデン珪化物粒子が分散する硬質相が好ましく、具体的には、(F)質量比で、Si:1.5〜3.5%、Cr:7〜11%、Mo:26〜30%と、および残部がCoおよび不可避不純物からなり、コバルト基合金中にモリブデン珪化物粒子が分散する硬質相、が好ましい。   Further, as the cobalt-based hard phase, a hard phase in which molybdenum silicide particles are dispersed in the cobalt-based alloy matrix is preferable. Specifically, (F) by mass ratio, Si: 1.5 to 3.5%, Cr: 7 to 11%, Mo: 26 to 30%, and a hard phase in which the balance is made of Co and inevitable impurities and molybdenum silicide particles are dispersed in the cobalt base alloy are preferable.

そして、合金鉄としてはフェロモリブデン、フェロクロム、フェロタングステンが好ましく、具体的には、(G)質量比で、Mo:55〜65%、C:4%以下、Si:2%以下、および残部がFeおよび不可避不純物からなるフェロモリブデン硬質相、(H)質量比で、Cr:50〜75%、C:1%以下、Si:8%以下、および残部がFeおよび不可避不純物からなるフェロクロム硬質相、(I)質量比で、W:75〜85%、C:0.5%以下、Si:0.5%以下、および残部がFeおよび不可避不純物からなるフェロタングステン硬質相、が好ましい。   As the iron alloy, ferromolybdenum, ferrochrome, and ferrotungsten are preferable. Specifically, (G) by mass ratio, Mo: 55 to 65%, C: 4% or less, Si: 2% or less, and the balance Ferromolybdenum hard phase composed of Fe and inevitable impurities, (H) by mass ratio, Cr: 50 to 75%, C: 1% or less, Si: 8% or less, and the balance ferrochrome hard phase composed of Fe and inevitable impurities, (I) A ferrotungsten hard phase consisting of W: 75 to 85%, C: 0.5% or less, Si: 0.5% or less, and the balance of Fe and inevitable impurities is preferable.

これらの硬質相は、硬質相の組成の粉末を、原料粉末に添加し混合して、上記の成形および焼結を行うことで、銅基焼結合金の基地中に分散させることができる。   These hard phases can be dispersed in the base of the copper-based sintered alloy by adding the powder of the composition of the hard phase to the raw material powder, mixing them, and performing the molding and sintering described above.

また、本発明の耐摩耗性銅基焼結合金においては、原料粉末に3.0質量%以下の黒鉛粉末を添加することで、気孔中に全体組成中のC量として3.0質量%以下の黒鉛相をさらに分散させることができる。黒鉛は劈開性に優れ固体潤滑剤として作用する。このような黒鉛を気孔中に黒鉛相として分散させることにより、相手材となるバルブとの摺動特性を更に向上させることができる。   Further, in the wear-resistant copper-based sintered alloy of the present invention, by adding 3.0% by mass or less of graphite powder to the raw material powder, 3.0% by mass or less as the amount of C in the entire composition in the pores The graphite phase can be further dispersed. Graphite has excellent cleavage properties and acts as a solid lubricant. By dispersing such graphite in the pores as a graphite phase, it is possible to further improve the sliding characteristics with the valve as the counterpart material.

[第1実施例]
銅粉末、ニッケル粉末、シリコン粉末およびNi量が20質量%で残部がCuおよび不可避不純物からなる銅−ニッケル合金粉末を用意し、表1に示す割合で添加、混合した原料粉末を、成形圧力600MPaの成形圧力で、外径18mm、内径10mm、高さ100mmの円筒形状に成形し、得られた成形体を焼結炉に投入し、非酸化性雰囲気中、焼結温度1000℃で焼結を行い、冷却速度12℃/分で冷却して試料番号01〜21の銅基焼結合金試料を作製した。これらの試料の全体組成を表1に併せて示す。
[First embodiment]
Copper powder, nickel powder, silicon powder, and copper-nickel alloy powder comprising 20% by mass of Ni and the balance being Cu and inevitable impurities are prepared, and the raw material powder added and mixed in the proportions shown in Table 1 is subjected to a molding pressure of 600 MPa. Is molded into a cylindrical shape having an outer diameter of 18 mm, an inner diameter of 10 mm, and a height of 100 mm, and the obtained molded body is put into a sintering furnace and sintered at a sintering temperature of 1000 ° C. in a non-oxidizing atmosphere. And cooling at a cooling rate of 12 ° C./min to prepare copper-based sintered alloy samples of sample numbers 01 to 21. Table 1 shows the overall composition of these samples.

比較のため、従来の高力黄銅として、全体組成が、質量比で、Zn:40%Zn、Mn:2%、Al:1.5%、Si:0.6%、Pb:0.6%および残部がCuおよび不可避不純物からなる溶製の高力黄銅を、外径18mm、内径10mm、高さ100mmの円筒形状に機械加工を行ったものを試料番号22の試料として用意した。   For comparison, as a conventional high-strength brass, the overall composition is, by mass ratio, Zn: 40% Zn, Mn: 2%, Al: 1.5%, Si: 0.6%, Pb: 0.6% A sample No. 22 was prepared by machining a high-strength brass made of molten copper consisting of Cu and inevitable impurities into a cylindrical shape having an outer diameter of 18 mm, an inner diameter of 10 mm, and a height of 100 mm.

また、従来のバルブガイド用鉄系焼結合金として、鉄粉末に鉄−燐合金粉末、銅−錫合金粉末、黒鉛粉末を用意し、成形圧力600MPaの成形圧力で、外径18mm、内径10mm、高さ100mmの円筒形状に成形し、得られた成形体を焼結炉に投入し、非酸化性雰囲気中、焼結温度1000℃で焼結を行い、冷却速度12℃/分で冷却して、全体組成が、質量比で、Cu:4.5%、Sn:0.5%、P:0.28%、C:2.4%、および残部がFeおよび不可避不純物からなる鉄基焼結合金を試料番号23の試料として用意した。   Also, as a conventional iron-based sintered alloy for valve guides, iron-phosphorus alloy powder, copper-tin alloy powder, and graphite powder are prepared as iron powder, and at a molding pressure of 600 MPa, an outer diameter of 18 mm, an inner diameter of 10 mm, Molded into a cylindrical shape with a height of 100 mm, the obtained molded body was put into a sintering furnace, sintered in a non-oxidizing atmosphere at a sintering temperature of 1000 ° C., and cooled at a cooling rate of 12 ° C./min. , Iron-based sinter bonding in which the overall composition is, by mass ratio, Cu: 4.5%, Sn: 0.5%, P: 0.28%, C: 2.4%, and the balance consisting of Fe and inevitable impurities Gold was prepared as sample No. 23.

試料01〜21の銅基焼結合金試料について、JIS Z 2505に規定された焼結体密度測定方法(水中重量法)に準じて焼結体密度の測定を行った。また、顕微鏡を用いて焼結体の金属組織断面(×340)を観察し、株式会社イノテック製QuickGrain Standardを用いて金属組織断面中に占める2μm以上のニッケル珪化物の割合(面積%)を求めた。これらの結果を表1に併せて示す。   About the copper-based sintered alloy sample of samples 01-21, the sintered compact density was measured according to the sintered compact density measuring method (underwater weight method) prescribed | regulated to JISZ2505. Moreover, the metal structure cross section (× 340) of the sintered body was observed using a microscope, and the proportion (area%) of nickel silicide of 2 μm or more in the metal structure cross section was determined using QuickGrain Standard manufactured by Innotech Co., Ltd. It was. These results are also shown in Table 1.

また、全ての試料(試料番号01〜23)について、熱伝導率を測定するとともに、摩耗試験を行って摩耗量の測定を行った。これらの結果を表1に併せて示す。なお、摩耗試験は、円筒形状の焼結体を縦型バルブガイド摩耗試験機に取り付けて摩耗試験を行った。摩耗試験では、軸線を鉛直方向に設定したピストンの下端部にバルブステムを取り付けてバルブを焼結体内経に挿通し、3MPaの横加重をピストンに加えながら、500℃の排気ガス雰囲気中でバルブを往復動させた。この際のストローク速度は3000回/分、ストローク長は8mmとした。30時間の往復動の後、焼結体の内周面の摩耗量(μm)を測定した。   Moreover, about all the samples (sample numbers 01-23), while measuring thermal conductivity, the abrasion test was done and the amount of wear was measured. These results are also shown in Table 1. The wear test was performed by attaching a cylindrical sintered body to a vertical valve guide wear tester. In the wear test, the valve stem was attached to the lower end of the piston with the axis set in the vertical direction, the valve was inserted into the sintered body, a 3 MPa lateral load was applied to the piston, and the valve was placed in an exhaust gas atmosphere at 500 ° C. Was reciprocated. In this case, the stroke speed was 3000 times / minute, and the stroke length was 8 mm. After 30 hours of reciprocation, the amount of wear (μm) on the inner peripheral surface of the sintered body was measured.

なお、熱伝導率の評価にあたっては、従来のバルブガイド用鉄系焼結合金として用意した試料番号23の鉄基焼結合金試料の熱伝導率の2倍以上の値を示すものを合格として評価した。また、摩耗量の評価にあたっては従来の高力黄銅として用意した試料番号22の高力黄銅試料の摩耗量の6割以下の値を示すものを合格として評価した。   In the evaluation of thermal conductivity, a sample showing a value more than twice the thermal conductivity of the iron-based sintered alloy sample No. 23 prepared as a conventional iron-based sintered alloy for valve guides was evaluated as a pass. did. Moreover, in the evaluation of the amount of wear, what showed the value of 60% or less of the amount of wear of the high strength brass sample of the sample number 22 prepared as the conventional high strength brass was evaluated as a pass.

表1の試料番号01〜10の銅基焼結合金試料より、全体組成中のNi量の影響を調べることができる。また、表1の試料番号06、11〜20の銅基焼結合金試料より、全体組成中のSi量の影響を調べることができる。さらに、表1の試料番号06の銅基焼結合金試料と試料番号21の銅基焼結合金試料を比較することによりNiの添加形態の影響について調べることができる。   From the copper-based sintered alloy samples of sample numbers 01 to 10 in Table 1, the influence of the amount of Ni in the entire composition can be examined. Moreover, the influence of the amount of Si in the whole composition can be investigated from the copper base sintered alloy samples of sample numbers 06 and 11 to 20 in Table 1. Further, by comparing the copper-based sintered alloy sample of sample number 06 and the copper-based sintered alloy sample of sample number 21 in Table 1, the influence of the addition form of Ni can be examined.

[Ni量の影響]
試料番号01の試料はNiを含まないものであり、ニッケル珪化物(NiSi)は析出せず、Siの全量がCu基地に固溶する。このため、摩耗量が645μmと大きい値となっている。熱伝導率は68W/(m・K)であり、試料番号23の従来の鉄基焼結合金試料より約2.5倍向上している。
[Influence of Ni content]
The sample of sample number 01 does not contain Ni, nickel silicide (Ni 2 Si) does not precipitate, and the entire amount of Si is dissolved in the Cu base. For this reason, the wear amount is a large value of 645 μm. The thermal conductivity is 68 W / (m · K), which is about 2.5 times higher than the conventional iron-based sintered alloy sample of sample number 23.

試料番号02の試料はNiを2質量%を含有することから、NiがSiと結合してニッケル珪化物(NiSi)が基地中に析出分散する結果、耐摩耗性が向上し、摩耗量が352μmと、試料番号22の従来の高力黄銅試料の57%にまで低減されている。このときの2μm以上の大きさのニッケル珪化物が、金属組織に占める面積率は2.1%となっている。また、Siがニッケル珪化物として析出して、銅合金基地に固溶するSiが減少することにより、熱伝導率も121W/(m・K)と極めて高い熱伝導率を示す。 Since sample No. 02 contains 2% by mass of Ni, Ni is combined with Si and nickel silicide (Ni 2 Si) is precipitated and dispersed in the matrix, resulting in improved wear resistance and wear. Is reduced to 57% of the conventional high-strength brass sample of Sample No. 22, which is 352 μm. In this case, the area ratio of the nickel silicide having a size of 2 μm or more in the metal structure is 2.1%. In addition, Si precipitates as nickel silicide, and Si that dissolves in the copper alloy matrix decreases, so that the thermal conductivity is 121 W / (m · K), which is extremely high.

また、試料番号03〜10の試料より、Ni量が増加するにしたがい、析出するニッケル珪化物の量が増加するとともに、2μm以上の大きさのニッケル珪化物が金属組織に占める面積率が増加して、銅基焼結合金の耐摩耗性が向上する。このため、摩耗量はNi量が増加するに従って低下する傾向を示している。   Further, as the amount of Ni increases from the samples of sample numbers 03 to 10, the amount of nickel silicide deposited increases and the area ratio of nickel silicide of 2 μm or larger in the metal structure increases. Thus, the wear resistance of the copper-based sintered alloy is improved. For this reason, the amount of wear tends to decrease as the amount of Ni increases.

一方、Ni量が増加すると基地中に析出するニッケル珪化物の量が増加するため、銅合金基地の割合が低下する。このため熱伝導率は、Ni量の増加に従って低下する傾向を示しており、Ni量が18質量%の試料番号10の試料は熱伝導率の低下が著しく、試料番号23の従来の鉄基焼結合金試料の2倍に満たない値となっている。   On the other hand, when the amount of Ni increases, the amount of nickel silicide deposited in the matrix increases, so the proportion of the copper alloy matrix decreases. For this reason, the thermal conductivity shows a tendency to decrease as the amount of Ni increases, and the sample No. 10 with the Ni amount of 18% by mass shows a significant decrease in thermal conductivity. The value is less than twice that of the bonded gold sample.

以上より、耐摩耗性銅基焼結合金のNi量を、2.0〜16.0質量%の範囲とすることで、熱伝導率の向上と耐摩耗性の向上(摩耗量の低減)を図ることができることが確認された。   From the above, by setting the Ni content of the wear-resistant copper-based sintered alloy in the range of 2.0 to 16.0% by mass, the thermal conductivity is improved and the wear resistance is improved (the amount of wear is reduced). It was confirmed that it was possible to plan.

[Si量の影響]
試料番号11の試料は、Siを含まない試料であり、ニッケル珪化物(NiSi)は析出せず、Niの全量がCu基地に固溶する。このため、摩耗量が534μmと大きい値を示すとともに、熱伝導率は33W/(m・K)と、試料番号23の従来の鉄基焼結合金試料の2倍に満たない値を示している。
[Influence of Si content]
Sample No. 11 is a sample that does not contain Si, nickel silicide (Ni 2 Si) does not precipitate, and the entire amount of Ni is dissolved in the Cu base. Therefore, the wear amount is as large as 534 μm, and the thermal conductivity is 33 W / (m · K), which is less than twice the value of the conventional iron-based sintered alloy sample of sample number 23. .

試料番号12の試料はSiを0.2質量%を含有することから、NiがSiと結合してニッケル珪化物(NiSi)が基地中に析出分散する結果、耐摩耗性が向上し、摩耗量が370μmと、試料番号22の従来の高力黄銅試料の約60%にまで低減されている。このときの2μm以上の大きさのニッケル珪化物が、金属組織に占める面積率は2.0%となっている。また、Niがニッケル珪化物として析出して、銅合金基地に固溶するNiが減少することにより、熱伝導率も55W/(m・K)と試料番号23の従来の鉄基焼結合金試料の2.2倍に向上している。 Since sample No. 12 contains 0.2% by mass of Si, Ni is combined with Si and nickel silicide (Ni 2 Si) is precipitated and dispersed in the matrix, resulting in improved wear resistance. The wear amount is 370 μm, which is reduced to about 60% of the conventional high-strength brass sample of Sample No. 22. At this time, the area ratio of the nickel silicide having a size of 2 μm or more in the metal structure is 2.0%. In addition, since Ni is precipitated as nickel silicide and Ni dissolved in the copper alloy matrix decreases, the thermal conductivity is 55 W / (m · K) and the conventional iron-based sintered alloy sample of sample number 23 It is improved to 2.2 times.

試料番号13〜15、06、16〜20の試料より、Si量が増加するに従って析出するニッケル珪化物の量が増加するとともに、2μm以上の大きさのニッケル珪化物が金属組織に占める面積率が増加し、銅基焼結合金の耐摩耗性が向上している。このため、摩耗量はSi量が増加するに従って低下する傾向を示している。   From the samples Nos. 13 to 15, 06, and 16 to 20, the amount of nickel silicide precipitated as the Si amount increased, and the area ratio of nickel silicide of 2 μm or more in the metal structure increased. Increasing the wear resistance of the copper-based sintered alloy. For this reason, the amount of wear tends to decrease as the amount of Si increases.

また、熱伝導率はSi量が3.0質量%まではSi量の増加に従って低下するが、Si量が3.0質量%を超えると逆に低下する傾向を示している。これは、銅合金基地中に固溶するNi量が減少することによる熱伝導率向上と、銅合金基地中にニッケル珪化物が析出することによる熱伝導率低下のバランスによるもので、Si量が3.0質量%までは前者の効果が大きく熱伝導率が増加するが、Si量が3.0質量%を超えると後者の影響が大きくなって熱伝導率の低下が生じるものと考えられる。このため、Si量が4質量%を超える試料番号20の試料では、熱伝導率の低下が著しく、試料番号23の従来の鉄基焼結合金試料の2倍に満たない値となっている。   Further, the thermal conductivity decreases as the Si amount increases up to 3.0% by mass, but shows a tendency to decrease conversely when the Si amount exceeds 3.0% by mass. This is due to the balance between thermal conductivity improvement due to a decrease in the amount of Ni dissolved in the copper alloy matrix and a decrease in thermal conductivity due to the precipitation of nickel silicide in the copper alloy matrix. Up to 3.0% by mass, the former effect is large and the thermal conductivity is increased. However, if the Si amount exceeds 3.0% by mass, the latter effect is considered to be large, resulting in a decrease in thermal conductivity. For this reason, in the sample of sample number 20 in which the amount of Si exceeds 4% by mass, the thermal conductivity is remarkably reduced, which is less than twice that of the conventional iron-based sintered alloy sample of sample number 23.

以上より、耐摩耗性銅基焼結合金のSi量を、0.2〜4.0質量%の範囲とすることで、熱伝導率の向上と耐摩耗性の向上(摩耗量の低減)を図ることができることが確認された。   From the above, by setting the Si amount of the wear-resistant copper-based sintered alloy in the range of 0.2 to 4.0% by mass, the thermal conductivity is improved and the wear resistance is improved (the amount of wear is reduced). It was confirmed that it was possible to plan.

[Niの添加形態の影響]
試料番号06の銅基焼結合金試料は、Niをニッケル粉末の形態で付与した例であり、試料番号21の銅基焼結合金試料は、Niを銅−ニッケル合金粉末の形態で付与した例である。いずれの試料もNi:10質量%、Si:2質量%および残部がCuおよび不可避不純物からなる組成であり、Niの添加形態だけが異なる試料である。これらの試料を比較すると、熱伝導率および摩耗量はほぼ同一の値であり、Niの添加形態は影響しないことがわかった。
[Influence of Ni addition form]
The copper-based sintered alloy sample of sample number 06 is an example in which Ni is applied in the form of nickel powder, and the copper-based sintered alloy sample in sample number 21 is an example in which Ni is applied in the form of copper-nickel alloy powder. It is. Each sample has a composition of Ni: 10% by mass, Si: 2% by mass, the balance being Cu and inevitable impurities, and only the addition form of Ni is a different sample. When these samples were compared, it was found that the thermal conductivity and the amount of wear were almost the same value, and the addition form of Ni had no effect.

[第2実施例]
第1実施例で用いた銅粉末、ニッケル粉末、およびシリコン粉末と、表2に示す組成(元素記号の前に記載の数値は質量%)の硬質相形成粉末を用意し、表2に示す割合で添加し混合した原料粉末を第1実施例と同じ条件で成形、焼結して試料番号24〜38の銅基焼結合金試料を作製した。これらの試料の全体組成を表3に示す。
[Second Embodiment]
Copper powder, nickel powder, and silicon powder used in the first example, and hard phase forming powder having the composition shown in Table 2 (the numerical value before the element symbol is mass%) are prepared, and the ratio shown in Table 2 The raw material powder added and mixed in step 1 was molded and sintered under the same conditions as in the first example to prepare copper-based sintered alloy samples of sample numbers 24-38. Table 3 shows the overall composition of these samples.

これらの試料について、第1実施例と同様にして熱伝導率と耐摩耗性の測定を行った。その結果を表3に併せて示す。なお、表2および表3には第1実施例の試料番号06、22および23の試料の値を併せて示した。   These samples were measured for thermal conductivity and wear resistance in the same manner as in the first example. The results are also shown in Table 3. Tables 2 and 3 also show values of samples Nos. 06, 22 and 23 of the first example.

表2および表3の試料番号06〜31の銅基焼結合金試料より、第2硬質相の量の影響を調べることができる。また、表2および表3の試料番号28,32〜38の銅基焼結合金試料を比較することにより第2硬質相の種類の影響について調べることができる。   From the copper-based sintered alloy samples of sample numbers 06 to 31 in Table 2 and Table 3, the influence of the amount of the second hard phase can be examined. Moreover, the influence of the kind of 2nd hard phase can be investigated by comparing the copper base sintered alloy sample of the sample numbers 28 and 32-38 of Table 2 and Table 3. FIG.

[第2硬質相の量の影響]
第2硬質相を含まない試料番号06の試料に対し、第2硬質相を含む試料番号24〜31の試料では、いずれも摩耗量が小さくなっており、第2硬質相の量が増加するに従って摩耗量が低下する傾向を示している。一方、第2硬質相を含む試料番号24〜31の試料では、いずれも第2硬質相を含まない試料番号06の試料に対して熱伝導率が低下するとともに、第2硬質相の量が増加するに従って熱伝導率が低下する傾向を示している。このため、第2硬質相量が5質量%を超える試料番号31の試料では熱伝導率の低下が著しく、試料番号23の従来の鉄基焼結合金試料の2倍に満たない値となっている。
[Influence of the amount of the second hard phase]
In contrast to the sample of sample number 06 that does not include the second hard phase, in the samples of sample numbers 24 to 31 that include the second hard phase, the wear amount is decreased, and the amount of the second hard phase increases. It shows a tendency for the amount of wear to decrease. On the other hand, in the samples of sample numbers 24 to 31 including the second hard phase, the thermal conductivity is decreased compared to the sample of sample number 06 not including the second hard phase, and the amount of the second hard phase is increased. As the result, the thermal conductivity tends to decrease. For this reason, in the sample of the sample number 31 in which the amount of the second hard phase exceeds 5% by mass, the thermal conductivity is remarkably reduced, and the value is less than twice that of the conventional iron-based sintered alloy sample of the sample number 23. Yes.

以上より、第2硬質相を分散させることで耐摩耗性の向上(摩耗量の低減)を図ることができるが、その量は5.0質量%以下に止めるべきであることが確認された。   From the above, it was confirmed that the wear resistance can be improved (abrasion amount reduced) by dispersing the second hard phase, but the amount should be stopped at 5.0% by mass or less.

[第2硬質相の種類の影響]
試料番号28、32〜38の試料は、第2硬質相の種類が異なるものである。ここで、試料番号28の試料は(G)フェロモリブデン硬質相の例、試料番号32の試料は(H)フェロクロム硬質相の例、試料番号33の試料は(I)フェロタングステン硬質相の例である。また、試料番号34の試料は(A)鉄基合金中にCrの炭化物粒子が分散する硬質相の例、試料番号35の試料は(B)鉄基合金中にCr、Mo、Vの炭化物粒子および/またはこれらの元素の複合炭化物粒子が分散する硬質相の例、試料番号36の試料は(C)鉄基合金中にMo、V、W、Crの炭化物粒子および/またはこれらの元素の複合炭化物粒子が分散する硬質相の例である。そして、試料番号37の試料は(E)鉄基合金中にモリブデン珪化物粒子が分散する硬質相の例であり、試料番号38の試料は(F)コバルト基合金中にモリブデン珪化物粒子が分散する硬質相の例である。
[Influence of type of second hard phase]
The samples of sample numbers 28 and 32-38 are different in the type of the second hard phase. Here, sample No. 28 is an example of (G) ferromolybdenum hard phase, sample No. 32 is an example of (H) ferrochrome hard phase, and sample No. 33 is an example of (I) ferrotungsten hard phase. is there. Sample No. 34 is (A) an example of a hard phase in which Cr carbide particles are dispersed in an iron-base alloy, and sample No. 35 is (B) Cr, Mo, V carbide particles in an iron-base alloy. And / or an example of a hard phase in which composite carbide particles of these elements are dispersed, the sample of Sample No. 36 is (C) carbide particles of Mo, V, W, Cr and / or composites of these elements in an iron-based alloy. It is an example of a hard phase in which carbide particles are dispersed. Sample No. 37 is an example of (E) a hard phase in which molybdenum silicide particles are dispersed in an iron-based alloy, and Sample No. 38 is (F) a sample in which molybdenum silicide particles are dispersed in a cobalt-based alloy. It is an example of a hard phase.

これらの試料番号28、32〜38の試料は、いずれも第2硬質相を含まない試料番号06の試料に比して摩耗量が小さくなっており、銅基焼結合金の耐摩耗性の向上に寄与することが確認された。   These samples Nos. 28 and 32 to 38 all have a smaller wear amount than the sample No. 06 that does not contain the second hard phase, and improve the wear resistance of the copper-based sintered alloy. It was confirmed that it contributed to.

[第3実施例]
第1実施例で用いた銅粉末、ニッケル粉末、およびシリコン粉末と、黒鉛粉末を用意し、表4に示す割合で添加し混合した原料粉末を第1実施例と同じ条件で成形、焼結して試料番号24〜36の銅基焼結合金試料を作製した。これらの試料について、第1実施例と同様にして熱伝導率と耐摩耗性の測定を行った。その結果を表4に併せて示す。なお、表4には第1実施例の試料番号06、22および23の試料の値を併せて示した。
[Third embodiment]
Prepare the copper powder, nickel powder, silicon powder and graphite powder used in the first example, and add and mix the raw material powder in the proportions shown in Table 4 under the same conditions as in the first example. Thus, copper-based sintered alloy samples Nos. 24-36 were prepared. These samples were measured for thermal conductivity and wear resistance in the same manner as in the first example. The results are also shown in Table 4. Table 4 also shows the values of samples Nos. 06, 22 and 23 of the first example.

表4の試料番号06、39〜44の銅基焼結合金試料より、黒鉛相の量の影響を調べることができる。   From the copper-based sintered alloy samples of sample numbers 06 and 39 to 44 in Table 4, the influence of the amount of the graphite phase can be examined.

[黒鉛相の量の影響]
Cを含有せず黒鉛相を含まない試料番号06の試料に対し、Cを含有して黒鉛相を含む試料番号39〜43の試料は、C量すなわち黒鉛相量が3.0質量%まではC量の増加に従って摩耗量が小さくなる傾向を示しているが、C量が3.0質量%を超える試料番号44の試料では、摩耗量が逆に増加する傾向を示している。また、黒鉛粉末は焼結における銅基焼結合金の緻密化を阻害するため、C量すなわち黒鉛相量が増加するに従って、焼結体密度が低下する傾向を示している。C量が3.0質量%を超えると摩耗量が逆に増加する傾向は、焼結体密度の低下に起因するものと考えられる。すなわち、焼結体密度の低下は基地強度の低下につながることから、C量が3.0質量%を超える試料番号44の試料では、基地強度の低下の影響により摩耗量が増加したものと考えられる。
[Effect of amount of graphite phase]
Sample Nos. 39 to 43 containing C and containing a graphite phase compared to the sample No. 06 containing no C and no graphite phase, the amount of C, that is, the amount of the graphite phase is up to 3.0% by mass. Although the wear amount tends to decrease as the C amount increases, the sample No. 44 with the C amount exceeding 3.0% by mass shows a tendency that the wear amount increases conversely. Further, since the graphite powder inhibits the densification of the copper-based sintered alloy during sintering, the sintered body density tends to decrease as the amount of C, that is, the amount of graphite phase increases. The tendency for the amount of wear to increase conversely when the amount of C exceeds 3.0% by mass is thought to be due to a decrease in the sintered body density. That is, since the decrease in the density of the sintered body leads to a decrease in the base strength, it is considered that the wear amount increased due to the decrease in the base strength in the sample of Sample No. 44 in which the C content exceeds 3.0 mass%. It is done.

また、C量すなわち黒鉛相量の増加にともなう焼結体密度の低下により、熱伝導率はC量の増加に従って低下する傾向を示しており、C量が3.0質量%を超える試料番号44の試料では熱伝導率の低下が著しく、試料番号23の従来の鉄基焼結合金試料の2倍に満たない値となっている。   Further, the thermal conductivity tends to decrease as the C amount increases due to the decrease in the density of the sintered body accompanying the increase in the C amount, that is, the graphite phase amount, and the sample number 44 in which the C amount exceeds 3.0% by mass. In this sample, the thermal conductivity is remarkably lowered, which is less than twice that of the conventional iron-based sintered alloy sample of sample number 23.

以上より、Cを含有させて黒鉛相を分散させることで耐摩耗性の向上(摩耗量の低減)を図ることができるが、C量は3.0質量%以下に止めるべきであることが確認された。   From the above, it is possible to improve wear resistance (reduce the amount of wear) by containing C and dispersing the graphite phase, but it is confirmed that the amount of C should be kept to 3.0% by mass or less. It was done.

本発明の耐摩耗性銅基焼結合金は、熱伝導率と耐摩耗性を兼ね備えたものであり、エンジンの圧縮比を高めてもノッキングの発生を防止することができ、もってエンジンの燃費向上に寄与できるため、高燃費エンジン用のバルブガイドに好適なものである。   The wear-resistant copper-based sintered alloy of the present invention has both thermal conductivity and wear resistance, and can prevent knocking even if the compression ratio of the engine is increased, thereby improving the fuel efficiency of the engine. Therefore, it is suitable for a valve guide for a high fuel consumption engine.

Claims (4)

全体組成が、質量比で、Ni:2.0〜16.0%、Si:0.2〜4.0%、かつ全体組成におけるNiとSiの比率がNi:1に対してSi:0.05〜0.35であり、残部がCuおよび不可避不純物からなり、気孔と、銅もしくは銅−ニッケル合金からなる基地と、前記基地中に分散する粒状のニッケル珪化物とからなる金属組織を呈するとともに、前記ニッケル珪化物は2μm以上の大きさのものを金属組織中の面積率で2%以上含むことを特徴とする耐摩耗性銅基焼結合金。 The overall composition is, by mass ratio, Ni: 2.0 to 16.0%, Si: 0.2 to 4.0%, and the ratio of Ni and Si in the overall composition is Ni: 1 to Si: 1. is from 05 to 0.35, and the balance of Cu and inevitable impurities, pores and, copper or copper - exhibits a base made of nickel alloy, a metal structure composed of a nickel silicide particulate that distributed in the base In addition, the wear-resistant copper-based sintered alloy is characterized in that the nickel silicide contains 2% or more of an area ratio in the metal structure of 2 μm or more. 前記基地組織中に、下記(A)〜(I)のうちの少なくとも1種が、総量として5.0質量%以下、分散し、全体組成中に、さらに選択された成分を含有することを特徴とする請求項1に記載の耐摩耗性銅基焼結合金。
(A)質量比で、Cr:4〜25%、C:0.25〜2.4%、および残部がFeおよび不可避不純物からなり、鉄基合金中にCrの炭化物粒子が分散する硬質相
(B)質量比で、Cr:4〜25%、C:0.25〜2.4%と、Mo:0.3〜3.0%、V:0.2〜2.2%の少なくとも1種以上、および残部がFeおよび不可避不純物からなり、鉄基合金中にCr、Mo、Vの炭化物粒子および/またはこれらの元素の複合炭化物粒子が分散する硬質相
(C)質量比で、Mo:4〜8%、V:0.5〜3%、W:4〜8%、Cr:2〜6%、C:0.6〜1.2%、および残部がFeおよび不可避不純物からなり、鉄基合金中にMo、V、W、Crの炭化物粒子および/またはこれらの元素の複合炭化物粒子が分散する硬質相
(D)質量比で、Si:0.5〜10%、Mo:10〜50%、および残部がFeおよび不可避不純物からなり、鉄基合金中にモリブデン珪化物粒子が分散する硬質相
(E)質量比で、Si:0.5〜10%、Mo:10〜50%と、Cr:0.5〜10%、Ni:0.5〜10%、Mn:0.5〜5%の少なくとも1種以上、および残部がFeおよび不可避不純物からなり、鉄基合金中にモリブデン珪化物粒子が分散する硬質相
(F)質量比で、Si:1.5〜3.5%、Cr:7〜11%、Mo:26〜30%と、および残部がCoおよび不可避不純物からなり、コバルト基合金中にモリブデン珪化物粒子が分散する硬質相
(G)質量比で、Mo:55〜65%、C:4%以下、Si:2%以下、および残部がFeおよび不可避不純物からなるフェロモリブデン硬質相
(H)質量比で、Cr:50〜75%、C:1%以下、Si:8%以下、および残部がFeおよび不可避不純物からなるフェロクロム硬質相
(I)質量比で、W:75〜85%、C:0.5%以下、Si:0.5%以下、および残部がFeおよび不可避不純物からなるフェロタングステン硬質相
In the base organization, at least one of the following (A) to (I) is dispersed in a total amount of 5.0% by mass or less, and further contains selected components in the overall composition. The wear-resistant copper-based sintered alloy according to claim 1.
(A) In a mass ratio, Cr: 4 to 25%, C: 0.25 to 2.4%, and the balance consisting of Fe and inevitable impurities, and a hard phase in which Cr carbide particles are dispersed in an iron-based alloy ( B) By mass ratio, Cr: 4-25%, C: 0.25-2.4%, Mo: 0.3-3.0%, V: 0.2-2.2% The hard phase (C) mass ratio in which the carbide particles of Cr, Mo, V and / or the composite carbide particles of these elements are dispersed in the iron-based alloy, and Mo: 4 -8%, V: 0.5-3%, W: 4-8%, Cr: 2-6%, C: 0.6-1.2%, and the balance consisting of Fe and inevitable impurities, iron group Hard phase (D) material in which carbide particles of Mo, V, W, Cr and / or composite carbide particles of these elements are dispersed in the alloy Ratio: Si: 0.5 to 10%, Mo: 10 to 50%, and the balance is Fe and inevitable impurities, and the hard phase (E) mass ratio in which the molybdenum silicide particles are dispersed in the iron-based alloy, At least one of Si: 0.5 to 10%, Mo: 10 to 50%, Cr: 0.5 to 10%, Ni: 0.5 to 10%, Mn: 0.5 to 5%, and The balance is composed of Fe and inevitable impurities, and the mass ratio of the hard phase (F) in which the molybdenum silicide particles are dispersed in the iron-based alloy, Si: 1.5 to 3.5%, Cr: 7 to 11%, Mo: The hard phase (G) mass ratio in which the molybdenum silicide particles are dispersed in the cobalt-based alloy, with Mo: 55-65%, C: 4% or less, Si: 2% or less, and the balance consisting of Fe and inevitable impurities Romolybdenum hard phase (H) mass ratio, Cr: 50 to 75%, C: 1% or less, Si: 8% or less, and ferrochrome hard phase (I) mass ratio consisting of Fe and inevitable impurities, W : 75 to 85%, C: 0.5% or less, Si: 0.5% or less, and the balance ferrotungsten hard phase consisting of Fe and inevitable impurities
全体組成中に、さらに、C:3.0質量%以下を含有するとともに、前記気孔中に黒鉛相が分散することを特徴とする請求項1または2に記載の耐摩耗性銅基焼結合金。 The wear-resistant copper-based sintered alloy according to claim 1 or 2 , further comprising C: 3.0% by mass or less in the entire composition, and a graphite phase dispersed in the pores. . 密度が7.5Mg/m 以上であることを特徴とする請求項1〜のいずれかに記載の耐摩耗性銅基焼結合金。 The wear-resistant copper-based sintered alloy according to any one of claims 1 to 3 , wherein the density is 7.5 Mg / m 3 or more.
JP2014035126A 2014-02-26 2014-02-26 Wear-resistant copper-based sintered alloy Active JP6315241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014035126A JP6315241B2 (en) 2014-02-26 2014-02-26 Wear-resistant copper-based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014035126A JP6315241B2 (en) 2014-02-26 2014-02-26 Wear-resistant copper-based sintered alloy

Publications (2)

Publication Number Publication Date
JP2015160960A JP2015160960A (en) 2015-09-07
JP6315241B2 true JP6315241B2 (en) 2018-04-25

Family

ID=54184284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014035126A Active JP6315241B2 (en) 2014-02-26 2014-02-26 Wear-resistant copper-based sintered alloy

Country Status (1)

Country Link
JP (1) JP6315241B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603251B (en) * 2015-12-29 2017-10-17 宁波会德丰铜业有限公司 A kind of Copper Alloy Valve and preparation method thereof
JP6881970B2 (en) * 2016-12-26 2021-06-02 古河ロックドリル株式会社 Rock machine
WO2020090084A1 (en) * 2018-11-01 2020-05-07 日立化成株式会社 Method for producing copper-based sintered body
CN110551917B (en) * 2019-09-29 2021-07-09 广东和润新材料股份有限公司 High-conductivity corrosion-resistant copper strip and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931571A (en) * 1995-07-17 1997-02-04 Hitachi Powdered Metals Co Ltd Wear resistant copper base sintered alloy
JP2003089831A (en) * 2001-07-12 2003-03-28 Komatsu Ltd Copper-based sintered sliding material and multi-layer sintered sliding member

Also Published As

Publication number Publication date
JP2015160960A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
JP5525986B2 (en) Sintered valve guide and manufacturing method thereof
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
JP6112473B2 (en) Iron-based sintered sliding member
EP3162475B1 (en) Sintered valve seat and method for manufacturing same
JP6142987B2 (en) Iron-based sintered sliding member
CN108026800B (en) Sintered valve seat
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
WO2018179590A1 (en) Sintered valve seat
JP5658804B1 (en) Sintered alloy valve guide and manufacturing method thereof
JP2012092440A (en) Sintered valve guide material and its manufacturing method
KR101717347B1 (en) Copper based sintered alloy with wear resistance
JP6431012B2 (en) Method for producing wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP6519955B2 (en) Iron-based sintered sliding member and method of manufacturing the same
JP3942136B2 (en) Iron-based sintered alloy
JP6384687B2 (en) Manufacturing method of iron-based sintered sliding member
JP6341455B2 (en) Manufacturing method of iron-based sintered sliding member
JP7143899B2 (en) Method for producing copper-based sintered body
JP2012092439A (en) Sintered valve guide material and its manufacturing method
JP5358131B2 (en) Wear-resistant sintered alloy and method for producing the same
JP2010144238A (en) Wear-resistant sintered alloy and method for producing the same
JP2010144235A (en) Wear-resistant sintered alloy and method for producing the same
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP4303172B2 (en) Ferrous sintered alloy valve seat
JPH11209855A (en) Valve seat made of fe-base sintered alloy, exhibiting excellent wear resistance under high plane pressure
JPH0543998A (en) Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170920

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180314

R151 Written notification of patent or utility model registration

Ref document number: 6315241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350