JPH09302438A - Nickel/ysz cermet and its manufacture - Google Patents

Nickel/ysz cermet and its manufacture

Info

Publication number
JPH09302438A
JPH09302438A JP8143427A JP14342796A JPH09302438A JP H09302438 A JPH09302438 A JP H09302438A JP 8143427 A JP8143427 A JP 8143427A JP 14342796 A JP14342796 A JP 14342796A JP H09302438 A JPH09302438 A JP H09302438A
Authority
JP
Japan
Prior art keywords
ysz
calcination
cermet
powder
nio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8143427A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nagayama
博之 永山
Masanobu Aizawa
正信 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP8143427A priority Critical patent/JPH09302438A/en
Publication of JPH09302438A publication Critical patent/JPH09302438A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide Ni/YSZ cermet which generates little Ni coagulation even when exposed to high temperatures for a long time, and is capable of preventing deterioration of characteristics of a fuel electrode attributable to Ni coagulation such as crack, peeling and increase in electric resistance of the fuel electrode of a solid electrolytic type fuel cell. SOLUTION: Ni/YSZ cermet has the following characteristics, i.e., (1) the Ni/YSZ composition ratio is 24/76 to 64/36wt.%, (2) the mean grain size of particles is <=2μm, and (3) the ratio of (grain boundary of Ni and YSZ) to (total grain boundary number) >=0.4 in the number of the grain boundary in which the section of the line piercing the cermet (>=100μm in length) passes across, where total grain boundary number = grain boundary number of Ni and YSZ + grain boundary number of YSZ and YSZ + grain boundary number of Ni and Ni. That means, the cermet has the structure in which the mean grain size of particles is small, and Ni particles and YSZ particles are sufficiently dispersed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池の燃料電極材料として好適なNi/YSZサーメッ
ト及びその製造方法に関する。特には、長時間高温にさ
らされた場合にもNiの凝集がほとんど生じることがな
く、燃料電極のクラックや剥離及び電気抵抗の増大とい
ったNi凝集に起因する燃料電極の特性劣化を防止する
ことのできるNi/YSZサーメットに関する。
TECHNICAL FIELD The present invention relates to a Ni / YSZ cermet suitable as a fuel electrode material for a solid oxide fuel cell and a method for producing the same. In particular, even when exposed to a high temperature for a long time, Ni agglomeration hardly occurs, and it is possible to prevent characteristic deterioration of the fuel electrode due to Ni agglomeration such as cracking or peeling of the fuel electrode and increase in electric resistance. Regarding Ni / YSZ cermet which can be made.

【0002】[0002]

【従来の技術】円筒型セルタイプの固体電解質型燃料電
池(以下T−SOFCとも言う)の燃料電極を例にとっ
て従来技術を説明する。T−SOFCは、特公平1−5
9705等に開示されている固体電解質型燃料電池(以
下SOFCとも言う)の一タイプである。T−SOFC
は、多孔質支持管−空気電極−固体電解質−燃料電極−
インターコネクターで構成される円筒型セルを有する。
空気電極側に酸素(空気)を流し、燃料電極側にガス燃
料(H2 、CO等)を流してやると、このセル内でO2-
イオンが移動して化学的燃焼が起り、空気電極と燃料電
極の間に電位が生じ発電が行われる。なお、空気電極が
支持管を兼用する形式のものもある。T−SOFCの実
証試験は、1993年段階で25kw級のもの(セル有効
長50cm、セル数1152本) までが進行中である。
2. Description of the Related Art The prior art will be described by taking a fuel electrode of a cylindrical cell type solid oxide fuel cell (hereinafter also referred to as T-SOFC) as an example. T-SOFC is 1-5
It is a type of solid oxide fuel cell (hereinafter also referred to as SOFC) disclosed in 9705 and the like. T-SOFC
Is a porous support tube-air electrode-solid electrolyte-fuel electrode-
It has a cylindrical cell composed of interconnectors.
When oxygen (air) is flown to the air electrode side and gas fuel (H 2 , CO, etc.) is flown to the fuel electrode side, O 2-
Ions move to cause chemical combustion, and an electric potential is generated between the air electrode and the fuel electrode to generate electricity. There is also a type in which the air electrode also serves as the support tube. Demonstration tests of T-SOFCs are in progress up to the 25 kW class (cell effective length 50 cm, 1152 cells) as of 1993.

【0003】現状の代表的なT−SOFCの構成材料、
厚さ及び製造方法は以下のとおりである(Proc. of the
3rd Int. Symp. on SOFC, 1993 )。 支持管:ZrO2 (CaO)、厚さ1.2mm、押し出し 空気電極:La(Sr)MnO3 、厚さ1.4mm、スラ
リーコート 固体電解質:ZrO2 (Y23 )、厚さ40μm 、E
VD インターコネクター:LaCr(Mg)O3 、厚さ40
μm 、EVD 燃料電極:Ni−ZrO2 (Y23 )、厚さ100μ
m 、スラリーコート−EVD
[0003] At present, typical constituent materials of T-SOFC,
The thickness and manufacturing method are as follows (Proc. Of the
3rd Int. Symp. On SOFC, 1993). Support tube: ZrO 2 (CaO), thickness 1.2 mm, extrusion Air electrode: La (Sr) MnO 3 , thickness 1.4 mm, slurry coat Solid electrolyte: ZrO 2 (Y 2 O 3 ), thickness 40 μm, E
VD interconnector: LaCr (Mg) O 3 , thickness 40
μm, EVD fuel electrode: Ni-ZrO 2 (Y 2 O 3 ), thickness 100 μm
m, slurry coat-EVD

【0004】上述の代表的な燃料電極材料であるNi−
ZrO2 (Y23 )(Ni/YSZサーメット)は、
各成分(NiとYSZ)が交錯した微構造を有するが、
Niが網目のようにつながっているものは導電性が良
く、NiやYSZ粒の凝集が生じて、Niの網目が切断
されているものは導電性が悪い。SOFCの燃料電極の
導電性が悪いとSOFCの発電効率は低下する。したが
って、NiやYSZの凝集がなく、Niの網目構造がし
っかりと形成されうるようなNi/YSZサーメットが
求められる。さらに、NiはSOFCの運転中にも焼結
凝集を起こそうとするので、Niの網目は細く均一でな
ければならないという要請もある。なおNiが凝集する
と、Ni、固体電解質、気相(燃料ガス)の三相界面が
減少して酸素イオンと燃料ガスとの反応が低下するとい
う不利も伴う。
Ni- which is a typical fuel electrode material described above
ZrO 2 (Y 2 O 3 ) (Ni / YSZ cermet) is
It has a microstructure in which each component (Ni and YSZ) intersects,
When Ni is connected like a mesh, the conductivity is good, and when Ni or YSZ particles are aggregated and the Ni mesh is cut, the conductivity is poor. If the conductivity of the SOFC fuel electrode is poor, the power generation efficiency of the SOFC decreases. Therefore, there is a demand for a Ni / YSZ cermet in which Ni and YSZ are not aggregated and a Ni network structure can be firmly formed. Further, since Ni tends to cause sinter aggregation even during the operation of SOFC, there is also a demand that the Ni mesh should be fine and uniform. Note that when Ni is aggregated, the three-phase interface of Ni, the solid electrolyte, and the gas phase (fuel gas) decreases, and the reaction between oxygen ions and the fuel gas decreases, which is also disadvantageous.

【0005】このようなNi/YSZサーメットの微構
造に関しては、次のような2つの提案がなされている。 特開平4−133264:このNi/YSZサーメット
の構造では、Niが多孔質骨格として存在し、そのNi
の骨格がYSZ薄膜によって覆われており、さらにNi
骨格とYSZ薄膜との間に間隙が存在する。その製造方
法は、まずNiOの多孔質膜を固体電解質層上に形成
(実施例はスクリーン印刷)しておいて、このNiO多
孔質膜にYSZの前駆液を含浸させ、その後熱分解によ
りYSZをNiO骨格上に生成させ、さらにその後に還
元処理によりNiOをNiに還元し、この時にNiO骨
格の体積収縮によりNi骨格とYSZ薄膜の間に間隙を
形成するというものである。
Regarding the microstructure of such Ni / YSZ cermet, the following two proposals have been made. JP-A-4-133264: In this structure of Ni / YSZ cermet, Ni exists as a porous skeleton, and
The skeleton of is covered with YSZ thin film.
There is a gap between the skeleton and the YSZ thin film. The manufacturing method is as follows. First, a NiO porous film is formed on the solid electrolyte layer (screen printing in the example), the NiO porous film is impregnated with a precursor solution of YSZ, and then YSZ is decomposed by thermal decomposition. It is formed on the NiO skeleton, and then NiO is reduced to Ni by a reduction treatment, and at this time, a volume is contracted of the NiO skeleton to form a gap between the Ni skeleton and the YSZ thin film.

【0006】特開平4−192261:このNi/YS
Zサーメットの構造は、Niの多孔質骨格が存在し、こ
の骨格の表面に接してYSZ粒子が散在している、とい
うものである。その製造方法は、平均粒径2μm のNi
O粉末と平均粒径0.3μm のYSZ粉末をペースト化
し、スクリーン印刷により固体電解質上に燃料電極膜を
形成し、その後1,200℃焼成、1,000℃還元処
理を行うというものである。
JP-A-4-192261: This Ni / YS
The structure of Z cermet is such that a porous Ni skeleton is present and YSZ particles are scattered in contact with the surface of this skeleton. The manufacturing method is Ni with an average particle size of 2 μm.
O powder and YSZ powder having an average particle size of 0.3 μm are made into a paste, a fuel electrode film is formed on the solid electrolyte by screen printing, and thereafter, 1200 ° C. firing and 1,000 ° C. reduction treatment are performed.

【0007】[0007]

【発明が解決しようとする課題】上記特開平4−133
264号の技術には次のような問題点がある。 NiO骨格の表面をYSZで覆いきってしまうと、
NiOの還元が不可能となり、また集電抵抗を下げるた
めに燃料電極表面を機械的に研削するなどの後処理が必
要となる。 YSZ前駆液の含浸・熱分解の回数がきわめて多い
(実施例15回)。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The H.264 technology has the following problems. If you cover the surface of the NiO skeleton with YSZ,
NiO cannot be reduced, and post-treatment such as mechanically grinding the surface of the fuel electrode is required to reduce the current collecting resistance. The number of times of impregnation / pyrolysis of the YSZ precursor solution is extremely large (Example 15 times).

【0008】上記特開平4−192261号の技術には
次のような問題点がある。 YSZ粉がNi骨格上に散在する程度ではNiの焼
結・凝集を抑制する効果は小さく耐久性に劣る燃料電極
となる。 上記と同じ。本発明は、長時間高温にさらされた
場合にもNiの凝集がほとんど生じることがなく、SO
FCの燃料電極のクラックや剥離及び電気抵抗の増大と
いった、Ni凝集に起因する燃料電極の特性劣化を防止
することのできるNi/YSZサーメットを提供するこ
とを目的とする。
The technique of Japanese Patent Laid-Open No. 4-192261 has the following problems. If the YSZ powder is scattered on the Ni skeleton, the effect of suppressing Ni sintering and agglomeration is small and the fuel electrode has poor durability. Same as above. According to the present invention, even when exposed to a high temperature for a long time, almost no Ni agglomeration occurs, and
An object of the present invention is to provide a Ni / YSZ cermet capable of preventing deterioration of the characteristics of the fuel electrode due to Ni agglomeration, such as cracking and peeling of the FC fuel electrode and increase in electric resistance.

【0009】[0009]

【課題を解決するための手段】本発明者は、Ni/YS
Zサーメットの構成成分であるNiとYSZの骨格が互
いに三次元的に接触していれば、Niの焼結がYSZの
骨格によって抑制されるためNiの凝集が起こり難く、
耐久性に優れた燃料電極を製造し得るとの着想を得た。
このためには、お互いの成分粒子が均一に混合され、且
つ焼結状態が均一であるように粒径分布幅の狭い状態に
あることが必要と考え、種々の粉末合成方法を検討する
とともにそのキャラクタリゼーションを行った結果、本
発明を完成するに至った。
The present inventor has found that Ni / YS
If the skeletons of Ni and YSZ, which are the constituents of the Z cermet, are three-dimensionally in contact with each other, sintering of Ni is suppressed by the skeleton of YSZ, and thus Ni agglomeration is less likely to occur.
The idea was that a fuel electrode with excellent durability could be manufactured.
For this purpose, it is necessary that the component particles of each are uniformly mixed, and that the particle size distribution width is narrow so that the sintering state is uniform, and various powder synthesis methods are studied and As a result of characterization, the present invention has been completed.

【0010】上記課題を解決するため、本発明のNi/
YSZサーメットは、NiとYSZ(イットリア安定化
ジルコニア)の粒子の焼結体からなるNi/YSZサー
メットであって; Ni/YSZ組成比が24/76〜
64/36wt%であり、 粒子の平均粒径が2μm 以下
であり、 該サーメットを貫通する線分が横切る粒界の
数において、 (NiとYSZとの粒界数/全粒界数)
≧0.4、 ここで全粒界数=NiとYSZとの粒界数
+YSZとYSZとの粒界数+NiとNiとの粒界数、
であることを特徴とする。すなわち、粒子の平均粒径
が細かいとともに、Ni粒とYSZ粒がよく分散してい
る構造を有している。ここで、粒子とは基本的に一次粒
子を指し、これらの凝集した二次粒子においては、二次
粒子内に粒界が存在すると定義する。粒界は一次粒子間
の接合部界面を指し、一次粒子が結合して粒成長した様
な大きな粒子はその単体が1個の粒子であって、その粒
内に粒界は存在しないと考える。
In order to solve the above problems, Ni /
The YSZ cermet is a Ni / YSZ cermet composed of a sintered body of particles of Ni and YSZ (yttria-stabilized zirconia); Ni / YSZ composition ratio is 24/76 to
64/36 wt%, the average particle size of the particles is 2 μm or less, and the number of grain boundaries crossed by the line segment penetrating the cermet is (the number of grain boundaries between Ni and YSZ / the number of all grain boundaries).
≧ 0.4, where the total number of grain boundaries = the number of grain boundaries between Ni and YSZ + the number of grain boundaries between YSZ and YSZ + the number of grain boundaries between Ni and Ni,
It is characterized by being. That is, the average particle size of the particles is small, and the Ni particles and the YSZ particles are well dispersed. Here, the particles basically refer to primary particles, and in these agglomerated secondary particles, it is defined that grain boundaries exist within the secondary particles. A grain boundary refers to a joint interface between primary particles, and it is considered that a large particle, such as primary particles that have been bonded and grown, is a single particle, and no grain boundary exists within the particle.

【0011】また、本発明のNi/YSZサーメットの
製造方法は、NiとYSZの粒子の焼結体からなるNi
/YSZサーメットを製造する方法であって; 湿式法
により、Ni、Zr、Y及び酸素を含む混合物を得る湿
式混合工程と、 該混合物を分解して上記各金属の酸化
物を含む粉粒体を得る分解工程と、 該粉粒体を仮焼す
る一次仮焼工程と、 仮焼後の粉粒体(NiO/YSZ
複合粉末)を粉砕する粉砕工程と、 この粉砕工程で得
られた粉砕粉を再度仮焼する二次仮焼工程と、二次仮焼
したNiO/YSZ複合粉末を、スラリーコート法によ
り基体上に成膜する工程と、 このNiO/YSZ複合
粉末膜を1,200〜1,450℃で焼成する工程と、
このNiO/YSZ複合粉末膜を還元する工程と、を
含むことを特徴とする。
Further, the method for producing a Ni / YSZ cermet according to the present invention is a method in which Ni composed of a sintered body of Ni and YSZ particles is used.
/ YSZ cermet manufacturing method; a wet mixing step of obtaining a mixture containing Ni, Zr, Y and oxygen by a wet method, and decomposing the mixture to obtain a granular material containing an oxide of each metal. A decomposition step to obtain, a primary calcination step of calcination of the powder and granules, and a powder (NiO / YSZ) after the calcination
A pulverization step of pulverizing the composite powder), a secondary calcination step of calcination of the pulverized powder obtained in the pulverization step again, and a secondary calcination NiO / YSZ composite powder on a substrate by a slurry coating method. A step of forming a film, and a step of firing the NiO / YSZ composite powder film at 1,200 to 1,450 ° C.
And a step of reducing the NiO / YSZ composite powder film.

【0012】[0012]

【発明の実施の形態】本発明の一態様のNi/YSZサ
ーメットの製造方法は、 NiとYSZの粒子の焼結体
からなるNi/YSZサーメットを製造する方法であっ
て; Niイオン、Zrイオン、Yイオンを所望割合で
含む原料溶液を調整する溶液調整工程と、 共沈溶液を
上記原料溶液に混合して、上記各金属の1種以上及び酸
素を含む固体物質(共沈物質)を上記原料溶液から共沈
させる共沈工程と、 該共沈物質を分解して上記各金属
の酸化物を含む粉粒体を得る分解工程と、 該粉粒体を
仮焼する仮焼工程と、 仮焼後の粉粒体(NiO/YS
Z複合粉末)を粉砕する粉砕工程と、 この粉砕工程で
得られた粉砕粉を再度仮焼する二次仮焼工程と、二次仮
焼したNiO/YSZ複合粉末を、スラリーコート法に
より基体上に成膜する工程と、 このNiO/YSZ複
合粉末膜を1,200〜1,450℃で焼成する工程
と、 このNiO/YSZ複合粉末膜を還元する工程
と、を含むことを特徴とする。なお、前述のとおり、湿
式混合工程→熱分解によりNi、Zr、Yの酸化物を含
む粉粒体を得ることとしてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a Ni / YSZ cermet according to one aspect of the present invention is a method for producing a Ni / YSZ cermet comprising a sintered body of particles of Ni and YSZ; Ni ion, Zr ion , A solution adjusting step of adjusting a raw material solution containing Y ions in a desired ratio, and mixing the coprecipitation solution with the raw material solution to form a solid substance (coprecipitating substance) containing one or more of each metal and oxygen as described above. A coprecipitation step of coprecipitating from the raw material solution, a decomposition step of decomposing the coprecipitation substance to obtain a granular material containing the oxide of each metal, and a calcination step of calcining the granular material. Powdered material after firing (NiO / YS
Z composite powder), a secondary calcination step of calcination of the pulverized powder obtained in this pulverization step again, and a secondary calcinated NiO / YSZ composite powder on a substrate by a slurry coating method. And a step of firing the NiO / YSZ composite powder film at 1,200 to 1,450 ° C., and a step of reducing the NiO / YSZ composite powder film. Note that, as described above, it is possible to obtain a powder or granular material containing oxides of Ni, Zr, and Y by the wet mixing step → thermal decomposition.

【0013】この態様(共沈法)のNi/YSZサーメ
ットの製造方法においては、原料溶液として硝酸水溶液
をベースとする溶液を用い、共沈溶液として蓚酸水溶液
を用いることができる。この場合、以下のような共沈反
応が生じる。 Ni2++(COOH)2 →Ni(COO)2 ↓+2H+ Zr4++2(COOH)2 →Zr(COO)4 ↓+4H
+ 2Y3++3(COOH)2 →Y2 (COO)6 ↓+6H
+
In the method for producing a Ni / YSZ cermet according to this aspect (coprecipitation method), a solution based on a nitric acid aqueous solution can be used as a raw material solution, and an oxalic acid aqueous solution can be used as a coprecipitation solution. In this case, the following coprecipitation reaction occurs. Ni 2+ + (COOH) 2 → Ni (COO) 2 ↓ + 2H + Zr 4+ +2 (COOH) 2 → Zr (COO) 4 ↓ + 4H
+ 2Y 3+ +3 (COOH) 2 → Y 2 (COO) 6 ↓ + 6H
+

【0014】上記態様のNi/YSZサーメットの製造
方法においては、原料溶液及び共沈溶液をあらかじめ6
0℃〜沸点に昇温させてから混合することが好ましい。
上記反応のうち蓚酸Niの沈降反応は、一般的には、常
温においては生じにくい。そのため、均一な組成の共沈
物質を得にくい。それに対して、上記温度域において
は、上述の3反応がほぼ均等に起こるため、均一な組成
の共沈物質を能率よく得ることができる。
In the method for producing the Ni / YSZ cermet according to the above-mentioned embodiment, the raw material solution and the coprecipitation solution are preliminarily 6
It is preferable to raise the temperature to 0 ° C. to the boiling point and then mix.
Of the above reactions, the precipitation reaction of Ni oxalate is generally unlikely to occur at room temperature. Therefore, it is difficult to obtain a coprecipitated substance having a uniform composition. On the other hand, in the above temperature range, the above-mentioned three reactions occur almost uniformly, so that a coprecipitated substance having a uniform composition can be efficiently obtained.

【0015】本発明のNi/YSZサーメットは、Ni
/YSZ組成比が24/76〜64/36wt%である。
YSZの比が76を越えると粉末の焼成膜の導電率が低
くなる。このような観点からは、Ni/YSZ組成比
は、45/55〜64/36であることがより好まし
い。しかし、固体電解質膜と燃料電極との間の傾斜層用
としては、低Niのものが、膜そのものの導電率は小さ
いが、高Ni含有層と電解質との間の熱膨張差に起因す
る応力を緩和できるので好ましい。
The Ni / YSZ cermet of the present invention is made of Ni
/ YSZ composition ratio is 24/76 to 64/36 wt%.
If the YSZ ratio exceeds 76, the conductivity of the powder fired film becomes low. From such a viewpoint, the Ni / YSZ composition ratio is more preferably 45/55 to 64/36. However, for the graded layer between the solid electrolyte membrane and the fuel electrode, a low Ni one has a low conductivity of the membrane itself, but a stress due to a difference in thermal expansion between the high Ni content layer and the electrolyte. Can be relaxed, which is preferable.

【0016】本発明のNi/YSZサーメットをSOF
Cの燃料電極材として用いる場合には、Ni/YSZサ
ーメット原料粉末の粒径を0.1〜10μm とすること
が好ましい。ガス透過性と導電率とのバランスが良好だ
からである。この際、燃料電極の上層を比較的粗い粒を
用い、下層を比較的細かい粒を用いて形成することもで
きる。
The Ni / YSZ cermet of the present invention is SOF
When used as a C fuel electrode material, the particle size of the Ni / YSZ cermet raw material powder is preferably 0.1 to 10 μm. This is because the balance between gas permeability and conductivity is good. At this time, the upper layer of the fuel electrode may be formed using relatively coarse particles, and the lower layer may be formed using relatively fine particles.

【0017】本発明のNi/YSZサーメットの製造方
法においては、二次仮焼した後に、所望の粒度やBET
値が得られないときには、さらに粉砕、三次仮焼、粉
砕、四次仮焼、粉砕、五次仮焼へと進んでもよい。ただ
し、回数を繰り返しても粉砕によって微粒化されるので
粉体特性はある粒度、BET値に収束するので大きな変
化は現れなくなり、その処理効果は小さいものとなる。
また、工程数が増えるので製造条件上コスト高となって
くる。さらに、粉体の焼結性が劣るものとなってくるの
で成膜焼成温度を上げなければならず、SOFCセルを
構成する他の部材の焼結をも引き起こすことで、セル特
性が変化する危険性が生じる。したがって、通常条件で
セル作製の可能な工程繰り返し数は5回以下が好まし
い。
In the method for producing the Ni / YSZ cermet of the present invention, after the secondary calcination, the desired grain size and BET are obtained.
When the value cannot be obtained, further pulverization, tertiary calcination, pulverization, quaternary calcination, pulverization, and fifth calcination may be performed. However, even if the number of times is repeated, the particles are pulverized into fine particles, and the powder characteristics converge to a certain particle size and BET value, so that a large change does not appear and the treatment effect is small.
Further, since the number of steps is increased, the cost is increased due to manufacturing conditions. Furthermore, since the sinterability of the powder becomes inferior, it is necessary to raise the film formation firing temperature, and the sintering of other members constituting the SOFC cell is also caused, which may change the cell characteristics. Sexuality occurs. Therefore, it is preferable that the number of process repetitions that allows cell production under normal conditions be 5 or less.

【0018】仮焼条件については一次仮焼の条件が(8
00〜1,250℃)×(2〜10Hr)であり、二次仮
焼の条件が(700〜1,050℃)×(2〜10Hr)
が好ましい。さらには一次仮焼の仮焼条件が(900〜
1,200℃)×(2〜10Hr)であり、二次仮焼の仮
焼条件が(800〜1,000℃)×(2〜10Hr)が
より好ましい。その理由は、一次仮焼の際には、800
℃以下の熱処理(仮焼)温度であると、硝酸成分が残る
可能性があって原料粉末の純度が落ちることと、熱処理
をしても焼結が進まずに微粒子のままの状態で残り、後
のSOFC燃料電極成膜(焼成)の際に過剰に焼結して
しまうからである。また、1,250℃以上の仮焼では
仮焼粉が固くなるので次工程での粉砕効率が低下し、製
造工程上好ましくない。二次仮焼の際には、温度が70
0℃以下では、粉末が殆ど焼結しないので二次仮焼の効
果が小さい。また、1,050℃以上であると、焼結が
進んで再び粒径の大きな粉体となり易い。したがって、
二次仮焼後の粒径がSOFCセルへの成膜に好ましい粒
度範囲に納まるように制御することが重要である。二次
仮焼の温度は一次仮焼の温度よりも低くする、つまり一
次仮焼よりも二次仮焼の条件を穏やかにすることが一般
的である。なぜならば、二次仮焼条件が高温、長時間で
あれば、一次仮焼終了粉よりも粒径の大きな粒子が生成
し、SOFCセルへの成膜に好ましくないからである。
Regarding the calcination conditions, the condition of the primary calcination is (8
0 to 1,250 ° C.) × (2 to 10 hr), and the secondary calcination condition is (700 to 1,050 ° C.) × (2 to 10 hr)
Is preferred. Furthermore, the calcination conditions for the primary calcination (900 ~
1,200 ° C.) × (2 to 10 hr), and the calcination condition of the secondary calcination is more preferably (800 to 1,000 ° C.) × (2 to 10 hr). The reason is 800 at the time of primary calcination
If the heat treatment (calcination) temperature is ℃ or less, nitric acid components may remain and the purity of the raw material powder may decrease, and even if heat treatment is performed, sintering does not proceed and remains in fine particles. This is because it is excessively sintered during the subsequent SOFC fuel electrode film formation (firing). Further, calcination at 1,250 ° C. or higher causes the calcinated powder to become hard, which reduces the pulverization efficiency in the next step, which is not preferable in the manufacturing process. During the secondary calcination, the temperature is 70
Below 0 ° C., the powder hardly sinters, so the effect of secondary calcination is small. On the other hand, when the temperature is 1,050 ° C. or higher, the sintering proceeds and the powder having a large particle size is likely to be formed again. Therefore,
It is important to control the particle size after the secondary calcination so that it falls within a particle size range suitable for film formation on an SOFC cell. It is general that the temperature of the secondary calcination is lower than that of the primary calcination, that is, the condition of the secondary calcination is milder than that of the primary calcination. This is because if the secondary calcination conditions are high temperature and long time, particles having a larger particle size than the primary calcination finished powder are generated, which is not preferable for film formation on the SOFC cell.

【0019】また、本発明のNi/YSZサーメットを
SOFCの燃料電極材として用いる場合には、原料粉末
の一次仮焼後の粉砕時に粒径を2μm 以下とすることが
好ましい。このとき、粉砕粒径が大きいと次工程の二次
仮焼にてより大きな粒子が生成し、SOFCセルへの成
膜材料として好ましくない。仮焼後あるいは粉砕後に必
要に応じて分級を行ってもよい。
When the Ni / YSZ cermet of the present invention is used as a fuel electrode material for SOFC, it is preferable that the particle size of the raw material powder is 2 μm or less during pulverization after primary calcination. At this time, if the pulverized particle size is large, larger particles are generated in the secondary calcination in the next step, which is not preferable as a film forming material for the SOFC cell. After calcination or crushing, classification may be carried out if necessary.

【0020】[0020]

【実施例】【Example】

(1)原料粉末作製:共沈法、粉末混合法、蒸発乾固法
の3方法により原料粉末を作製した。 (1.1)共沈法 (1.1.1) 原料溶液調整:YSZ原料としての硝酸ジルコ
ニウム・イットリウム水溶液(8mol%Y23含有、酸
化物換算含有量23.4wt% )、NiO原料としての硝
酸ニッケル6水和物結晶、共沈物質濃度を調整するため
の純水をNiO/YSZ組成が70/30wt% となるよ
うに混合し、よく攪拌した。
(1) Preparation of raw material powder: A raw material powder was prepared by three methods: a coprecipitation method, a powder mixing method, and an evaporation-drying method. (1.1) Coprecipitation method (1.1.1) Preparation of raw material solution: zirconium nitrate-yttrium aqueous solution (containing 8 mol% Y 2 O 3 , oxide conversion content 23.4 wt%) as a YSZ raw material, and as a NiO raw material Nickel nitrate hexahydrate crystals and pure water for adjusting the concentration of the coprecipitated substance were mixed so that the composition of NiO / YSZ was 70/30 wt% and stirred well.

【0021】(1.1.2) 共沈溶液調整:本実施例において
は、共沈溶液として蓚酸水溶液を用いた。容器に純水を
取り、約80℃程度に加熱する。この温水を攪拌しなが
ら蓚酸2水和物結晶を徐々に添加して溶解し、80℃〜
90℃に保持した。蓚酸水溶液の量については、共沈工
程において金属イオンが完全に沈殿するように、蓚酸量
を化学量論比よりもわずかに過剰となるようすることが
好ましい。今回の過剰量は約5mol%とした。
(1.1.2) Preparation of Coprecipitation Solution: In this example, an oxalic acid aqueous solution was used as the coprecipitation solution. Pure water is taken into the container and heated to about 80 ° C. While stirring this warm water, oxalic acid dihydrate crystals were gradually added and dissolved,
Hold at 90 ° C. Regarding the amount of the oxalic acid aqueous solution, it is preferable that the amount of oxalic acid is slightly in excess of the stoichiometric ratio so that the metal ions are completely precipitated in the coprecipitation step. The excess amount this time was about 5 mol%.

【0022】(1.1.3) 溶液混合→共沈:原料溶液(Ni
O/YSZ複合粉末水溶液)を80℃〜90℃に加熱
し、これを80℃〜90℃に加熱保持した硝酸水溶液中
に、よく攪拌しながら徐々に添加していくことで、蓚酸
共沈法による沈殿生成を行った。反応により、粉体が生
成するので、溶液の攪拌にはトルクのある攪拌機を使用
することが好ましい。この共沈反応により溶液は発熱反
応を起こすので、反応後は溶液温度が初期状態よりも1
0〜20℃程度上昇することが普通である。全溶液を混
合し終えた後、室温まで攪拌を継続しながら自然冷却し
た。
(1.1.3) Solution mixing → coprecipitation: Raw material solution (Ni
(O / YSZ composite powder aqueous solution) is heated to 80 ° C. to 90 ° C. and gradually added to an aqueous nitric acid solution heated and maintained at 80 ° C. to 90 ° C. with good stirring, whereby the oxalic acid coprecipitation method is performed. The precipitation was generated by. Since powder is produced by the reaction, it is preferable to use a stirrer having a torque for stirring the solution. Since the solution causes an exothermic reaction due to this coprecipitation reaction, the temperature of the solution after the reaction is less than that of the initial state.
It is common that the temperature rises by 0 to 20 ° C. After all the solutions were mixed, the solution was naturally cooled while continuing to stir to room temperature.

【0023】(1.1.4) 乾燥:乾燥機内に反応物を静置
し、120℃の熱風を送り沈殿物の水分を蒸発させた。 (1.1.5) 熱分解:乾燥後の試料は500℃、5時間の熱
処理により、硝酸成分と残留蓚酸を除去した。その際の
反応は以下と推定される。 2Ni(COO)2+O2 →2NiO+4CO2 Zr(COO)4+O2 →ZrO2 +4CO2 2Y2(COO)6+3O2 →2Y23 +12CO2
(1.1.4) Drying: The reaction product was allowed to stand in a dryer, and hot air at 120 ° C. was sent to evaporate the water content of the precipitate. (1.1.5) Pyrolysis: The dried sample was heat-treated at 500 ° C. for 5 hours to remove nitric acid components and residual oxalic acid. The reaction at that time is estimated as follows. 2Ni (COO) 2 + O 2 → 2NiO + 4CO 2 Zr (COO) 4 + O 2 → ZrO 2 + 4CO 2 2Y 2 (COO) 6 + 3O 2 → 2Y 2 O 3 + 12CO 2

【0024】(1.1.6) 粉砕(解砕):2φと3φのPS
Zボールを用いた湿式粉砕処理を行った。これは、二次
粒子の紛砕と均一化を目的とする。ただし、本共沈法に
よる粉末は、湿式レーザー回折粒度分布測定によれば、
1μm 以下の粒子が全体の約80%を占め、二次粒子の
大きなものでさえその粒径は10〜20μm にあること
から、このボールミル粉砕処理を省略することも可能で
ある。
(1.1.6) Crushing (crushing): PS of 2φ and 3φ
A wet pulverization process using a Z ball was performed. This aims at crushing and homogenizing the secondary particles. However, the powder obtained by the present coprecipitation method is, according to the wet laser diffraction particle size distribution measurement,
It is possible to omit this ball milling process, since particles of 1 μm or less occupy about 80% of the whole, and even large secondary particles have a particle size of 10 to 20 μm.

【0025】(1.1.7) 一次仮焼:得られた粉末を、1,
150℃×5hrで一次仮焼(熱処理)を行った。仮焼時
には、主にNiOの微粉が焼結現象により他のNiO粉
に合体する。また、Y23 がZrO 2に徐々に固溶し
て結晶化する。一次仮焼後の粉粒径は平均粒径で90〜
110μm 、BET値は2.5〜2.8m2/gであった。
(1.1.7) Primary calcination: The obtained powder was
Primary calcination (heat treatment) was performed at 150 ° C. for 5 hours. During calcination, the NiO fine powder is mainly combined with other NiO powder by a sintering phenomenon. Further, Y 2 O 3 is gradually solid-dissolved in ZrO 2 and crystallized. The average particle size of the powder particles after primary calcination is 90-
It had a BET value of 2.5 to 2.8 m 2 / g.

【0026】(1.1.8) 粉砕:以下諸元の気流粉砕により
一次仮焼した粉を径2μm 以下に粉砕した。粉砕後の粒
径及びBET値は平均粒径0.54μm 、BET値3.
3m2/gであった。なお、粉砕方法は、微粉砕が可能であ
れば、ボールミル粉砕等の他の手段を用いることができ
る。 気流粉砕諸元: 粉砕機;日清製粉(株) 圧力=6kgf/cm2G 空気量=0.8m3/min
(1.1.8) Pulverization: Powder preliminarily calcined by air flow pulverization having the following specifications was pulverized to a diameter of 2 μm or less. The particle diameter and BET value after pulverization are 0.54 μm in average particle diameter and BET value of 3.
It was 3 m 2 / g. As the pulverization method, other means such as ball mill pulverization can be used as long as fine pulverization is possible. Specifications of air flow crusher: crusher; Nisshin Flour Milling Co., Ltd. Pressure = 6kgf / cm 2 G Air volume = 0.8m 3 / min

【0027】(9) 二次仮焼:粉砕した粉を1,000℃
×5hrの条件で二次仮焼した。この二次仮焼は、粉砕粉
を再び軽く焼結させることにより、粉砕粉の焼結性を抑
制することを目的とする。二次仮焼後の粒径及びBET
値は平均粒径1.2μm 、BET値2.4m2/gであっ
た。
(9) Secondary calcination: milled powder at 1,000 ° C
Secondary calcination was performed under the condition of × 5 hr. This secondary calcination aims to suppress the sinterability of the pulverized powder by lightly sintering the pulverized powder again. Particle size and BET after secondary calcination
The average particle size was 1.2 μm and the BET value was 2.4 m 2 / g.

【0028】(1.2)粉末混合法:出発原料のNiO
粉末としては市販の平均粒径2μm のNiO粉体を用い
た。YSZ粉末としては第一稀元素化学工業製を用い
た。NiOの平均粒径は2μm、YSZの平均粒径は
0.4μm であった。両者のNiO/YSZ比=70/
30となるようボールミル(ボール材質:ジルコニアボ
ール)で水を媒体として混合した。この混合粉を乾燥、
解砕し、その後900℃×10Hr、大気雰囲気中で仮焼
してNiO/YSZ複合粉末を得た。
(1.2) Powder mixing method: Starting material NiO
A commercially available NiO powder having an average particle size of 2 μm was used as the powder. As the YSZ powder, a product manufactured by Daiichi Rare Element Chemical Industry was used. The average particle size of NiO was 2 μm, and the average particle size of YSZ was 0.4 μm. NiO / YSZ ratio of both = 70 /
Water was mixed with a ball mill (ball material: zirconia balls) so as to be 30 using water as a medium. Dry this mixed powder,
It was crushed and then calcined in an air atmosphere at 900 ° C. for 10 hours to obtain a NiO / YSZ composite powder.

【0029】(1.3)蒸発乾固法 出発原料として上記NiO粉末及びジルコニウム・イッ
トリア硝酸水溶液(8mol%Y23 (換算)、酸化物
換算含有量23.4wt%)を用いた。これらをスターラ
ーで混合し、その後200℃で蒸発乾固させた。この乾
固粉を解砕後、上記(1.1)と同じ条件で仮焼してN
iO/YSZ複合粉末を得た。
(1.3) Evaporation and Drying Method The above NiO powder and zirconium-yttria nitric acid aqueous solution (8 mol% Y 2 O 3 (converted), oxide converted content 23.4 wt%) were used as starting materials. These were mixed with a stirrer and then evaporated to dryness at 200 ° C. After crushing this dry solid powder, it is calcined under the same conditions as in (1.1) above and N
An iO / YSZ composite powder was obtained.

【0030】(2)成膜・焼成:得られたNi/YSZ
サーメット原料粉末28部と、有機溶剤としてのエタノ
ールを68部、分散剤としてのポリカルボン酸エステル
を1部、消泡剤としての高分子界面活性剤を1部、バイ
ンダーとしてのエチルセルロースを2部混合してスラリ
ーを作製した。このスラリーをYSZ基板上にディッピ
ングによりスラリーコートした。これを乾燥後1,40
0℃で焼成した。得られたサーメット膜の厚さは80μ
m 、気孔率は28%であった。また、同様な手法で、緻
密なYSZ薄膜が表面にコーティングされたYSZ多孔
質基板上に上記スラリーをコートして、乾燥後1,40
0℃で焼成した。
(2) Film formation and firing: Ni / YSZ obtained
28 parts of cermet raw material powder, 68 parts of ethanol as organic solvent, 1 part of polycarboxylic acid ester as dispersant, 1 part of polymeric surfactant as defoaming agent, and 2 parts of ethyl cellulose as binder Then, a slurry was prepared. The slurry was coated on the YSZ substrate by dipping. 1,40 after drying this
Baking at 0 ° C. The thickness of the obtained cermet film is 80μ.
m 2, porosity was 28%. In addition, by the same method, the above slurry is coated on a YSZ porous substrate having a dense YSZ thin film coated on the surface thereof, and dried 1,40
Baking at 0 ° C.

【0031】(3)還元、導電率測定:焼成により得ら
れたサーメット膜を、H2 10%含有N2 雰囲気、1,00
0 ℃×10Hrで還元した。その後、四端子法により導電
率を測定した。その結果を表1に示す。また、耐久性試
験として、1,050℃、15%H2 含有N2 雰囲気で
1,000時間保持した後の導電率も測定した。それら
の結果については後述する。
(3) Reduction, conductivity measurement: The cermet film obtained by firing was treated with H 2 10% in N 2 atmosphere, 1,00
It was reduced at 0 ° C. × 10 hours. Thereafter, the conductivity was measured by a four-terminal method. Table 1 shows the results. In addition, as a durability test, the electrical conductivity was also measured after the sample was held at 1,050 ° C. in a N 2 atmosphere containing 15% H 2 for 1,000 hours. The results will be described later.

【0032】(4)組織観察:試料断面を研磨して、粒
子径と粒界数の測定を行った。この際研磨方法は次のと
おりである。まず、試料を樹脂に含浸させ、気孔部に樹
脂を浸透させて固化させた。次に試料断面が表面に出て
くるまで#200で荒削りし、次いで、#600、#1
000で表面研磨を行い、最終的に1μm 、0.25μ
m のダイヤモンドペーストで仕上げの研磨を行った。こ
の研磨試料について、SEM観察及びEDXによりZr
及びNiの元素分布のマッピングを行った。SEM写真
(図1参照)より粒子の分布をトレースし、それにマッ
ピング図を重ね合わせて元素分布図(図2参照)を作成
した。この元素分布から線分(長さ24.2μm 、各試
料18本)の横切る粒界数を求めた。粒界数及びNi/
YSZ粒界割合の測定結果は表1及び表2に示す。
(4) Structure observation: The cross section of the sample was polished and the particle size and the number of grain boundaries were measured. At this time, the polishing method is as follows. First, the sample was impregnated with resin, and the resin was permeated into the pores and solidified. Next, rough cut with # 200 until the sample cross section appears on the surface, then # 600, # 1
Surface polishing at 000, and finally 1μm, 0.25μ
Final polishing was performed with m 2 diamond paste. For this polished sample, Zr was observed by SEM and EDX.
The element distributions of Ni and Ni were mapped. The distribution of particles was traced from the SEM photograph (see FIG. 1), and the mapping diagram was superimposed on the trace to create an element distribution diagram (see FIG. 2). From this element distribution, the number of grain boundaries across a line segment (length 24.2 μm, 18 samples in each sample) was determined. Number of grain boundaries and Ni /
The measurement results of the YSZ grain boundary ratio are shown in Tables 1 and 2.

【0033】(5)試験結果:結果を表1及び表2に示
す。
(5) Test results: The results are shown in Tables 1 and 2.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】平均粒径は共沈法≪蒸発乾固法<粉末混合
法であった。また、Ni/YSZ粒界数の割合は共沈法
>蒸発乾固法≫粉末混合法であった。この理由は共沈法
では微細で均一な粒子が生成するので熱処理工程や粉砕
工程によっても各成分の極端な凝集や分離が起こり難い
ので、粒径が小さくしかも各成分が均一に混ざりあった
組織が得られる。その結果、平均粒径が小さくしかも各
成分間の粒界数が多い。蒸発乾固法では液相からの固相
析出が徐々に起こるために粗粒子が生成し易く、その結
果、共沈法よりは大きな粒径を有した構造となり易い。
NiOとYSZの粒径がNiO>YSZとなっている
が、これは析出時に粒生長のし易いことによる。この粒
子径の違いによって、粒界数が減少するとともに、組織
の均一性が共沈法の場合よりも劣るために、Ni/YS
Z粒界数が少なくなったと考えられる。粉末混合法では
粒子の凝集が解けないことや、溶媒乾燥時の粒子沈降に
よって成分の分離が起こり、局所的に粗粒子が存在する
構造となった。この結果、粒界数が少なくなったと考え
られる。
The average particle size was the coprecipitation method << evaporation and dryness method <powder mixing method. The ratio of the number of Ni / YSZ grain boundaries was coprecipitation method> evaporation dryness method >> powder mixing method. The reason for this is that the coprecipitation method produces fine and uniform particles, so that extreme aggregation and separation of each component is less likely to occur even in the heat treatment process and the pulverization process, so that the grain size is small and the structure in which each component is uniformly mixed Is obtained. As a result, the average grain size is small and the number of grain boundaries between the components is large. In the evaporation-drying method, solid phase precipitation from the liquid phase gradually occurs, so that coarse particles are easily generated, and as a result, a structure having a larger particle size is more likely to be formed than in the coprecipitation method.
The grain sizes of NiO and YSZ are NiO> YSZ, but this is because grain growth easily occurs during precipitation. Due to this difference in particle size, the number of grain boundaries decreases and the uniformity of the structure is inferior to that in the case of the coprecipitation method.
It is considered that the number of Z grain boundaries decreased. In the powder mixing method, agglomeration of the particles could not be resolved, and the components were separated due to particle settling during solvent drying, resulting in a structure in which coarse particles exist locally. As a result, it is considered that the number of grain boundaries decreased.

【0037】初期導電率は、共沈法≫蒸発乾固法>粉末
混合法であった。この理由は共沈法の組織は均一分散型
で、Niの結合が三次元的に均一にネットワークされて
いるために導電パスの切れが少なく良好な特性が得られ
る。蒸発乾固法では粒子が大きくなり三次元的な結合が
切断される様になるために、導電率が低くなる。また、
粉末混合法では、局所的なNiの分布が起こる構造とな
り、導電パスがより少なくなるために導電率が小さくな
ったものと考えられる。1,000時間後の導電率は、
共沈法では初期状態よりも特性がやや向上したのに対し
て、蒸発乾固法ではやや低下、粉末混合法では大きく低
下した。試料表面を観察すると、共沈法による成膜体で
は変化が観られないのに対して、蒸発乾固法による試料
では少しのクラックが、粉末混合法による試料では多く
のクラックが膜表面に発生していることが確認され、こ
れが導電率の低下をもたらしたと容易に推測された。
The initial conductivity was coprecipitation method >> evaporation and dryness method> powder mixing method. The reason for this is that the structure of the coprecipitation method is a uniform dispersion type, and since the Ni bonds are three-dimensionally and uniformly networked, there are few breaks in the conductive paths and good characteristics can be obtained. In the dry evaporation method, the particles become large and the three-dimensional bond is broken, so that the conductivity becomes low. Also,
It is considered that the powder mixing method has a structure in which a local distribution of Ni occurs, and the number of conductive paths is smaller, so that the conductivity is smaller. The conductivity after 1,000 hours is
In the coprecipitation method, the properties were slightly improved compared to the initial state, while in the evaporation-drying method, it was slightly decreased, and in the powder mixing method, it was significantly decreased. When observing the sample surface, no change is observed in the film formed by the coprecipitation method, whereas a few cracks occur in the sample by the evaporation-drying method and many cracks in the sample by the powder mixing method. Was confirmed, and it was easily speculated that this resulted in a decrease in conductivity.

【0038】[0038]

【発明の効果】以上の説明から明らかなように、本発明
は以下の効果を発揮する。 長時間高温にさらされた場合にもNiの凝集がほと
んど生じることがないNi/YSZサーメットを提供で
きる。そのため、クラックや剥離等の燃料電極の破壊や
電気抵抗の増大といったNi凝集に起因する燃料電極の
特性劣化を改善することができる。 製法に関係なく、初期特性のみならず耐久性をも含
んだ燃料電極の状態を判断できる。また、原料粉末のロ
ット間の特性ばらつきも判断でき、製品の特性を安定さ
せることができる。
As is apparent from the above description, the present invention exhibits the following effects. It is possible to provide a Ni / YSZ cermet in which Ni agglomeration hardly occurs even when exposed to a high temperature for a long time. Therefore, it is possible to improve the deterioration of the characteristics of the fuel electrode due to Ni agglomeration such as cracking or peeling of the fuel electrode and increase in electrical resistance. Regardless of the manufacturing method, the state of the fuel electrode including not only the initial characteristics but also the durability can be judged. Further, it is possible to determine the variation in the characteristics of the raw material powder between lots, and it is possible to stabilize the characteristics of the product.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び比較例のNi/YSZサー
メット膜のSEM組織写真である。
FIG. 1 is an SEM micrograph of Ni / YSZ cermet films of Examples and Comparative Examples of the present invention.

【図2】本発明の実施例及び比較例のNi/YSZサー
メット膜のEDX観察結果を示す図である。
FIG. 2 is a diagram showing EDX observation results of Ni / YSZ cermet films of Examples and Comparative Examples of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 NiとYSZ(イットリア安定化ジルコ
ニア)の粒子の焼結体からなるNi/YSZサーメット
であって;Ni/YSZ組成比が24/76〜64/3
6wt%であり、 粒子の平均粒径が2μm 以下であり、 該サーメットを貫通する線分が横切る粒界の数におい
て、 (NiとYSZとの粒界数/全粒界数)≧0.4 ここで全粒界数=NiとYSZとの粒界数+YSZとY
SZとの粒界数+NiとNiとの粒界数、 であることを特徴とするNi/YSZサーメット。
1. A Ni / YSZ cermet comprising a sintered body of particles of Ni and YSZ (yttria-stabilized zirconia); Ni / YSZ composition ratio is 24/76 to 64/3.
6 wt%, the average particle size of the particles is 2 μm or less, and the number of grain boundaries crossed by a line segment passing through the cermet is (the number of grain boundaries between Ni and YSZ / the number of all grain boundaries) ≧ 0.4 Here, the total number of grain boundaries = the number of grain boundaries between Ni and YSZ + YSZ and Y
Ni / YSZ cermet, wherein the number of grain boundaries with SZ + the number of grain boundaries with Ni and Ni.
【請求項2】 NiとYSZの粒子の焼結体からなるN
i/YSZサーメットを製造する方法であって;湿式法
により、Ni、Zr、Y及び酸素を含む混合物を得る湿
式混合工程と、 該混合物を分解して上記各金属の酸化物を含む粉粒体を
得る分解工程と、 該粉粒体を仮焼する一次仮焼工程と、 仮焼後の粉粒体(NiO/YSZ複合粉末)を粉砕する
粉砕工程と、 この粉砕工程で得られた粉砕粉を再度仮焼する二次仮焼
工程と、 二次仮焼したNiO/YSZ複合粉末を、スラリーコー
ト法により基体上に成膜する工程と、 このNiO/YSZ複合粉末膜を1,200〜1,45
0℃で焼成する工程と、 このNiO/YSZ複合粉末
膜を還元する工程と、を含むことを特徴とするNi/Y
SZサーメットの製造方法。
2. N consisting of a sintered body of particles of Ni and YSZ
A method for producing an i / YSZ cermet; a wet mixing step of obtaining a mixture containing Ni, Zr, Y and oxygen by a wet method, and a granular material containing the oxide of each metal by decomposing the mixture. A primary calcination step of calcination of the powder and granules, a pulverization step of pulverizing the powder and granules (NiO / YSZ composite powder) after calcination, and a pulverized powder obtained in this pulverization step Secondary calcination step of calcination again, a step of depositing the secondary calcinated NiO / YSZ composite powder on the substrate by a slurry coating method, and the NiO / YSZ composite powder film of 1,200 to 1 , 45
Ni / Y characterized by including a step of firing at 0 ° C. and a step of reducing the NiO / YSZ composite powder film.
Manufacturing method of SZ cermet.
【請求項3】 NiとYSZの粒子の焼結体からなるN
i/YSZサーメットを製造する方法であって;Niイ
オン、Zrイオン、Yイオンを所望割合で含む原料溶液
を調整する溶液調整工程と、 共沈溶液を上記原料溶液に混合して、上記各金属の1種
以上及び酸素を含む固体物質(共沈物質)を上記原料溶
液から共沈させる共沈工程と、 該共沈物質を分解して上記各金属の酸化物を含む粉粒体
を得る分解工程と、 該粉粒体を仮焼する仮焼工程と、 仮焼後の粉粒体(NiO/YSZ複合粉末)を粉砕する
粉砕工程と、 この粉砕工程で得られた粉砕粉を再度仮焼する二次仮焼
工程と、 二次仮焼したNiO/YSZ複合粉末を、スラリーコー
ト法により基体上に成膜する工程と、 このNiO/YSZ複合粉末膜を1,200 〜1,450 ℃で焼
成する工程と、 このNiO/YSZ複合粉末膜を還元する工程と、を含
むことを特徴とするNi/YSZサーメットの製造方
法。
3. N consisting of a sintered body of particles of Ni and YSZ
A method for producing an i / YSZ cermet; a solution adjusting step of adjusting a raw material solution containing Ni ions, Zr ions, and Y ions in a desired ratio; A coprecipitation step of coprecipitating a solid substance (coprecipitated substance) containing at least one of the above and oxygen from the above raw material solution, and decomposing the coprecipitated substance to obtain a granular material containing oxides of the above respective metals Process, a calcination process of calcination of the powder and granules, a pulverization process of crushing the powder and calcination substance (NiO / YSZ composite powder), and a pulverization powder obtained in the pulverization process again. Secondary calcination step, a step of forming a secondary calcinated NiO / YSZ composite powder on a substrate by a slurry coating method, and a step of firing this NiO / YSZ composite powder film at 1,200 to 1,450 ° C. A step of reducing the NiO / YSZ composite powder film, Method of manufacturing a Ni / YSZ cermet, which comprises a.
JP8143427A 1996-05-15 1996-05-15 Nickel/ysz cermet and its manufacture Pending JPH09302438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8143427A JPH09302438A (en) 1996-05-15 1996-05-15 Nickel/ysz cermet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8143427A JPH09302438A (en) 1996-05-15 1996-05-15 Nickel/ysz cermet and its manufacture

Publications (1)

Publication Number Publication Date
JPH09302438A true JPH09302438A (en) 1997-11-25

Family

ID=15338479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8143427A Pending JPH09302438A (en) 1996-05-15 1996-05-15 Nickel/ysz cermet and its manufacture

Country Status (1)

Country Link
JP (1) JPH09302438A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218146A (en) * 2008-03-12 2009-09-24 Inst Nuclear Energy Research Rocaec Processing method of positive electrode increasing output density of solid oxide fuel cell membrane electrode assembly (sofc-mea)
JP2013079190A (en) * 2004-07-13 2013-05-02 Hyundai Motor Co Ltd Method for producing nio-ceramic composite powder and nio-ceramic composite fuel electrode
JP2018503215A (en) * 2015-09-18 2018-02-01 エルジー・ケム・リミテッド Electrode slurry for solid oxide fuel cell, green sheet for electrode for solid oxide fuel cell, electrode for solid oxide fuel cell, solid oxide fuel cell, and method for producing electrode for solid oxide fuel cell
CN115747600A (en) * 2022-11-15 2023-03-07 河北邯峰发电有限责任公司 Laser cladding self-healing ceramic reinforced wear-resistant alloy coating material, composite material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079190A (en) * 2004-07-13 2013-05-02 Hyundai Motor Co Ltd Method for producing nio-ceramic composite powder and nio-ceramic composite fuel electrode
JP2009218146A (en) * 2008-03-12 2009-09-24 Inst Nuclear Energy Research Rocaec Processing method of positive electrode increasing output density of solid oxide fuel cell membrane electrode assembly (sofc-mea)
JP2018503215A (en) * 2015-09-18 2018-02-01 エルジー・ケム・リミテッド Electrode slurry for solid oxide fuel cell, green sheet for electrode for solid oxide fuel cell, electrode for solid oxide fuel cell, solid oxide fuel cell, and method for producing electrode for solid oxide fuel cell
US10615420B2 (en) 2015-09-18 2020-04-07 Lg Chem, Ltd. Electrode slurry of solid oxide fuel cell, green sheet for electrode of solid oxide fuel cell, electrode of solid oxide fuel cell, and method for manufacturing solid oxide fuel cell and electrode of solid oxide fuel cell
CN115747600A (en) * 2022-11-15 2023-03-07 河北邯峰发电有限责任公司 Laser cladding self-healing ceramic reinforced wear-resistant alloy coating material, composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5306726B2 (en) Fuel cell electrode-electrolyte composite powder and preparation method thereof
JP5391391B2 (en) Method for producing NiO-ceramic composite powder
CN108832136B (en) Composite oxygen electrode for solid oxide battery and preparation method thereof
WO2004013882A2 (en) Nano-composite electrodes and method of making the same
JP5359499B2 (en) Composite nickel oxide powder material for solid oxide fuel cell, method for producing the same, and fuel electrode material using the same
US20090189115A1 (en) Mixtures of nanoparticles
JP5196502B2 (en) Composite material suitable for use as an electrode material in SOC
Xin et al. Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders
KR100756518B1 (en) Method of preparing a material for electrolysis
JP2006040612A (en) Fuel electrode raw material powder of solid electrolyte fuel cell, its manufacturing method, fuel electrode, and solid electrolyte fuel cell
JP2000353530A (en) MANUFACTURE OF NiO AND/OR Ni/YSZ COMPOSITE POWDER AND MANUFACTURE OF SOLID ELECTROLYTE FUEL CELL USING THEREOF
Xi et al. Preparation and characterization of Ni-YSZ composite electrode for solid oxide fuel cells by different co-precipitation routes
JP3336851B2 (en) Method for producing Ni / YSZ cermet raw material powder
JPH09302438A (en) Nickel/ysz cermet and its manufacture
Kalinina et al. Formation of Bilayer Thin-Film Electrolyte on Cathode Substrate by Electrophoretic deposition
JP2008071668A (en) Composite particle powder and its manufacturing method, electrode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel battery cell
JPH11343123A (en) Production of ni or nio/ysz composite powder, and formation of fuel electrode membrane using the same
JP3604210B2 (en) Method for producing NiO / YSZ composite powder
WO2023079877A1 (en) Oxide ion–conducting solid electrolyte
JP7477729B2 (en) Composite oxide powder and its manufacturing method
Kalinina et al. Preparation of thin bilayer coatings based on lanthanum, nickel, and cerium mixed oxides by electrophoretic deposition
EP4180398A1 (en) Perovskite-type composite oxide powder
EP4137459A1 (en) Composite oxide powder
ZHENG et al. Synthesis and characterization of Ce0. 8Sm0. 2O1. 9 nanopowders using an acrylamide polymerization process
Nie et al. The sintering temperature effect on electrochemical properties of

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023