JPH09298260A - Heat radiation plate - Google Patents

Heat radiation plate

Info

Publication number
JPH09298260A
JPH09298260A JP8134309A JP13430996A JPH09298260A JP H09298260 A JPH09298260 A JP H09298260A JP 8134309 A JP8134309 A JP 8134309A JP 13430996 A JP13430996 A JP 13430996A JP H09298260 A JPH09298260 A JP H09298260A
Authority
JP
Japan
Prior art keywords
composite material
plate
metal
thickness direction
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8134309A
Other languages
Japanese (ja)
Inventor
Eiki Tsushima
栄樹 津島
Jun Takayasu
潤 高安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP8134309A priority Critical patent/JPH09298260A/en
Publication of JPH09298260A publication Critical patent/JPH09298260A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing

Abstract

PROBLEM TO BE SOLVED: To raise the thermal conductivity in the thickness direction of a flat plate made of a uni-directionally C fiber-reinforced composite material with the C fibers arranged in the thickness direction, by covering the front and back surfaces of the plate with thin plate-like metal members of specified thickness or less through a metal braze. SOLUTION: A flat plate 1 is made of a uni-directionally C fiber-reinforced composite material with the C fibers arranged in the thickness direction and the front and back surfaces of the plate 1 are covered with thin plate-like metal members 2 of about 50μm or less through a metal braze. A heat radiation board 4 is composed of this flat plate 1 made of the uni-directionally C fiber- reinforced composite material with the C fibers arranged in the thickness direction, metal members of a high thermal conductivity covering the front and back surfaces of the plate 1, and polymer adhesive layers. This provides a thermal conductivity in the thickness direction equal to that of a Cu-W composite material as well as superior air tightness and seal property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は、放熱板に関しするもの
であって、特にコンピュータ等に使用される集積回路
(MPU,CPU,DRAM等)及びパワートランジス
タ等のパワーデバイスとして使用される半導体素子等の
発熱による温度上昇を防ぐために、それらの面に接着し
て用いられている放熱板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink, and particularly to semiconductor devices used as power devices such as integrated circuits (MPU, CPU, DRAM, etc.) and power transistors used in computers and the like. The present invention relates to a heat radiating plate that is used by adhering to the surfaces thereof in order to prevent a temperature rise due to heat generation.

【0002】[0002]

【従来の技術】近年、コンピュータの高性能化、特に高
速化が著しい。これらは主に、MPUと呼ばれる半導体
集積回路の周波数の高周波数化による処理高速の向上に
よるものであるが、これらの高周波数化に伴い、半導体
素子からの発熱が増大し、その放熱が重要な問題となっ
てきている。半導体素子の発熱による温度上昇が問題に
なると、半導体素子をプラスチック等で封止したパッケ
ージの外面にアルミニウム等の放熱フィンを接着した
り、パッケージの外面を冷却ファンで気流を流して冷却
する方法がとれてきた。ただ、この方法では、放熱冷却
は熱伝導率の低いセラミックスあるいはプラスチックス
等のパッケージ封止層を介して行われるので、放熱冷却
の効率が悪く、また放熱フィンあるいは冷却ファン等の
とりつけが必要で、全体の容積、重量が大きくなってし
まうという問題点があった。
2. Description of the Related Art In recent years, the performance of computers, especially the speed thereof, has been remarkable. These are mainly due to the improvement of the processing speed by increasing the frequency of the semiconductor integrated circuit called MPU, but with the increase of these frequencies, the heat generation from the semiconductor element increases, and its heat dissipation is important. It's becoming a problem. If the temperature rise due to the heat generated by the semiconductor element becomes a problem, a method of bonding a radiation fin such as aluminum to the outer surface of the package in which the semiconductor element is sealed with plastic or the like, or cooling the outer surface of the package by flowing airflow with a cooling fan is used. I've been taken. However, in this method, the heat radiation cooling is performed through a package sealing layer of ceramics or plastics having low thermal conductivity, so that the heat radiation cooling efficiency is low, and it is necessary to attach a heat radiation fin or a cooling fan. However, there is a problem that the whole volume and weight are increased.

【0003】更に、集積度が大きくなり、あるいは高速
処理、高出力になって、素子の発熱による温度上昇が大
きくなってくると、半導体素子の裏面に、熱伝導率の高
い放熱板(放熱窓、ヒートシンク板などと呼ぶ)を接着
し、放熱板の一面がパッケージの外側に露出するように
封止して、この面から放熱冷却するような工夫がなされ
る。この場合の放熱板付半導体パッケージの断面は例え
ば図3で示される。図3において、4は放熱板を、5は
半導体(シリコンチップ)を、6はセラミックス封止体
を、7はボンディングワイヤーを、8は(入出力)端子
を、それぞれ示す。
Further, when the degree of integration is increased or the temperature is increased due to heat generation of the element due to high speed processing and high output, a heat dissipation plate (heat dissipation window) having high heat conductivity is formed on the back surface of the semiconductor element. , Which is referred to as a heat sink plate) is adhered, and one surface of the heat dissipation plate is sealed so as to be exposed to the outside of the package, and heat is cooled from this surface. The cross section of the semiconductor package with a heat sink in this case is shown in FIG. 3, for example. In FIG. 3, 4 is a heat sink, 5 is a semiconductor (silicon chip), 6 is a ceramics sealing body, 7 is a bonding wire, and 8 is an (input / output) terminal.

【0004】この場合の放熱板は、厚さ1mm前後
(0.5〜2mm)、広さ数cm角の熱伝導率が十分大
きい薄板であるが、それ自体十分な強度を有し、気密性
があることが必要で、更にそれはシリコン等の半導体材
料と十分熱抵抗の小さい層を介して接着できること、ま
た接着時あるいは使用時に半導体及びセラミックス等の
封止材との接着面に温度変化により熱応力が発生して、
剥がれ、素子不良などを生じることが全くないことが重
要である。
The heat radiating plate in this case is a thin plate having a thickness of around 1 mm (0.5 to 2 mm) and a width of several cm square and having a sufficiently large thermal conductivity, but it has sufficient strength and airtightness. In addition, it must be able to be bonded to a semiconductor material such as silicon via a layer with sufficiently low thermal resistance, and the bonding surface between the semiconductor and the sealing material such as ceramics can be heated by a temperature change during bonding or during use. When stress occurs,
It is important that there is no peeling, no element failure or the like.

【0005】従って、このような放熱板は、熱伝導率、
強度、気密性、コストの視点からは、銅、アルミニウム
などの金属板が考えられる。たゞ、半導体として使用さ
れているシリコン材料は、熱膨張係数(CTE)が4.
2×10-6/℃と銅[CTE=17×10-6/℃,熱伝
導率(C.T)=390W/m・K]、アルミニウム
(CTE=24×10-6/℃,C.T=270W/m・
K)などの放熱性の高い金属に対して小さいために、そ
れらの安価な金属を高発熱の半導体素子の放熱材として
使用することは困難であった。
Therefore, such a heat sink has a thermal conductivity,
From the viewpoint of strength, airtightness, and cost, metal plates such as copper and aluminum can be considered. Meanwhile, the silicon material used as a semiconductor has a coefficient of thermal expansion (CTE) of 4.
2 × 10 −6 / ° C. and copper [CTE = 17 × 10 −6 / ° C., thermal conductivity (CT) = 390 W / m · K], aluminum (CTE = 24 × 10 −6 / ° C., C.I. T = 270 W / m
It is difficult to use such an inexpensive metal as a heat dissipation material for a semiconductor element having a high heat generation, since it is small compared with a metal having a high heat dissipation property such as K).

【0006】このような観点から、この放熱板の材料と
して適したものは数少なく、銅/タングステン複合材
料、金属被覆CBN焼結体、窒化アルミニウム、ダイヤ
モンド等が検討されている(特開昭60−226149
号、特公平3−29309号、特開平5−186804
号各公報等)が、現在は、銅/タングステン複合材料が
一部実用化されている。(なお、タングステンはCTE
=4.5×10-6/℃,C.T=167W/m・Kであ
り、モリブデンはCTE=5.1×10-6/℃,C.T
=142W/m・Kである。) しかしながら、タングステン及びモリブデンは弾性率が
それぞれ390GPa及び330GPaと高いために、
わずかな熱膨張率の違いでも高い熱応力の発生は避けら
れないという難点がある。
From this point of view, few materials are suitable as the material for the heat dissipation plate, and a copper / tungsten composite material, a metal-coated CBN sintered body, aluminum nitride, diamond, etc. have been investigated (Japanese Patent Laid-Open No. 60-60). 226149
No., JP-B-3-29309, JP-A-5-186804
At present, some copper / tungsten composite materials have been put to practical use. (Tungsten is CTE
= 4.5 × 10 −6 / ° C., C.I. T = 167 W / m · K, molybdenum has CTE = 5.1 × 10 −6 / ° C. T
= 142 W / m · K. However, since tungsten and molybdenum have high elastic moduli of 390 GPa and 330 GPa, respectively,
There is a drawback in that high thermal stress is inevitable even with a slight difference in coefficient of thermal expansion.

【0007】また、超LSIなどの半導体パッケージが
MPUなどとして用いられるパーソナルコンピューター
などは、携帯用として増々小さく、薄く、軽く、且つ低
コストで、更に高速処理が要求されているが、従来技術
では、半導体パッケージの温度上昇がネックになって処
理速度を抑えざるを得ない場合も起っている。
Further, personal computers and the like in which semiconductor packages such as ultra LSIs are used as MPUs are required to be smaller, thinner, lighter, and lower in cost for portable use, and further high-speed processing is required. In some cases, the rise in the temperature of the semiconductor package becomes a bottleneck and the processing speed must be suppressed.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明は上記
従来技術の実情に鑑みてなされたものであって、高速処
理用あるいは高出力用半導体パッケージの放熱板として
最適のもので、厚さ方向の熱伝導率が大きく、厚さが1
mm程度(0.5〜2mm)の薄板であるにもかかわら
ずそれ自体十分な強度、平面性及び気密性を有し、しか
も半導体及びセラミックス等と高温はんだ接合が可能で
あり、且つ接着時及び使用時の温度変化による接着面の
剥がれや素子不良の原因となるような熱応力の発生が十
分に小さい、信頼性の高い放熱板を提供することを、そ
の目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention has been made in view of the circumstances of the prior art described above, and is the most suitable as a heat sink for a high-speed processing or high-power semiconductor package. Has a high thermal conductivity and a thickness of 1
Despite being a thin plate with a thickness of about 0.5 mm (0.5 to 2 mm), it has sufficient strength, flatness and airtightness by itself, and is capable of high-temperature solder bonding with semiconductors, ceramics, etc. It is an object of the present invention to provide a highly reliable heat dissipation plate in which the occurrence of thermal stress that causes peeling of an adhesive surface or element failure due to temperature changes during use is sufficiently small.

【0009】[0009]

【課題を解決するための手段】本発明によれば、炭素繊
維が厚さ方向に配列している一方向性炭素繊維強化複合
材料の平板の表裏両面が、厚さ約50μm以下の薄板状
金属部材によって金属ロウを介して被覆されている構造
からなることを特徴とする放熱板が提供される。
According to the present invention, a flat plate of a unidirectional carbon fiber reinforced composite material in which carbon fibers are arranged in the thickness direction has a thickness of about 50 μm or less on both sides of a flat metal plate. There is provided a heat dissipation plate having a structure in which a member is covered with a metal brazing material.

【0010】本発明者らは、先に一方向性炭素繊維強化
複合材料の高熱伝導性(炭素繊維の長さ方向)、軽量、
易加工性、低弾性率(低熱応力)などの利点(金属やセ
ラミックスに対して)に着目し、且つその欠点である気
密性、強度(繊維と直角方向の強度が低い)、接合性
(ハンダ濡れ性がないためハンダ接合が困難)等の面を
改良することによる、すなわち炭素繊維が厚さ方向に配
列している一方向性複合材料の表裏両面が金属部材によ
って高分子接着層を介して被覆されている構造からなる
ことを特徴とする放熱板を提案した(特願平7−303
450号)。
The present inventors have previously found that the unidirectional carbon fiber reinforced composite material has high thermal conductivity (longitudinal direction of carbon fiber), light weight,
Focusing on advantages (compared to metals and ceramics) such as easy workability and low elastic modulus (low thermal stress), and its drawbacks such as airtightness, strength (low strength in the direction perpendicular to the fiber), bondability (solder) It has difficulty in soldering due to lack of wettability), etc., that is, the front and back surfaces of the unidirectional composite material in which carbon fibers are arranged in the thickness direction are covered by a metal member through a polymer adhesive layer. We proposed a heat sink characterized by a covered structure (Japanese Patent Application No. 7-303).
No. 450).

【0011】この放熱板は、熱伝導率の極めて大きな炭
素繊維が厚さ方向に配列した一方向性複合材料の平板
と、その表裏両面を覆う熱伝導率の大きな金属部材及び
十分に薄くすることができる高分子接着層からなるもの
としたことから、厚さ方向の熱伝導率を銅/タングステ
ン複合材料のそれと同等又はそれ以上とすることがで
き、また複合材料の平板は多孔質で通気性を有するが、
被覆金属部材により、気密性、封止性に優れたものとな
り、且つ反りや割れのないものである。その上、この放
熱板は、厚さの大部分を占める複合材料の広さ方向(即
ち、厚さ方向に直角の方向)の熱膨張係数がシリコン半
導体やアルミナ等のセラミックスのそれと近いものであ
り、また、広さ方向の弾性率も小さいものとすることが
できるので、温度変化による熱応力発生が小さく、剥が
れ、割れ等や半導体への悪影響を生じない。たゞ、炭素
繊維強化複合材料平板に薄板状の金属部材をエポキシ樹
脂などの接着剤を用いて接合する場合は、エポキシ樹脂
では耐熱温度が低い、電気抵抗が大きいなどの欠点があ
った。そこで、本発明はこの点を高分子接着剤の代りに
耐熱温度の高い金属ロウを用いることによって改良する
ものである。
This radiating plate is a flat plate of unidirectional composite material in which carbon fibers having extremely high thermal conductivity are arranged in the thickness direction, a metal member having high thermal conductivity covering both front and back surfaces thereof, and sufficiently thin. Since it is made of a polymer adhesive layer that can achieve the same, the thermal conductivity in the thickness direction can be made equal to or higher than that of the copper / tungsten composite material, and the flat plate of the composite material is porous and breathable. But has
The coated metal member has excellent airtightness and sealing property, and is free from warpage and cracks. Moreover, this heat sink has a coefficient of thermal expansion in the width direction (that is, the direction perpendicular to the thickness direction) of the composite material that occupies most of the thickness, close to that of ceramics such as silicon semiconductor and alumina. Moreover, since the elastic modulus in the width direction can also be made small, thermal stress generation due to temperature change is small, and peeling, cracking, etc. and adverse effects on the semiconductor do not occur. On the other hand, when a thin metal member is joined to a carbon fiber reinforced composite material flat plate by using an adhesive such as an epoxy resin, the epoxy resin has drawbacks such as a low heat resistance temperature and a large electric resistance. Therefore, the present invention improves this point by using a metal wax having a high heat resistance temperature instead of the polymer adhesive.

【0012】[0012]

【発明の実施の形態】以下、本発明の放熱板について、
詳しく説明する。本発明の放熱板は、炭素繊維が厚さ方
向に配列している一方向性炭素繊維強化複合材料の表裏
両面が、薄板状の金属部材によって高融点の金属ロウ材
層を介して被覆されている構造からなることを特徴とす
る。
BEST MODE FOR CARRYING OUT THE INVENTION The heat sink of the present invention will be described below.
explain in detail. In the heat dissipation plate of the present invention, both front and back surfaces of the unidirectional carbon fiber reinforced composite material in which carbon fibers are arranged in the thickness direction are covered with a thin plate-shaped metal member through a high melting point metal brazing material layer. It is characterized by having a structure.

【0013】すなわち、本発明の放熱板の外観は図1で
示されるものであり、その構造は図2に示されるような
積層構造からなるものである。図2において、1は炭素
繊維が厚さ方向に配列している一方向性炭素繊維強化複
合材料の平板を、2は薄板状の金属部材を、3は金属ロ
ウ材層を、4は放熱板を、それぞれ示す。
That is, the external appearance of the heat sink of the present invention is as shown in FIG. 1, and the structure thereof has a laminated structure as shown in FIG. In FIG. 2, 1 is a flat plate of unidirectional carbon fiber reinforced composite material in which carbon fibers are arranged in the thickness direction, 2 is a thin metal member, 3 is a metal brazing material layer, and 4 is a heat sink. Are shown respectively.

【0014】本発明で使用される炭素繊維が厚さ方向に
配列している一方向性炭素繊維強化複合材料の平板は、
炭素繊維の長さ方向の熱伝導率が十分に大きいものを用
いることによって、その平板の厚さ方向の熱伝導率は、
銀、銅、アルミニウム等の金属よりも大きくすることが
できる。例えば、液晶ピッチを原料にしたピッチ系炭素
繊維で約3,000℃迄熱処理したものでは、長さ方向
の熱伝導率は1,000W/(m・K)以上のものがあ
り、そのような炭素繊維を用いて繊維容積含有率50%
の一方向性複合材料を成形すると、母材の種類にかから
わず、炭素繊維の配列方向の熱伝導率は500W/m・
K以上のものが得られる。
The flat plate of the unidirectional carbon fiber reinforced composite material in which the carbon fibers used in the present invention are arranged in the thickness direction is
By using a carbon fiber having a sufficiently large thermal conductivity in the length direction, the thermal conductivity in the thickness direction of the flat plate is
It can be larger than metals such as silver, copper and aluminum. For example, when heat-treated with pitch-based carbon fibers made from liquid crystal pitch to about 3,000 ° C., the thermal conductivity in the length direction may be 1,000 W / (m · K) or more. 50% fiber volume content using carbon fiber
When a unidirectional composite material is molded, the thermal conductivity in the carbon fiber array direction is 500 W / m regardless of the type of base material.
A value of K or more is obtained.

【0015】この複合材料の母材としては、炭素、シリ
コンカーバイド等のセラミックス、金属シリコン、ガラ
スなど種々のものが用い得るが、薄い板に切削加工する
迄の成形コストなどの面を考慮すると、次に述べるよう
な炭素母材が好ましい。すなわち、本発明の放熱板を構
成する主要部分である一方向性複合材料の平板は、補強
繊維が炭素繊維であって、母材が炭素を主成分とする炭
素繊維強化炭素母材複合材料(炭素/炭素複合材料)が
好適である。一方向性炭素/炭素複合材料の中でも、特
に特願平6−323507号で提供されるもの、あるい
は特開平3−247563号公報や特開平5−5125
7号の製造方法により製造されるものなどを用いること
が好ましい。
Various materials such as carbon, ceramics such as silicon carbide, metallic silicon, and glass can be used as the base material of this composite material, but considering the molding cost and the like until cutting into a thin plate, The carbon base materials described below are preferable. That is, in the flat plate of the unidirectional composite material, which is a main part of the heat dissipation plate of the present invention, the reinforcing fiber is carbon fiber, and the base material is a carbon fiber-reinforced carbon base material composite material whose main component is carbon ( Carbon / carbon composite materials) are preferred. Among unidirectional carbon / carbon composite materials, especially those provided in Japanese Patent Application No. 6-323507, Japanese Patent Application Laid-Open Nos. 3-247563 and 5-5125.
It is preferable to use those manufactured by the manufacturing method of No. 7.

【0016】上述の一方向性炭素/炭素複合材料(以
降、UD C/C複合材料と記すことがある)は、一方
向に配列した炭素繊維の束に、固体のピッチあるいはコ
ークスなどの微粉体を分散したフェノール樹脂などの熱
硬化性樹脂の溶液(溶媒としてフルフリルアルコールな
どを用いる)を含浸した後、溶媒を乾燥除去しつつ、炭
素母材前駆体が含浸され、且つ一方向に繊維が配列して
いるシート状物(プリプレグ)を形成し、これを一方向
に多数枚積層して、加圧下に加熱して熱硬化性樹脂部分
を硬化させて、その後不活性雰囲気中で高温焼成して、
フェノール樹脂とピッチあるいはコークスの微粉体を炭
素化するという方法によって製造されるものである。こ
の方法によれば、再含浸、再焼成のような緻密化処理な
しで、一回の焼成炭化処理にて、必要十分に緻密な母材
組織が得られることが特徴である。
The above unidirectional carbon / carbon composite material (hereinafter sometimes referred to as UD C / C composite material) is a bundle of carbon fibers arranged in one direction and a fine powder such as solid pitch or coke. After impregnating a solution of a thermosetting resin such as phenol resin in which is dispersed (using furfuryl alcohol etc. as a solvent), the solvent is dried and removed, while the carbon base material precursor is impregnated, and fibers are unidirectionally formed. Form an array of sheet-like materials (prepregs), stack multiple sheets in one direction, heat under pressure to cure the thermosetting resin portion, and then bake at a high temperature in an inert atmosphere. hand,
It is produced by a method of carbonizing a fine powder of a phenol resin and pitch or coke. According to this method, a necessary and sufficiently dense base material structure can be obtained by one firing carbonization treatment without densification treatment such as re-impregnation and re-firing.

【0017】上述の方法で得られたUD C/C複合材
料は、その所定の大きさのブロックを繊維の配列方向に
対して直角方向に、ワイヤーソーあるいは回転ダイヤモ
ンドソーなどで、厚さ1mmのような薄板を精度良く切
出すことができるので、特に好ましい。また、上述のU
D C/C複合材料は、繊維の配列方向と直角方向の弾
性率が5〜10GPaと低いため、この方向の伸縮性が
あり、金属やセラミックスなどの熱膨張係数の異なる材
料とこの方向で接合した場合、熱応力緩和作用が発現さ
れる。特に、繊維軸方向の熱伝導率が400W/m・K
以上であり、繊維軸と直角方向の弾性率が10GPa以
下の値であるUD C/C複合材料を用いるのが好まし
い。
The UD C / C composite material obtained by the above-mentioned method has a block of a predetermined size in a direction perpendicular to the direction in which the fibers are arranged, a wire saw or a rotary diamond saw, and a thickness of 1 mm. It is particularly preferable because such a thin plate can be accurately cut out. In addition, the above U
Since the DC / C composite material has a low elastic modulus of 5 to 10 GPa in the direction orthogonal to the fiber array direction, it has elasticity in this direction and is bonded in this direction to materials with different thermal expansion coefficients, such as metals and ceramics. In that case, a thermal stress relaxation action is exhibited. Especially, the thermal conductivity in the fiber axis direction is 400 W / mK
As described above, it is preferable to use the UD C / C composite material having an elastic modulus in the direction perpendicular to the fiber axis of 10 GPa or less.

【0018】このような複合材料の平板は、半導体やセ
ラミックスと接着しても、−40〜150℃のような温
度範囲で、金属の平板と比べて熱応力の発生が小さい。
その理由は、炭素繊維の断面方向の熱膨張係数及び母材
の炭素、シリコンカーバイド、金属シリコン、あるいは
ガラスの熱膨張係数が4〜8×10-6/Kと、シリコン
などの半導体やアルミナなどのセラミックスのそれと比
較的近いためである。
Even if a flat plate of such a composite material is bonded to a semiconductor or ceramics, the generation of thermal stress is smaller than that of a metal flat plate in the temperature range of -40 to 150 ° C.
The reason is that the coefficient of thermal expansion in the cross-sectional direction of carbon fiber and the coefficient of thermal expansion of carbon, silicon carbide, metal silicon, or glass of the base material are 4 to 8 × 10 −6 / K, semiconductors such as silicon, alumina, and the like. This is because it is relatively close to that of ceramics.

【0019】このような複合材料の平板は、熱伝導率、
接着時の熱応力の観点からすれば、それ自体、半導体パ
ッケージ用の放熱板として優れているが、更に十分な強
度を有し、反りのない平面性の良い表面を有し、また十
分な気密性、封止性を有するようにするために、上述し
た複合材料の平板の表裏両面に薄板状の金属部材を被覆
接合することが、本発明の特徴である。
The flat plate of such a composite material has a thermal conductivity of
From the viewpoint of thermal stress at the time of bonding, it is itself an excellent heat sink for semiconductor packages, but it has sufficient strength, has a surface with good flatness without warping, and has sufficient airtightness. It is a feature of the present invention that the thin and plate-shaped metal members are coated and bonded to both the front and back surfaces of the above-mentioned flat plate of the composite material so as to have the property and the sealing property.

【0020】上述した複合材料の平板の表裏両面に金属
部材を被覆接合しない場合は、この平板は厚さが1mm
前後(0.5〜2mm)であるので、半導体パッケージ
組立加工時に破損が起るおそれがあり、また使用時の信
頼性にも問題があり、更に厚さ方向に微細な気孔が連通
しているので、気密性が低い。
When the front and back surfaces of the above-mentioned composite material flat plate are not covered with metal members, the flat plate has a thickness of 1 mm.
Since it is in the front and rear (0.5 to 2 mm), there is a possibility that damage may occur during semiconductor package assembly processing, there is also a problem in reliability during use, and fine pores communicate in the thickness direction. Therefore, airtightness is low.

【0021】また、上述した複合材料の平板の表裏両面
に金属部材を被覆接合するのではなくて、片面にのみ金
属部材を被覆接合した場合は、接合終了時あるいはその
後の取扱い時に片側の応力集中により反りが生じ、また
多くの場合は、複合材料側に割れが生じるので使用でき
ない。これは、金属部材の熱膨張係数及び弾性率が複合
材料部分に比べて大きいために、高温時に熱歪みがなく
ても、冷却時に片側の金属部材が収縮し、一方反対側の
複合材料はあまり収縮しないので、金属部材側が凹に複
合材料側が凸に反りが生じ、またひび割れも生ずる結果
となる。もちろん、複合材料面の露出による取扱い時の
複合材料粉の発生の問題も生じる。
Further, when the metal member is not covered and bonded on both sides of the flat plate of the composite material described above, but the metal member is covered and bonded on only one surface, stress concentration on one side at the time of completion of bonding or subsequent handling. This causes warpage, and in many cases, cracks occur on the composite material side, so it cannot be used. This is because the thermal expansion coefficient and elastic modulus of the metal member are larger than those of the composite material portion, so even if there is no thermal strain at high temperature, the metal member on one side contracts during cooling, while the composite material on the other side does not Since it does not shrink, the metal member side is concave and the composite material side is convexly warped, and cracks are also generated. Of course, there is a problem that composite material powder is generated during handling due to the exposure of the composite material surface.

【0022】本発明の場合は、複合材料部分が1mm前
後の厚さであり、非常に薄いので“反り”やすく、また
用途が半導体に接着して用いるものであるので、小さい
“反り”も問題となる。複合材料の表裏両面に同じ材料
の金属部材か又は熱膨張係数が近い金属部材を接合する
ことにより、表裏面がほぼ均等な熱応力を生ずるため
に、この“反り”を極めて小さくすることができる。従
って、本発明においては、複合材料平板の表裏両面に金
属部材を接合被覆することが必須であり、製作時は表裏
面同時に、金属部材を接合することが好ましく、また両
面とも同一材料の金属部材を接合することが好ましい。
In the case of the present invention, since the composite material portion has a thickness of about 1 mm and is very thin, it is easy to "warp". Also, since the application is to adhere to a semiconductor, a small "warp" is also a problem. Becomes By joining metal members of the same material or metal members having similar thermal expansion coefficients to both the front and back surfaces of the composite material, the "warpage" can be made extremely small because almost equal thermal stress is generated on the front and back surfaces. . Therefore, in the present invention, it is essential that the front and back surfaces of the composite material flat plate are bonded and coated with a metal member, and it is preferable to bond the metal members at the same time on the front and back surfaces during manufacturing. Is preferably joined.

【0023】上述の金属部材としては、金属箔、金属板
及び金属放熱フィンなどがあり、銀、銅、アルミニウム
あるいは合金などの熱伝導率が高く接着性の良い、箔、
板、放熱フィンとして用いられる材料から選ぶことがで
きるが、価格及び低温ハンダでの接着性を考慮すると、
銅箔、銅板等が好ましい。また、熱膨張の点からはモリ
ブデン、コバール、42%ニッケル合金等が好ましい。
Examples of the above-mentioned metal member include a metal foil, a metal plate and a metal radiating fin, and a foil such as silver, copper, aluminum or an alloy having a high thermal conductivity and good adhesiveness,
You can choose from the materials used for the plate and heat dissipation fin, but considering the price and adhesiveness with low temperature solder,
Copper foil, copper plate and the like are preferable. From the viewpoint of thermal expansion, molybdenum, kovar, 42% nickel alloy and the like are preferable.

【0024】また、上述の金属部材の厚さは十分薄い、
すなわち50μm以下(好ましくは5〜40μm)であ
ることが必要で、あまり厚いと、金属は熱膨張係数が大
きく且つ弾性率も大きいので、シリコンなどの半導体や
セラミックス等の封止材との接着において、温度変化に
よる熱応力の発生が大きくなり、剥がれや破損を生じる
し、更に前述の複合材料の平板の表裏面への接合におい
ても、剥がれが生じる場合がある。また、この金属部材
を両面に接合した放熱板は、全体の厚さに制約があるた
め、金属部材を厚くすると、その分複合材料の板を薄く
する必要が生じるが、前述のような炭素繊維が厚さ方向
に配列した一方向性複合材料の板を0.8mmより薄い
厚さに加工することは困難を伴ない、加工歩留りを悪化
させる。このような理由によって、0.1mm厚以上の
金属部材は不適当であり、50μm厚以下の金属部材が
使用される。
Further, the above-mentioned metal member is sufficiently thin,
That is, the thickness is required to be 50 μm or less (preferably 5 to 40 μm), and if it is too thick, the metal has a large coefficient of thermal expansion and a large elastic modulus. In addition, thermal stress is increased due to temperature change, causing peeling and breakage, and also peeling may occur in bonding the above-mentioned composite material flat plate to the front and back surfaces. In addition, since the heat dissipation plate in which this metal member is bonded to both sides has a restriction on the overall thickness, if the metal member is made thicker, it becomes necessary to make the plate of the composite material thinner by that amount. However, it is difficult to process the plate of the unidirectional composite material arranged in the thickness direction to a thickness smaller than 0.8 mm, and the processing yield is deteriorated. For this reason, a metal member having a thickness of 0.1 mm or more is unsuitable, and a metal member having a thickness of 50 μm or less is used.

【0025】このような金属部材を、前述した複合材料
の平板の両面に接合する方法としては、エポキシ樹脂系
高分子接着剤を用いる接着などが知られている。ただ、
高分子接着剤を用いる方法では、耐熱温度が低く、また
電気抵抗が大きいなどという欠点がある。
As a method for joining such a metal member to both surfaces of the flat plate of the composite material described above, adhesion using an epoxy resin polymer adhesive is known. However,
The method using a polymer adhesive has drawbacks such as low heat resistance and high electrical resistance.

【0026】そこで、このような点を改善するために、
本発明では金属ロウを用いて金属箔をカーボン材に接合
する方法を考案した。金属ロウとしては、銀ロウ、ニッ
ケルロウ、銅ロウなどを使用するとカーボン及び金属箔
と良好な接着を得ることが可能である。銀ロウの場合は
溶解温度が600℃から1000℃程度のものまである
が、カーボンとの接着性からはチタンを含有した活性銀
ロウと呼ばれるロウ材を使用する必要がある。この場
合、溶融温度は800℃以下と他のロウ材と比較すると
低いため作業性は良いが、反応性の高いチタンを含有し
ているために、真空炉又はアルゴン雰囲気炉によりのみ
良好な接合が可能である。また、ニッケルロウ及び銅ロ
ウの場合は、溶融温度は800℃以上と銀ロウより高い
が、水素雰囲気でのロウ付けが可能であり、連続処理に
より良好な接合が可能である。
Therefore, in order to improve such a point,
The present invention has devised a method of joining a metal foil to a carbon material using a metal wax. As the metal wax, silver brazing, nickel brazing, copper brazing or the like can be used to obtain good adhesion to carbon and the metal foil. In the case of silver wax, the melting temperature ranges from 600 ° C. to 1000 ° C., but it is necessary to use a brazing material called activated silver brazing filler containing titanium because of its adhesiveness to carbon. In this case, the melting temperature is 800 ° C. or lower, which is low compared to other brazing materials, so workability is good, but since titanium, which has high reactivity, is contained, good bonding can be achieved only by a vacuum furnace or an argon atmosphere furnace. It is possible. Further, in the case of nickel brazing and copper brazing, the melting temperature is 800 ° C. or higher, which is higher than that of silver brazing, but brazing in a hydrogen atmosphere is possible, and good joining is possible by continuous treatment.

【0027】使用する金属箔としては、ロウ材との濡れ
性が必要であると同時に、ロウ材よりも高い溶融温度を
有する必要がある。そのため、使用される金属箔として
は銅、モリブデン、ステンレス、ニッケル合金、クロム
合金などが良い。
The metal foil used is required to have wettability with the brazing material and, at the same time, to have a higher melting temperature than the brazing material. Therefore, the metal foil used is preferably copper, molybdenum, stainless steel, nickel alloy, chromium alloy, or the like.

【0028】使用する金属部材と金属ロウとについて、
より具体的に説明すると、例えば金属部材として銅箔を
用いた場合には、金属ロウとしてニッケルロウ(特にB
Ni−7のロウ材)を用いることが好ましい。また、金
属部材としてモリブデン箔を用いた場合には、金属ロウ
としてニッケルロウを用いることが好ましい。また、金
属部材としてニッケル合金(鉄−ニッケル)、ステンレ
ス鋼及びクロム鋼(鉄−クロム)を用いた場合には、金
属ロウとして銅ロウ又はニッケルロウを用いることが好
ましい。
Regarding the metal member and the metal solder used,
More specifically, for example, when a copper foil is used as the metal member, a nickel braze (particularly B
Ni-7 brazing material) is preferably used. Moreover, when molybdenum foil is used as the metal member, it is preferable to use nickel solder as the metal solder. When nickel alloy (iron-nickel), stainless steel, and chrome steel (iron-chromium) are used as the metal member, it is preferable to use copper solder or nickel solder as the metal solder.

【0029】接合の実施に当たっては、上記のように溶
融温度800℃超過の金属ロウ、例えばニッケルロウ又
は銅ロウを用いる場合は、水素雰囲気の連続炉中で90
0℃〜1,200℃の温度で行うことができるし、また
真空炉中で、900℃〜1,200℃の温度で行うこと
ができる。また、必要に応じプレスをかけながら行って
もよい。ロウ付け温度が1,200℃超過では、金属部
材が溶けたり、しわになったり、あるいはロウ材と金属
部材とが合金化したりすることがあるし、逆に900℃
未満では、ロウ材がよく溶けなかったり、粘度が高く濡
れが悪かったりして強固な接合が望めなくなる。具体的
に言うと、薄板状の金属部材上に金属ロウをセットし、
その上に複合材料平板を重ね、更にその上に金属ロウと
金属部材とをその順に重ね、必要に応じてプレスをか
け、水素連続炉又は真空炉中で所望の温度まで昇温し、
所定時間保持するという方法が好適である。
In carrying out the joining, when a metal brazing material having a melting temperature of more than 800 ° C., such as a nickel brazing material or a copper brazing material, is used as described above, it is used in a continuous furnace in a hydrogen atmosphere.
It can be performed at a temperature of 0 ° C. to 1,200 ° C., or in a vacuum furnace at a temperature of 900 ° C. to 1,200 ° C. Moreover, you may perform it, applying a press as needed. If the brazing temperature exceeds 1,200 ° C, the metal member may melt or wrinkle, or the brazing material and the metal member may be alloyed, and conversely 900 ° C.
When the amount is less than the above, the brazing material does not melt well, or the viscosity is high and the wetting is bad, so that strong bonding cannot be expected. Specifically, set the metal brazing on a thin plate-shaped metal member,
A composite material flat plate is stacked on it, and a metal wax and a metal member are further stacked in that order on it, and a press is applied if necessary, and the temperature is raised to a desired temperature in a hydrogen continuous furnace or a vacuum furnace,
A method of holding for a predetermined time is preferable.

【0030】本発明の放熱板は、炭素繊維が厚さ方向に
配列している一方向性炭素繊維強化複合材料の平板の表
裏両面に、金属ロウを介して薄板状金属部材を接合して
なる構造のものとしたことから、厚さ方向に高熱伝導性
(200W/m・K)を有しているため放熱性が良好で
あり、且つ広さ方向に低弾性率(40GPa以下)を有
するため熱応力の発生が低く、更に高耐熱温度(800
℃以上)を有するため、シリコン、アルミナ等と接合す
る場合、高温ハンダ付けが可能であり、更にはNiロ
ウ、Cuロウ等を使用すれば銀ロウ付けも可能であり、
しかも低電気抵抗(400μΩcm以下)であるため、
パワートランジスタ用として使用可能である。
The heat radiating plate of the present invention is made by joining thin plate metal members through metal brazing to both front and back surfaces of a flat plate of a unidirectional carbon fiber reinforced composite material in which carbon fibers are arranged in the thickness direction. Since it has a structure, it has high thermal conductivity (200 W / m · K) in the thickness direction and thus has good heat dissipation, and has a low elastic modulus (40 GPa or less) in the width direction. Low thermal stress and high heat resistance (800
C. or higher), high temperature soldering is possible when joining with silicon, alumina, etc., and silver brazing is also possible by using Ni braze, Cu braze, etc.
Moreover, since it has a low electric resistance (400 μΩcm or less),
It can be used for power transistors.

【0031】[0031]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明の技術的範囲がこれらにより限定される
ものではない。
The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the technical scope of the present invention.

【0032】実施例1 UD C/C複合材料として、表1に示す物性を有する
ブロック材料を用い、そのブロックをマルチワイヤーソ
ーを用いて繊維配列方向と直角方向に切断し、サイズ2
5.4×25.4×1.0mm(繊維方向は1mm)の
薄板に切り出した。
Example 1 As a UD C / C composite material, a block material having the physical properties shown in Table 1 was used, and the block was cut with a multi-wire saw in the direction perpendicular to the fiber arrangement direction to obtain a size 2
It was cut into a thin plate of 5.4 × 25.4 × 1.0 mm (fiber direction: 1 mm).

【表1】 [Table 1]

【0033】金属箔として厚さ10μmの無酸素銅箔
(融点1083℃)を、金属ロウとしてニッケルロウ
(BNi−7、融点890℃)を用い、銅箔/ニッケル
ロウ/複合材料/ニッケルロウ/銅箔の順に重ねて、水
素連続炉中で950℃に加熱して接合した。この時、特
に圧力はかけなかった。接合後の外観及び断面構造は、
それぞれ図1及び図2で示されるものであった。
Oxygen-free copper foil (melting point 1083 ° C.) having a thickness of 10 μm is used as the metal foil, and nickel wax (BNi-7, melting point 890 ° C.) is used as the metal wax. The copper foils were stacked in this order and heated to 950 ° C. in a hydrogen continuous furnace for bonding. At this time, no particular pressure was applied. The appearance and cross-sectional structure after joining are
1 and 2 respectively.

【0034】得られた接合板は、ニッケルロウがカーボ
ンと銅の両方に良好に濡れて広がり、強固な接着構造と
なっていた。なお、その時のニツケルロウの厚さは約1
0μmであった。また、この接合板の厚さ方向の熱伝導
率は250W/m・Kで、広さ方向の熱膨張率は11×
10-6/℃、広さ方向の弾性率は14GPaであり、電
気抵抗は測定値限界以下(ミリオームテスター使用)で
あった。
In the obtained bonded plate, the nickel wax was well wetted and spread on both carbon and copper, and had a strong adhesive structure. The thickness of the nickel wax at that time is about 1
It was 0 μm. The thermal conductivity of this joint plate in the thickness direction is 250 W / m · K, and the thermal expansion coefficient in the width direction is 11 ×.
The elastic modulus in the width direction was 10 −6 / ° C., 14 GPa, and the electric resistance was below the limit of measurement value (using a milliohm tester).

【0035】次に、シリコン板とアルミナ板との間に、
作製した放熱板をハンダ(錫60%、鉛40%)で接合
して、熱サイクル(0℃から150℃)を繰り返し10
0回与えて、テストを実施したが、剥離や破損などの問
題は発生しなかった。
Next, between the silicon plate and the alumina plate,
The produced heat sink is joined with solder (60% tin, 40% lead), and the thermal cycle (0 to 150 ° C) is repeated 10
The test was carried out by giving it 0 times, but no problem such as peeling or breakage occurred.

【0036】実施例2 実施例1と同じUD C/C複合材料の薄板を用い、た
ゞ金属箔としては厚さ20μmのモリブデン箔を使用
し、またロウ材としてはニッケルロウ(BNi−1、融
点975〜1040℃)を使用した。実施例1と同様に
して、モリブデン箔/ニッケルロウ/複合材料/ニッケ
ルロウ/モリブデン箔を重ね、水素連続炉中で1100
℃に加熱して接合した。この時、特に圧力はかけなかっ
た。
Example 2 A thin plate of the same UD C / C composite material as in Example 1 was used, a molybdenum foil having a thickness of 20 μm was used as the metal foil, and nickel braze (BNi-1, Mp 975-1040 ° C) was used. In the same manner as in Example 1, molybdenum foil / nickel braze / composite material / nickel braze / molybdenum foil were stacked, and 1100 in a hydrogen continuous furnace.
It heated and joined at ℃. At this time, no particular pressure was applied.

【0037】その結果、実施例1と同様に良好な接合が
出来た。また、接合テストも問題なかった。得られた接
合板の厚さ方向の熱伝導率は230W/m・Kであり、
広さ方向の熱膨張率は6.5×10-6/℃であり、広さ
方向の弾性率は25GPaであり、電気抵抗は測定値限
界以下(ミリオームテスター使用)であった。
As a result, good joining was achieved as in Example 1. In addition, there was no problem in the bonding test. The thermal conductivity in the thickness direction of the obtained joint plate is 230 W / mK,
The thermal expansion coefficient in the width direction was 6.5 × 10 −6 / ° C., the elastic modulus in the width direction was 25 GPa, and the electric resistance was below the measurement limit (using a milliohm tester).

【0038】実施例3 実施例1と同じUD C/C複合材料の薄板を用い、た
ゞ金属箔として10μm厚のステンレス(SUS30
4)箔を使用し、またロウ材として銅ロウ(BCu−
1、融点1083℃)を使用した。実施例1と同様にし
て、ステンレス箔/銅ロウ/複合材料/銅ロウ/ステン
レス箔を重ね、水素連続炉中を用いて1150℃に加熱
して接合した。この時、特に圧力はかけなかった。
Example 3 Using a thin plate of the same UD C / C composite material as in Example 1, as a metal foil, a 10 μm thick stainless steel (SUS30) was used.
4) A foil is used, and copper brazing (BCu-
1, melting point 1083 ° C.) was used. In the same manner as in Example 1, stainless steel foil / copper brazing material / composite material / copper brazing material / stainless steel foil were stacked and heated to 1150 ° C. in a hydrogen continuous furnace to bond them. At this time, no particular pressure was applied.

【0039】その結果、実施例1と同様に良好な接合が
出来た。また、接合テストも問題なかった。得られた接
合板の厚さ方向の熱伝導率は320W/m・Kであり、
広さ方向の熱膨張率は9×10-6/℃であり、広さ方向
の弾性率は15GPaであり、電気抵抗は測定値限界以
下(ミリオームテスター使用)であった。
As a result, good joining was achieved as in Example 1. In addition, there was no problem in the bonding test. The thermal conductivity of the obtained joint plate in the thickness direction is 320 W / m · K,
The thermal expansion coefficient in the width direction was 9 × 10 −6 / ° C., the elastic modulus in the width direction was 15 GPa, and the electric resistance was below the limit of measurement value (using a milliohm tester).

【0040】実施例4 実施例1と同じUD C/C複合材料の薄板を用い、た
ゞ金属箔としては厚さ10μm厚のニッケル箔を使用
し、またロウ材としては活性銀ロウ(融点780〜80
0℃)を使用した。ニッケル箔/活性銀ロウ/複合材料
/活性銀ロウ/ニッケル箔を重ね、真空ホットプレスに
て850℃に加熱して接合した。この時、圧力を5Mp
aかけた。
Example 4 A thin plate of the same UD C / C composite material as in Example 1 was used, a nickel foil having a thickness of 10 μm was used as the metal foil, and an active silver wax (melting point 780 was used as the brazing material. ~ 80
0 ° C) was used. Nickel foil / active silver wax / composite material / active silver wax / nickel foil were laminated and heated to 850 ° C. by a vacuum hot press to bond them. At this time, the pressure is 5 Mp
a.

【0041】その結果、実施例1と同様に良好な接合が
出来た。また、接合テストも問題なかった。得られた接
合板の厚さ方向の熱伝導率は280W/m・Kであり、
広さ方向の熱膨張率は10×10-6/℃であり、広さ方
向の弾性率は12GPaであり、電気抵抗は測定値限界
以下(ミリオームテスター使用)であった。
As a result, good joining was achieved as in Example 1. In addition, there was no problem in the bonding test. The thermal conductivity in the thickness direction of the obtained bonded plate was 280 W / mK,
The thermal expansion coefficient in the width direction was 10 × 10 −6 / ° C., the elastic modulus in the width direction was 12 GPa, and the electric resistance was below the limit of measurement value (using a milliohm tester).

【0042】比較例1 厚さ35μmの銅箔の片面に、エポキシ系接着剤を約4
0μmの厚さに均一に添付したものを用意し、実施例1
で用いたと同じUD C/C複合材料の薄板の表裏両面
に、銅箔の接着剤塗布面を向けて張り合わせ、ホットプ
レスで接着面当り50kg/cm2の圧力を加え、15
0℃にて2時間保持して、接合したところ、良好な接合
ができた。実施例1と同様の接合テストでも問題は発生
しなかったが、耐熱温度が低いために、高温ハンダ(3
50℃)を用いた時は、樹脂が黒色に変質すると共に、
融けて流れだし、銅箔が複合材料から剥離した。また、
テスト前の電気抵抗は10mΩと大きな値を示し、パワ
ーデバイス等の大電流の流れる用途では使用することが
出来なかった。得られた接合板の物性は、熱伝導率29
0W/m・K、熱膨張率12×10-6/℃、弾性率は1
5GPa、電気抵抗10mΩであった。
Comparative Example 1 An epoxy adhesive was applied on one side of a copper foil having a thickness of 35 μm by about 4 times.
The one uniformly attached to a thickness of 0 μm was prepared, and
The same UD C / C composite material used in the above was bonded to both front and back sides of the copper foil with the adhesive-coated surfaces of the copper foils applied, and a pressure of 50 kg / cm 2 per hot-pressed surface was applied.
When they were held at 0 ° C. for 2 hours and joined, good joining was possible. No problem occurred in the same joining test as in Example 1, but the high temperature solder (3
When using 50 ℃), the resin turns black and
It melted and started flowing, and the copper foil peeled from the composite material. Also,
The electric resistance before the test showed a large value of 10 mΩ and could not be used in applications such as power devices in which a large current flows. The physical properties of the obtained joint plate have a thermal conductivity of 29.
0 W / m · K, coefficient of thermal expansion 12 × 10 −6 / ° C., elastic modulus 1
It was 5 GPa and electric resistance was 10 mΩ.

【0043】実施例1〜4及び比較例1で得られた厚さ
約1mmの放熱板の性能を各種の金属製の放熱板の性能
とあわせて、表2に示す。表2から、実施例1〜4の放
熱板は、Si(厚さ0.5mm)、Al23(厚さ1m
m)と接合した場合、いずれも従来材より低い熱歪率と
なっていることがわかる。
Table 2 shows the performance of the heat radiation plate having a thickness of about 1 mm obtained in Examples 1 to 4 and Comparative Example 1 together with the performance of various metal heat radiation plates. From Table 2, the heat sinks of Examples 1 to 4 are Si (thickness 0.5 mm), Al 2 O 3 (thickness 1 m).
It can be seen that in the case of joining with m), the thermal strain rate is lower than that of the conventional material.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】本発明の放熱板は、炭素繊維が厚さ方向
に配列している一方向性炭素繊維強化複合材料の平板の
表裏両面が、薄板状金属部材によって金属ロウを介して
被覆されている構造からなるものとしたことから、厚さ
方向の熱伝導率が銅/タングステン複合材料のそれと同
等か又はそれ以上という高いものとすることができるた
め放熱性が非常に良好であり、また広さ方向の熱膨張係
数がシリコン半導体やアルミナ等のそれと近く、しかも
その広さ方向の弾性率も小さいものとすることができる
ため、半導体パッケージとしたときに、温度変化による
熱応力発生が小さく、剥がれたり、割れたりすること
や、半導体への悪影響を生じない。もちろん、気密性、
封止性も良好である。その上、800℃以上という高耐
熱温度を有するため、高温ハンダ付け、銀ロウ付けが可
能であり、更に電気抵抗が低いので、パワートランジス
タ用としても使用可能である。
According to the heat dissipation plate of the present invention, the front and back surfaces of the flat plate of the unidirectional carbon fiber reinforced composite material in which the carbon fibers are arranged in the thickness direction are covered with the thin plate metal member through the metal solder. Since the structure has the structure described above, the heat conductivity in the thickness direction can be as high as or higher than that of the copper / tungsten composite material, so that the heat dissipation property is very good. Since the coefficient of thermal expansion in the width direction is close to that of silicon semiconductors or alumina, and the elastic modulus in the width direction can be small, thermal stress generation due to temperature change is small when the semiconductor package is used. No peeling or cracking, and no adverse effect on the semiconductor. Of course, airtightness,
The sealing property is also good. In addition, since it has a high heat resistance temperature of 800 ° C. or higher, it can be used for high temperature soldering and silver brazing, and since it has low electric resistance, it can also be used for power transistors.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放熱板の外観図である。FIG. 1 is an external view of a heat sink of the present invention.

【図2】本発明の放熱板の模式断面図である。FIG. 2 is a schematic cross-sectional view of a heat dissipation plate of the present invention.

【図3】放熱板付き半導体パッケージの模式断面図であ
る。
FIG. 3 is a schematic cross-sectional view of a semiconductor package with a heat sink.

【符号の説明】[Explanation of symbols]

1 一方向性炭素繊維強化複合材料の平板 2 薄板状の金属部材 3 金属ロウ材層 4 放熱板 5 半導体(シリコンチップ) 6 セラミックス封止体 7 ボンディングワイヤー 8 端子 1 Flat plate of unidirectional carbon fiber reinforced composite material 2 Thin metal member 3 Metal brazing material layer 4 Heat dissipation plate 5 Semiconductor (silicon chip) 6 Ceramics sealing body 7 Bonding wire 8 Terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維が厚さ方向に配列している一方
向性炭素繊維強化複合材料の平板の表裏両面が、厚さ約
50μm以下の薄板状金属部材によって金属ロウを介し
て被覆されている構造からなることを特徴とする放熱
板。
1. The front and back surfaces of a flat plate of a unidirectional carbon fiber reinforced composite material in which carbon fibers are arranged in the thickness direction are covered with a thin plate-like metal member having a thickness of about 50 μm or less through a metal solder. A heat sink characterized by having a structure.
JP8134309A 1996-05-01 1996-05-01 Heat radiation plate Pending JPH09298260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8134309A JPH09298260A (en) 1996-05-01 1996-05-01 Heat radiation plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8134309A JPH09298260A (en) 1996-05-01 1996-05-01 Heat radiation plate

Publications (1)

Publication Number Publication Date
JPH09298260A true JPH09298260A (en) 1997-11-18

Family

ID=15125291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8134309A Pending JPH09298260A (en) 1996-05-01 1996-05-01 Heat radiation plate

Country Status (1)

Country Link
JP (1) JPH09298260A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892099A1 (en) * 1997-07-15 1999-01-20 Mitsubishi Chemical Corporation Carbon fiber woven fabric
WO2004112131A1 (en) * 2003-06-10 2004-12-23 Honda Motor Co., Ltd. Semiconductor device
WO2004112130A1 (en) * 2003-06-10 2004-12-23 Honda Motor Co., Ltd. Semiconductor device
JP2005317988A (en) * 2005-04-25 2005-11-10 Actronics Co Ltd Heat transfer plate between planes
JP2007009213A (en) * 2005-07-01 2007-01-18 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat conductive material and method for preparation of the same
JP2007284679A (en) * 2006-04-14 2007-11-01 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Composite material containing carbon nanotubes and process for its production
JP2011520293A (en) * 2008-05-07 2011-07-14 ナノコンプ テクノロジーズ インコーポレイテッド Nanostructure-based heating device and method of use thereof
US11702725B2 (en) 2018-08-21 2023-07-18 Fujitsu Limited Bonding structure and method of manufacturing bonding structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892099A1 (en) * 1997-07-15 1999-01-20 Mitsubishi Chemical Corporation Carbon fiber woven fabric
CN100385652C (en) * 2003-06-10 2008-04-30 本田技研工业株式会社 Semiconductor device
WO2004112131A1 (en) * 2003-06-10 2004-12-23 Honda Motor Co., Ltd. Semiconductor device
WO2004112130A1 (en) * 2003-06-10 2004-12-23 Honda Motor Co., Ltd. Semiconductor device
US7470983B2 (en) 2003-06-10 2008-12-30 Honda Motor Co., Ltd. Semiconductor device reducing warping due to heat production
JP2005317988A (en) * 2005-04-25 2005-11-10 Actronics Co Ltd Heat transfer plate between planes
JP2007009213A (en) * 2005-07-01 2007-01-18 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat conductive material and method for preparation of the same
JP4653029B2 (en) * 2005-07-01 2011-03-16 鴻富錦精密工業(深▲セン▼)有限公司 Thermally conductive material and method for producing the same
US8029900B2 (en) 2005-07-01 2011-10-04 Tsinghua University Thermal interface material and method for manufacturing same
JP2007284679A (en) * 2006-04-14 2007-11-01 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Composite material containing carbon nanotubes and process for its production
JP4723529B2 (en) * 2006-04-14 2011-07-13 鴻富錦精密工業(深▲セン▼)有限公司 Composite material including carbon nanotube and method for producing the same
JP2011520293A (en) * 2008-05-07 2011-07-14 ナノコンプ テクノロジーズ インコーポレイテッド Nanostructure-based heating device and method of use thereof
JP2015181102A (en) * 2008-05-07 2015-10-15 ナノコンプ テクノロジーズ インコーポレイテッド Nanostructure-based heating device and method for using the same
US9198232B2 (en) 2008-05-07 2015-11-24 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
US11702725B2 (en) 2018-08-21 2023-07-18 Fujitsu Limited Bonding structure and method of manufacturing bonding structure

Similar Documents

Publication Publication Date Title
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
JP4664816B2 (en) Ceramic circuit board, manufacturing method thereof and power module
WO2002067324A1 (en) Member for electronic circuit, method for manufacturing the member, and electronic part
JPH04162756A (en) Semiconductor module
JP2002043482A (en) Member for electronic circuit, its manufacturing method and electronic component
JPH09298260A (en) Heat radiation plate
JPH10107190A (en) Semiconductor package
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JPH09321190A (en) Heat sink
JP2002064169A (en) Heat radiating structure
KR100981837B1 (en) Member for semiconductor device and semiconductor device
JPH09129793A (en) Heat conductive plate for semiconductor package
JP2005095944A (en) Metallic substrate-metal impregnated carbon composite structure, and method of producing the structure
JP2000022055A (en) Carbon fabric composite radiator plate
TWI734528B (en) Composite substrate
JP2005032833A (en) Module type semiconductor device
JPS639665B2 (en)
JP2000086368A (en) Nitride ceramic substrate
JPH10284643A (en) Substrate for semiconductor device
JP7340009B2 (en) Electronic component module and silicon nitride circuit board
JP2650044B2 (en) Connection structure between components for semiconductor devices
JP2520940B2 (en) Semiconductor device parts
JP3554304B2 (en) Semiconductor element storage package and semiconductor device
JP7192100B2 (en) Silicon nitride circuit board and electronic component module
JPH08222670A (en) Package for mounting semiconductor element