JPH09296808A - Fluid flow control member - Google Patents

Fluid flow control member

Info

Publication number
JPH09296808A
JPH09296808A JP13579096A JP13579096A JPH09296808A JP H09296808 A JPH09296808 A JP H09296808A JP 13579096 A JP13579096 A JP 13579096A JP 13579096 A JP13579096 A JP 13579096A JP H09296808 A JPH09296808 A JP H09296808A
Authority
JP
Japan
Prior art keywords
control member
capillary passage
fluid
flow control
fluid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13579096A
Other languages
Japanese (ja)
Inventor
Takashi Takahashi
敬 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13579096A priority Critical patent/JPH09296808A/en
Publication of JPH09296808A publication Critical patent/JPH09296808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Flow Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive fluid flow control member by which the flow adjusting action for fluid is promptly exhibited after supplied fluid is rapidly diffused, and the high adjusting accuracy can be obtained. SOLUTION: A fluid flow control member is composed of a base material, main capillary tube passages 1 formed on the front surface of this base material, each of which is composed of many thin grooves 1a extending in parallel in the longitudinal direction in which fluid is allowed to flow, and each in which the longitudinal diffusing range of moving fluid is formed, and sub capillary tube passages 2 each of which is composed of many thin grooves 2a intersecting the grooves of the main capillary tube passages and extending in parallel in the lateral direction, to which fluid is to be introduced mainly from the side of the main capillary tube passage, each in which the lateral diffusing range for moving fluid is formed, and arranged next to the main capillary tube passages.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体を規正した状態で
一定の方向性を持たせて流動させるための流体流動制御
部材、特に、流体の移動を円滑に行い流体の流れを平衡
状態に保つ流動制御部材に係る。ここで言う流体とは、
温水、地下水、冷却水、蒸発させる液体、放熱/加熱す
る液体、水耕栽培液、化学溶液、試薬液、排液等の各種
の流体を含む概念である。従って、本発明の部材は、熱
交換器、流体分配供給手段、蒸発器、拡散混合手段(複
数種類の流体を部材上で拡散混合する)等に利用するこ
とができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid flow control member for allowing a fluid to flow in a regulated state with a certain directionality, and more particularly to a fluid flow control member which smoothly moves a fluid to bring the fluid flow into an equilibrium state. It relates to a flow control member to keep. The fluid here is
It is a concept that includes various fluids such as hot water, ground water, cooling water, liquid to be evaporated, liquid to be radiated / heated, hydroponic liquid, chemical solution, reagent liquid, drainage liquid, and the like. Therefore, the member of the present invention can be used for a heat exchanger, a fluid distribution supply means, an evaporator, a diffusive mixing means (a plurality of kinds of fluids are diffusively mixed on a member), and the like.

【0002】前述した流体流動制御部材は、様々な用途
に利用することができる。また流体流動制御部材は、単
一用途に限らず、複合的な用途、例えば、流体流動制御
部材を屋根面に布設し、冬期、温水をこの部材に沿って
流して屋根の除雪または融雪を行い、夏期には流体流動
制御部材を集熱体として用い、部材に沿って流体を流し
て太陽熱を集熱する複合的な用途機能を持たせることが
できる。同時に、この部材は、夏期、冷水を流して鉄板
屋根面を冷却する冷却部材としての機能も備えている。
部材は毛細管現象を利用した急速な拡散性能を持ち、部
材の設置姿勢には特に制約はない。なお、後述する主流
毛細管通路と副流毛細管通路の幅寸法、使用本数、組み
合わせ方は選択事項である。
The fluid flow control member described above can be used for various purposes. In addition, the fluid flow control member is not limited to a single use, but it is used for multiple purposes, for example, a fluid flow control member is laid on the roof surface, and warm water is flowed along this member in winter to remove snow or melt the roof. In the summer, the fluid flow control member is used as a heat collector, and it is possible to provide a composite use function of flowing a fluid along the member to collect solar heat. At the same time, this member also has a function as a cooling member that flows cold water to cool the iron plate roof surface in the summer.
The member has a rapid diffusion performance utilizing the capillary phenomenon, and there is no particular restriction on the installation posture of the member. In addition, the width dimension of the mainstream capillary passage and the sidestream capillary passage described later, the number of used pipes, and the way of combination are optional matters.

【0003】[0003]

【従来の技術】本件出願の発明者は、流体の流動を制御
する様々なテープ状シートについて試作研究を続けてき
た。これらシートはそれぞれに特徴を備え、用途に応じ
て使い分けることができる。
2. Description of the Related Art The inventor of the present application has continued trial manufacture and research on various tape-shaped sheets for controlling fluid flow. Each of these sheets has its own characteristics and can be used properly according to the purpose.

【0004】出願人の試作に係るシートは、流体の移動
を拘束して規正的に流動させる性能を備えている。これ
ら従来の試作シートの規正性能をさらに精密化し、急速
な拡散性能を持たせることができればより好ましい。
The prototype sheet of the applicant has the ability to restrain the movement of the fluid and cause it to flow in a regulated manner. It is more preferable that the regulation performance of these conventional prototype sheets can be further refined to provide rapid diffusion performance.

【0005】[0005]

【発明が解決しようとする課題】具体的に説明すると、
シートの稼働時、シート上に最初に供給された流体は、
供給箇所から徐々に広がっていき、シート面を湿潤しな
がら流動していく。シートと流体がよく馴染んだ状態で
は、流体の動きには規則性が生じ、その挙動は維持され
る。しかしながら、シート表面が飽和するまでには時間
がかかり、またその過程での流体の挙動は必ずしも規正
されたものではない。特に、シートが保水性または吸水
性に富む素材層を備えている場合、シートの規正効果に
よる応答性(流体供給側と流体流出側の間の流動性能の
一貫性)が発生するまでには相当の時間を要する欠点が
ある。また規正性能の精度には一定の制約があり、応答
速度を速めると規正精度を保つことが難しくなり、これ
ら2つの要求を同時に満足することは困難である。
To be concretely explained,
When the seat is in operation, the fluid initially supplied on the seat is
It gradually spreads from the supply point and flows while wetting the sheet surface. When the sheet and the fluid are intimately intimate with each other, there is regularity in the movement of the fluid, and the behavior is maintained. However, it takes time for the surface of the sheet to be saturated, and the behavior of the fluid in the process is not always regulated. In particular, if the sheet has a material layer that is highly water-retaining or water-absorbing, it takes a considerable amount of time before the responsiveness (consistency of flow performance between the fluid supply side and the fluid outflow side) occurs due to the sheet's regulation effect. It has the drawback of requiring time. Further, there is a certain restriction on the accuracy of the train-set performance, and it becomes difficult to maintain the train-set accuracy when the response speed is increased, and it is difficult to satisfy these two requirements at the same time.

【0006】本発明の目的は、供給した流体が急速に拡
散して流体の流動規正作用が速やかに発揮され、しかも
高い規正精度の得られる安価な流体流動制御部材を提供
することにある。
An object of the present invention is to provide an inexpensive fluid flow control member in which the supplied fluid is rapidly diffused so that the flow regulation effect of the fluid is promptly exerted and high regulation accuracy is obtained.

【0007】[0007]

【課題を解決するための手段】基材表面に流体の主な流
動方向に沿って溝を多数並列して設け複数の主流領域を
形成し、これら主流領域同士を副流領域を介在させて互
いに横に連結する構成を取り入れている。主流領域と副
流領域を形成する多数の溝は各々が毛細管通路を形成
し、これら領域が部材表面を覆うようにして流体流動制
御部材は構成されている。
[Means for Solving the Problems] A large number of grooves are provided in parallel on the surface of a base material along the main flow direction of a fluid to form a plurality of main flow regions, and these main flow regions are mutually separated by interposing a sub flow region. It adopts a configuration that connects horizontally. The plurality of grooves forming the main flow region and the sub flow region each form a capillary passage, and the fluid flow control member is configured such that these regions cover the surface of the member.

【0008】[0008]

【作用】主流領域を形成する主流毛細管通路の溝は流体
の移動方向に延びている。流体は主流領域または副流領
域に供給される。供給された流体は主流毛細管通路に速
やかに捕捉され、主流毛細管通路の毛細管作用により先
ず主流毛細管通路に沿って急速に先行する多数の毛細流
が形成される。これら毛細流は非常に明確な主流経路を
部材上に描き、後を追って流量の多い主流が主流領域の
範囲を満たすようになる。この毛細流の先行現象に追随
した主流の流れは、流体同士の馴染みにより、主流は毛
細流の後を正確にたどり急速に流動する。
The groove of the mainstream capillary passage forming the mainstream region extends in the moving direction of the fluid. Fluid is supplied to the mainstream region or the sidestream region. The supplied fluid is quickly captured in the mainstream capillary passage, and the capillary action of the mainstream capillary passage forms a large number of rapidly preceding capillaries along the mainstream capillary passage. These capillary flows draw a very clear mainstream path on the member, and the mainstream with a large flow rate will fill the range of the mainstream region later. The flow of the main stream following the preceding phenomenon of the capillary flow flows rapidly after accurately following the capillary flow due to the familiarity between the fluids.

【0009】部材表面には急速にしかも正確に主流領域
が形成されるが、この現象に並行して、またはこの現象
に引き続き、主流領域から副流領域にかけての流体の拡
散が急速に進行する。主流毛細管通路と副流毛細管通路
の配置関係により、初期の主流領域の毛細流が副流領域
の副流毛細管通路内に同時に侵入するか、主流領域に主
流が形成された後、この主流から副流領域に毛細流が形
成され、この副流領域毛細流に案内されて主流の一部が
横に拡散するかが決まる。前者の場合、流体の供給側か
ら流体の流出側にかけて流体は部材表面を前進するが、
後者の例では、流体の供給側から流体の流出側にかけて
規正された主流が早期に発生する違いがある。ただし、
副流領域のレベル設定を変えればこれら2つの現象は同
時に進行していく。
A mainstream region is rapidly and accurately formed on the surface of the member, and in parallel with this phenomenon or subsequent to this phenomenon, the diffusion of the fluid from the mainstream region to the substream region rapidly progresses. Depending on the positional relationship between the mainstream capillary passage and the sidestream capillary passage, the capillary flow in the initial mainstream region may enter the sidestream capillary passage in the sidestream region at the same time, or after the mainstream is formed in the mainstream region, the substream flows from this mainstream. A capillary flow is formed in the flow region and is guided by the side flow region capillary flow to determine whether a part of the main flow diffuses laterally. In the former case, the fluid advances on the member surface from the fluid supply side to the fluid outflow side,
In the latter example, there is a difference that a regulated main flow is generated early from the fluid supply side to the fluid outflow side. However,
If the level setting of the sidestream region is changed, these two phenomena will proceed simultaneously.

【0010】また、副流毛細管通路を形成する並列する
溝は主流毛細管通路の溝に交差して配置されているた
め、副流毛細管通路に沿った流体の縦方向への移動は主
流毛細管通路に沿った流体の移動に比べて阻止または制
限される。従って、副流毛細管通路は抵抗面となって主
流毛細管通路と同方向の流体の流れに対しては減速領域
を形成する。
Further, since the parallel grooves forming the sidestream capillary passages are arranged so as to intersect with the grooves of the mainstream capillary passage, the movement of the fluid along the sidestream capillary passage in the longitudinal direction is in the mainstream capillary passage. It is blocked or limited compared to the movement of fluid along it. Therefore, the sub-flow capillary passage serves as a resistance surface and forms a deceleration region for the flow of fluid in the same direction as the main-flow capillary passage.

【0011】副流毛細管通路を流動する流体の流量は、
主流毛細管通路を移動する流体の流量が多ければ多くな
り、主流毛細管通路を移動する流体の流量が少なければ
少ない量である。従って、副流毛細管通路の溝の形態、
具体的には、溝の幅と深さ、溝底のレベル、副流毛細管
通路の幅寸法等のデザインは主流毛細管通路の溝の形態
との関係で選択する必要がある。
The flow rate of the fluid flowing through the sidestream capillary passage is
The larger the flow rate of the fluid moving through the mainstream capillary passage, the smaller the flow rate of the fluid moving through the mainstream capillary passage. Therefore, the shape of the groove of the sidestream capillary passage,
Specifically, the design such as the width and depth of the groove, the level of the groove bottom, the width dimension of the side flow capillary passage, etc., must be selected in relation to the form of the groove of the main flow capillary passage.

【0012】例えば、主流毛細管通路と副流毛細管通路
の溝の断面形状を同一にし、副流毛細管通路の溝底のレ
ベルを主流毛細管通路のものよりも高く設定すれば、副
流毛細管通路は主流毛細管通路に対しうね状に***し、
主流毛細管通路は窪んだ溝の形態を呈する。主流毛細管
通路を流動する流体の量が少なければ、副流毛細管通路
の上部は主流毛細管通路の流体表面よりも上方に露出す
る。主流毛細管通路の溝底のレベルを副流毛細管通路の
ものよりも高く設定すれば、主流毛細管通路は副流毛細
管通路に対しうね状に***し、副流毛細管通路は窪んだ
溝の形態を呈する。この構造例では、副流毛細管通路に
供給された流体は副流毛細管通路を移動する過程で横方
向毛細流が先行して形成され、主流毛細管通路に引き継
がれ主流毛細管通路への流体の拡散現象が生じる。
For example, if the grooves of the mainstream capillary passage and the sidestream capillary passage have the same cross-sectional shape and the groove bottom level of the sidestream capillary passage is set higher than that of the mainstream capillary passage, the sidestream capillary passage is Raised like a ridge for the capillary passage,
The mainstream capillary passage takes the form of a recessed groove. If the amount of fluid flowing through the mainstream capillary passage is small, the upper portion of the sidestream capillary passage is exposed above the fluid surface of the mainstream capillary passage. If the level of the groove bottom of the mainstream capillary passage is set higher than that of the sidestream capillary passage, the mainstream capillary passage is raised in a ridge shape with respect to the sidestream capillary passage, and the sidestream capillary passage has the shape of a depressed groove. Present. In this structural example, the fluid supplied to the sidestream capillary passage is formed by a lateral capillary flow in the process of moving through the sidestream capillary passage and is taken over by the mainstream capillary passage to diffuse the fluid into the mainstream capillary passage. Occurs.

【0013】主副流毛細管通路は同一平面に沿って配列
することもできる。この場合、うね状突起と窪んだ溝は
形成されない。主副流毛細管通路の立体的または平面的
配置の何れの形態を採用する場合でも、副流毛細管通路
は隣接する主流毛細管通路の間の連絡通路を形成する一
方で、主流毛細管通路の流れに対しては側部を拘束する
減速領域を形作っている。従って、流体の流動を乱す何
らかの原因が発生しても、流体は主流毛細管通路と副流
毛細管通路の間を移動しつつも、溝の持つ毛細管作用に
より溝には常に流体が保持され、同時に、流体は副流毛
細管通路をバイパスして流体流動制御部材の表面を自由
に流動することができる。その結果、流体流動制御部材
の表面を覆う流体の流量分布は大きく変化せず、乱れが
生じても速やかに回復する。
The main and secondary flow capillary passages can also be arranged along the same plane. In this case, the ridge-shaped projection and the recessed groove are not formed. In any of the three-dimensional or planar arrangement of the main / substream capillary passages, the substream capillary passages form the communication passage between the adjacent mainstream capillary passages, while Form a deceleration area that restrains the sides. Therefore, even if some cause for disturbing the flow of the fluid occurs, the fluid is always held in the groove by the capillary action of the groove while moving between the main flow capillary passage and the auxiliary flow capillary passage, and at the same time, The fluid can freely flow on the surface of the fluid flow control member by bypassing the sidestream capillary passage. As a result, the flow rate distribution of the fluid covering the surface of the fluid flow control member does not change significantly, and even if turbulence occurs, it recovers quickly.

【0014】副流毛細管通路の溝底のレベルが主流毛細
管通路の溝底のレベルよりも高くするか低くするか、溝
の断面積をどの程度にするかは用途、使用条件に応じて
選択される。流体流動制御部材を熱交換装置として使用
する場合、溝の容積を大きく設定すれば、流通路が保有
する流体量は増加し、この熱交換装置が融雪装置であれ
ば保有熱量は大きくなる。
Whether the level of the groove bottom of the secondary flow capillary passage is higher or lower than the level of the groove bottom of the main flow capillary passage, and the cross-sectional area of the groove is selected according to the application and use conditions. It When the fluid flow control member is used as a heat exchange device, if the volume of the groove is set large, the amount of fluid held in the flow passage increases, and if the heat exchange device is a snow melting device, the amount of heat held increases.

【0015】副流毛細管通路が主流毛細管通路を流動す
る露出した流体の流れの上側表面より低ければ、すなわ
ち、露出流体面の下に沈み、横向きの溝は露出した流れ
の減速手段として作用し、露出した流体の流れには速度
差の異なる領域が隣接して交互に位置するようになる。
この流れには規則性があり、流体の流動方向は規正され
る。
If the sidestream capillary passage is lower than the upper surface of the exposed fluid stream flowing through the mainstream capillary passage, ie, below the exposed fluid surface, the lateral grooves act as a means of moderating the exposed stream, Areas having different speed differences are adjacently and alternately located in the exposed fluid flow.
This flow has regularity, and the flow direction of the fluid is regulated.

【0016】副流毛細管通路の溝の壁に開口を設けてお
けば、この開口は隣接する溝同士を導通する連絡通路と
して機能する。この開口が上下方向に整列していれば、
開口は副流毛細管通路に設けた縦方向の溝と見なせる。
縦方向の溝の存在は、副流毛細管通路の減速抵抗を小さ
くするのに役立つ。副流毛細管通路に縦方向の溝を併設
しておけば、副流毛細管通路にも常時横方向の流れが形
成される。
If an opening is provided in the wall of the groove of the secondary flow capillary passage, this opening functions as a communication passage for connecting adjacent grooves to each other. If these openings are aligned vertically,
The openings can be regarded as longitudinal grooves in the sidestream capillary passage.
The presence of the longitudinal groove helps to reduce the retarding resistance of the sidestream capillary passage. If a vertical groove is provided in the side flow capillary passage, a lateral flow is always formed in the side flow capillary passage.

【0017】主流毛細管通路の幅、副流毛細管通路の
幅、主流毛細管通路と副流毛細管通路の幅の比率、溝の
サイズ、溝の壁の傾斜角度、溝の数、および主副流毛細
管通路の本数は選択事項である。また、主流毛細管通路
と副流毛細管通路は同一構造のものを使用する必要はな
く、隣接するもの同士の間で構造形態を変化させること
ができる。
The width of the mainstream capillary passage, the width of the sidestream capillary passage, the ratio of the width of the mainstream capillary passage to the sidestream capillary passage, the size of the groove, the inclination angle of the wall of the groove, the number of the grooves, and the main sidestream capillary passage. The number of is a matter of choice. Further, it is not necessary to use the same structure for the main flow capillary passage and the auxiliary flow capillary passage, and the structural form can be changed between adjacent ones.

【0018】[0018]

【実施例】以下、添付図面に沿って本発明に係る流体流
動制御部材の実施例につき、詳細に説明する。図1は、
基材の上側表面に形成された主流毛細管通路1と副流毛
細管通路2の位置関係を示している。主流毛細管通路1
の側部には副流毛細管通路2が位置し、副流毛細管通路
の両側には主流毛細管通路が、また主流毛細管通路の両
側には副流毛細管通路が配置されている。溝の幅および
深さは数ミリ以下の微細なものである。図示の例では、
主流毛細管通路1は流体の流動する縦方向に並列して延
びる細かい多数の溝1aから構成されている。また副流
毛細管通路2は、主流毛細管通路の溝に交差して横方向
に並列して延びる細かい多数の溝2aから構成されてい
る。
Embodiments of the fluid flow control member according to the present invention will be described in detail below with reference to the accompanying drawings. FIG.
1 shows a positional relationship between a mainstream capillary passage 1 and a sidestream capillary passage 2 formed on an upper surface of a base material. Mainstream capillary passage 1
The sidestream capillary passage 2 is located at the side of the mainstream capillary passage, the mainstream capillary passage is disposed on both sides of the sidestream capillary passage, and the sidestream capillary passage is disposed on both sides of the mainstream capillary passage. The width and depth of the groove are minute and fine. In the example shown,
The mainstream capillary passage 1 is composed of a large number of fine grooves 1a extending in parallel in the longitudinal direction in which the fluid flows. The sub-flow capillary passage 2 is composed of a large number of fine grooves 2a that intersect the grooves of the main-flow capillary passage and extend in parallel in the lateral direction.

【0019】流体は主流毛細管通路1または副流毛細管
通路2に供給される。流体の供給箇所はこれら毛細管通
路の端の位置である必要はなく、通路の中間位置でもよ
い。流体流動制御部材の使用形態によっては部材に供給
する流体の流量にはおのずと制約があるものの、流体流
動制御部材の設置姿勢は、水平、傾斜、垂直の他、原則
として自由である。毛細管現象による流体の移動範囲は
広く、部材表面に多少の凹凸が生じたとしても流体は円
滑に移動していく。
The fluid is supplied to the mainstream capillary passage 1 or the sidestream capillary passage 2. The fluid supply point does not have to be at the end of these capillary passages, but may be at an intermediate position of the passages. Although the flow rate of the fluid supplied to the fluid flow control member is naturally limited depending on the usage form of the fluid flow control member, the installation posture of the fluid flow control member is not limited to horizontal, tilted, or vertical, and in principle is free. The movement range of the fluid due to the capillary phenomenon is wide, and the fluid moves smoothly even if some irregularities occur on the surface of the member.

【0020】図2および図4は、主流毛細管通路1と副
流毛細管通路2の境界部を示している。この例では主流
毛細管通路の溝1aは副流毛細管通路の溝2aに比べて
低い位置にある。従って、供給される流体は先ず主流毛
細管通路1の溝1aに沿って毛細流が走り、後続して流
体の主流がこれら毛細流をたどって移動していく。主毛
細流の表面レベルが図7のAで示す高さに到達すれば、
副流毛細管通路の溝2aに沿って横方向の毛細流が形成
され、主流の一部が副流毛細管通路内に流入していく。
その際、流体の持つ表面張力により、副流毛細管通路に
流入する流体は側壁に付着し、流量の増減が生じても側
壁は露出しにくい。図7のBは表面張力による流体の表
面の窪んだ状態を示している。
2 and 4 show a boundary portion between the mainstream capillary passage 1 and the sidestream capillary passage 2. In this example, the groove 1a of the main flow capillary passage is located lower than the groove 2a of the side flow capillary passage. Therefore, the supplied fluid first has a capillary flow along the groove 1a of the mainstream capillary passage 1, and subsequently the mainstream of the fluid follows these capillaries to move. When the surface level of the main capillary flow reaches the height indicated by A in FIG. 7,
A lateral capillary flow is formed along the groove 2a of the side flow capillary passage, and a part of the main flow flows into the side flow capillary passage.
At this time, due to the surface tension of the fluid, the fluid flowing into the sidestream capillary passage adheres to the side wall, and the side wall is difficult to be exposed even if the flow rate increases or decreases. B of FIG. 7 shows a state in which the surface of the fluid is dented due to surface tension.

【0021】図7に示すレベルCは、流体流動制御部材
が稼働状態にあり、流体流動制御部材全面を流動する流
体が覆い、副流毛細管通路全体が沈んだ状態を示してい
る。こうした状況の下では、副流毛細管通路は主流毛細
管通路の側部にあって、主流毛細管通路に沿って移動す
る流体に対しては減速領域を形成している。この減速領
域が主流領域の両側に位置すれば両者の間には速度差に
よる境界域が形成され、流体の流動方向はこの境界域の
方向に制限される。
Level C shown in FIG. 7 shows a state in which the fluid flow control member is in an operating state, the fluid flowing over the entire surface of the fluid flow control member is covered, and the entire sub-flow capillary passage is sunk. Under these circumstances, the sidestream capillary passage is on the side of the mainstream capillary passage and forms a deceleration region for fluid moving along the mainstream capillary passage. If the deceleration regions are located on both sides of the main flow region, a boundary region is formed between them due to the velocity difference, and the flow direction of the fluid is limited to the direction of this boundary region.

【0022】図3は、副流毛細管通路2の側壁に縦方向
にオリフィス3が形成され、隣接する上下の溝同士が導
通した構造を示している。これらオリフィスは縦方向に
並び、連続する縦方向の溝を形成している。この縦方向
の溝に沿って流体は移動するため、副流毛細管通路の溝
内の流体は滞留せず常時流れが形成されている。同様
に、主流毛細管通路1の側壁にも横方向にオリフィスを
形成し、隣接する主流毛細管通路の溝同士を適当に間隔
を開けた位置で連絡することができる。図中にて、参照
番号4は主流毛細管通路の溝に設置した堰を示してい
る。堰と堰の間には流体を少量溜め置くことができ、ま
た前述した操作初期の先行毛細流の移動速度を減速する
のにも効果がある。流体流動制御部材の表面積が大き
く、毛細流が急速に成長して全面に一旦広がってしまう
のを制限することが必要となる場合、こうした堰を適当
に配置しておくことで、後続する主流との拡散時間差
(先導部間の距離)を短縮することができる。流体が蒸
発し易い雰囲気での使用には必要な構造である。
FIG. 3 shows a structure in which an orifice 3 is formed in a vertical direction on a side wall of the sidestream capillary passage 2 and adjacent upper and lower grooves are electrically connected to each other. These orifices are aligned in the vertical direction to form continuous vertical grooves. Since the fluid moves along the groove in the vertical direction, the fluid in the groove of the sidestream capillary passage does not stay and a constant flow is formed. Similarly, an orifice can be formed laterally in the side wall of the mainstream capillary passage 1 so that the grooves of the adjacent mainstream capillary passages can be connected to each other at appropriately spaced positions. In the figure, reference numeral 4 indicates a weir installed in the groove of the mainstream capillary passage. A small amount of fluid can be stored between the weirs, and it is also effective in reducing the moving speed of the preceding capillary flow in the initial operation described above. When the surface area of the fluid flow control member is large and it is necessary to limit the rapid growth of the capillary flow and its spread over the entire surface, it is necessary to arrange such weirs appropriately and It is possible to shorten the diffusion time difference (distance between the leading portions). This structure is necessary for use in an atmosphere where the fluid easily evaporates.

【0023】図5に示す副流毛細管通路2の溝2bは図
4に示すものよりも低い位置にあり、また図6の副流毛
細管通路2の溝2cは図5に示すものより低い位置にあ
る。図4および図5の構造によれば、副流毛細管通路は
主流毛細管通路に対し全体がうね状に***し、主流毛細
管通路は全体が窪みを形成している。主流毛細管通路と
副流毛細管通路は、これら毛細管通路の溝壁の先端部が
同一平面内に位置するように形成することもできる。図
6の例では、主流毛細管通路は副流毛細管通路に対し全
体がうね状に***し、副流毛細管通路は全体が窪みを形
成している。副流毛細管通路の窪みの程度を大きく設定
すれば、主流毛細管通路に沿った流体の流量よりも副流
毛細管通路に沿った流体の流量が多くなる場合もあり得
る。しかしながら、流体の流動方向を主流毛細管通路が
決定しており、流体の移動速度は副流毛細管通路に沿っ
た流体の移動速度に比べて優位にあり、副流毛細管通路
は流体の横方向への拡散領域または減速領域となってい
る。
The groove 2b of the sidestream capillary passage 2 shown in FIG. 5 is located lower than that shown in FIG. 4, and the groove 2c of the sidestream capillary passage 2 shown in FIG. 6 is located lower than that shown in FIG. is there. According to the structures shown in FIGS. 4 and 5, the side flow capillary passage is entirely ridged with respect to the main flow capillary passage, and the main flow capillary passage is entirely formed with a depression. The main-flow capillary passage and the secondary-flow capillary passage can be formed so that the tip ends of the groove walls of these capillary passages are located in the same plane. In the example of FIG. 6, the main-flow capillary passage is entirely ridged with respect to the sub-flow capillary passage, and the sub-flow capillary passage is entirely hollow. If the degree of depression of the sub-flow capillary passage is set to be large, the flow rate of the fluid along the sub-flow capillary passage may be larger than the flow rate of the fluid along the main-flow capillary passage. However, the flow direction of the fluid is determined by the mainstream capillary passage, the moving speed of the fluid is superior to the moving speed of the fluid along the sidestream capillary passage, and the sidestream capillary passage is in the lateral direction of the fluid. It is a diffusion area or a deceleration area.

【0024】前記基材は、金属板または金属薄板、樹脂
板または樹脂シート、金属ホイル被覆樹脂シート、金属
蒸着樹脂シート、プラスチックまたはゴムの磁石シー
ト、樹脂と金属薄板のラミネートシートの群より選ばれ
た材料から構成することができる。毛細管通路は基材の
両面に設置できる。また、基材の裏側には感圧接着剤の
層を付着しておくことができる。前述した毛細管通路表
面構造を持つ流体流動制御部材は、必要枚数を互いに積
層して用いることができる。毛細管通路を形成するにあ
たっては、プレス成形、射出成形等の加工方法により、
またローラ転圧成形、各種の切削技術を利用することが
できる。
The base material is selected from the group consisting of a metal plate or a metal thin plate, a resin plate or a resin sheet, a metal foil-covered resin sheet, a metal-deposited resin sheet, a plastic or rubber magnet sheet, and a laminated sheet of resin and a metal thin plate. Can be composed of different materials. Capillary passages can be installed on both sides of the substrate. Also, a layer of pressure sensitive adhesive can be deposited on the back side of the substrate. The above-described fluid flow control members having the capillary passage surface structure can be used by laminating required numbers of them. In forming the capillary passage, by processing methods such as press molding and injection molding,
Also, roller compaction and various cutting techniques can be used.

【0025】前記流体は、熱媒体、蒸発媒体、各種の処
理液、試薬、粘性流体であり、これら流体の種類によっ
て、流動制御部材は熱交換器、蒸発器、流体搬送手段と
して利用される。
The fluid is a heat medium, an evaporation medium, various treatment liquids, reagents, or a viscous fluid, and the flow control member is used as a heat exchanger, an evaporator, or a fluid transfer means depending on the type of these fluids.

【0026】前記基材は単独で使用できるが、それ自体
を屋根材として利用したり、壁面材として使用すること
ができる。流体流動制御部材の基材の両側の側縁に立ち
上がった側壁を設ければ、基材はトレイとして使用でき
る。
Although the above-mentioned base material can be used alone, it can be used as a roof material or as a wall material. The base material can be used as a tray by providing standing side walls on both side edges of the base material of the fluid flow control member.

【0027】本発明に係る流体流動制御部材は、前述し
た用途に加え、屋根材に接触して布設し冷水を流せば屋
根面を冷却する冷却手段として用いることができ、さら
に、降雪面に接して布設すれば、雪を溶かす融雪手段と
して使用することも可能である。
The fluid flow control member according to the present invention can be used as a cooling means for cooling a roof surface by laying it in contact with a roof material and flowing cold water, in addition to the above-mentioned applications, and further in contact with a snowfall surface. It can also be used as a snow melting means to melt snow.

【0028】前述した流体流動制御部材は、各種のオプ
ション設備と併用することができる。例えば、毛細管通
路に沿って熱媒体の流通する配管、電気ヒーター線、プ
レートヒーター、またはフィルムヒーターを設けておく
ことができる。これら付帯設備は、基材自体に埋め込ん
でおいたり、基材表面に固定しておくことができる。な
お、基材の厚みは選択事項である。
The fluid flow control member described above can be used together with various optional equipment. For example, a pipe through which a heat medium flows, an electric heater wire, a plate heater, or a film heater can be provided along the capillary passage. These incidental equipment can be embedded in the base material itself or fixed to the surface of the base material. The thickness of the base material is a matter of choice.

【0029】前述した主流毛細管通路および/または副
流毛細管通路は、表面をブラスト処理により微細な凹凸
面を形成しておくことができる。こうした加工を施せ
ば、流体に対する濡れ性が高まる。こうした表面には、
別途、金属、樹脂、セラミック、サーメット等の溶射コ
ーティング層を施すことができる。
The above-mentioned main flow capillary passage and / or sub-flow capillary passage can be provided with a fine uneven surface by blasting the surface. By applying such processing, the wettability with respect to the fluid is enhanced. These surfaces include
Separately, a thermal spray coating layer of metal, resin, ceramic, cermet or the like can be applied.

【0030】扁平配管の管壁を利用し、これを基材とし
て利用することができる。図8は、本件出願人の試作に
よる扁平配管5の構造例を示している。前述した毛細管
通路はこの管壁の外側表面に形成されている。管壁に貫
通穴を設けておけば、管内の流体を外部の毛細管通路に
供給することができる。
The pipe wall of the flat pipe can be used as the base material. FIG. 8 shows a structural example of the flat pipe 5 manufactured by the applicant of the present invention. The aforementioned capillary passage is formed on the outer surface of this tube wall. By providing a through hole in the tube wall, the fluid in the tube can be supplied to the external capillary passage.

【0031】[0031]

【発明の効果】前述の如く構成することにより、比較的
少ない箇所から流体を供給しても、この流体を速やかに
広い表面に拡散させ、予め定められた管理された状態で
流体を正確に移動させることができる。こうした流体の
移動状態は、用途に応じ予め予備試験を行って実態を把
握しておくことができ、最適な毛細管通路を比較的簡単
に設計することが可能であり、部材上への構造転写も容
易に行える利点がある。製品コストは安く、汎用性の高
い商品を供給できる利点が奏される。
With the above-described structure, even if the fluid is supplied from a relatively small number of places, the fluid is quickly diffused to a large surface and the fluid is accurately moved in a predetermined controlled state. Can be made. The state of fluid movement can be grasped in advance by conducting preliminary tests according to the application, and it is possible to design the optimum capillary passage relatively easily and also to transfer the structure onto the member. There is an advantage that it can be done easily. The product cost is low, and it has the advantage of being able to supply highly versatile products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る流体流動制御部材の構造原理を説
明するための斜視説明図。
FIG. 1 is a perspective explanatory view for explaining a structural principle of a fluid flow control member according to the present invention.

【図2】主流毛細管通路と副流毛細管通路の配置形態の
一例を示す斜視説明図。
FIG. 2 is a perspective explanatory view showing an example of the arrangement of a mainstream capillary passage and a sidestream capillary passage.

【図3】主流毛細管通路と副流毛細管通路の配置形態の
他の例を示す斜視説明図。
FIG. 3 is a perspective explanatory view showing another example of an arrangement form of a mainstream capillary passage and a sidestream capillary passage.

【図4】主流領域と副流領域の境界域の一例を示す斜視
説明図。
FIG. 4 is a perspective explanatory view showing an example of a boundary region between a mainstream region and a substream region.

【図5】主流領域と副流領域の境界域の他の例を示す斜
視説明図。
FIG. 5 is a perspective explanatory view showing another example of a boundary region between a mainstream region and a substream region.

【図6】主流領域と副流領域の境界域の別の例を示す斜
視説明図。
FIG. 6 is a perspective explanatory view showing another example of a boundary region between a mainstream region and a substream region.

【図7】図4に示す毛細管通路を使用した場合の、主流
毛細管通路を流動する流体のレベルを示す説明図。
FIG. 7 is an explanatory view showing the level of fluid flowing in the mainstream capillary passage when the capillary passage shown in FIG. 4 is used.

【図8】扁平配管の構造例を示す断面図。FIG. 8 is a cross-sectional view showing a structural example of flat piping.

【符号の説明】[Explanation of symbols]

1 主流毛細管通路 1a 主流毛細管通路の溝 2 副流毛細管通路 2a、2b、2c 副流毛細管通路の溝 3 副流毛細管通路の溝に設けたオリフィス 4 主流毛細管通路の溝に設けた堰 5 扁平配管 1 Mainstream Capillary Passage 1a Groove of Mainstream Capillary Passage 2 Substream Capillary Passage 2a, 2b, 2c Groove of Substream Capillary Passage 3 Orifice provided in Groove of Substream Capillary Passage 4 Weir 5 Provided in Groove of Mainstream Capillary Passage 5 Flat Pipe

Claims (29)

【特許請求の範囲】[Claims] 【請求項1】 基材と、この基材の表面に形成された、
流体の流動する縦方向に並列して延びる細かい多数の溝
からなり、移動する流体の縦方向拡散領域を形成した主
流毛細管通路と、この主流毛細管通路の溝に交差して横
方向に並列して延びる細かい多数の溝からなり、主に主
流毛細管通路の側から流体が導入される、移動する流体
の横方向拡散領域を形成した、主流毛細管通路の側部に
隣接して配置された副流毛細管通路とを有する流体流動
制御部材。
1. A base material and a surface formed on the base material,
A mainstream capillary passage that is composed of a large number of fine grooves that extend in parallel in the vertical direction in which the fluid flows, and forms a vertical diffusion region for the moving fluid, and intersects the groove of this mainstream capillary passage in parallel in the horizontal direction. Sidestream capillaries located adjacent to the sides of the mainstream capillary passage, consisting of a large number of fine grooves extending, forming a lateral diffusion area for the moving fluid, with the fluid being introduced mainly from the side of the mainstream capillary passage. A fluid flow control member having a passage.
【請求項2】 請求項1に記載された流体流動制御部材
において、前記基材は、下側に感圧接着材の層を備えて
いる流体流動制御部材。
2. The fluid flow control member according to claim 1, wherein the base material is provided with a layer of pressure-sensitive adhesive on the lower side.
【請求項3】 請求項1に記載された流体流動制御部材
において、前記基材が、金属板または金属薄板、樹脂板
または樹脂シート、金属ホイル被覆樹脂シート、金属蒸
着樹脂シート、プラスチックまたはゴムの磁石シート、
樹脂と金属薄板のラミネートシートの群より選ばれた材
料からなる流体流動制御部材。
3. The fluid flow control member according to claim 1, wherein the base material is a metal plate or a metal thin plate, a resin plate or a resin sheet, a metal foil-covered resin sheet, a metal deposition resin sheet, a plastic or a rubber. Magnet sheet,
A fluid flow control member made of a material selected from the group consisting of a laminated sheet of a resin and a thin metal plate.
【請求項4】 請求項3に記載された流体流動制御部材
において、前記基材は互いに積層して用いられる流体流
動制御部材。
4. The fluid flow control member according to claim 3, wherein the base materials are used by being laminated on each other.
【請求項5】 請求項1に記載された流体流動制御部材
において、前記主流毛細管通路と副流毛細管通路は互い
に横に隣接し交互に配置されてなる流体流動制御部材。
5. The fluid flow control member according to claim 1, wherein the main-flow capillary passages and the sub-flow capillary passages are laterally adjacent to each other and are alternately arranged.
【請求項6】 請求項1に記載された流体流動制御部材
において、前記流体は熱媒体である流体流動制御部材。
6. The fluid flow control member according to claim 1, wherein the fluid is a heat medium.
【請求項7】 請求項1に記載された流体流動制御部材
において、前記媒体は蒸発媒体である流体流動制御部
材。
7. The fluid flow control member according to claim 1, wherein the medium is an evaporation medium.
【請求項8】 請求項1に記載された流体流動制御部材
において、当該流体流動制御部材は流体を搬送する流体
分配手段として使用される流体流動制御部材。
8. The fluid flow control member according to claim 1, wherein the fluid flow control member is used as fluid distribution means for conveying a fluid.
【請求項9】 請求項1に記載された流体流動制御部材
において、前記主流毛細管通路と副流毛細管通路は基材
の表側と裏側の両面に成形されている流体流動制御部
材。
9. The fluid flow control member according to claim 1, wherein the main flow capillary passage and the auxiliary flow capillary passage are formed on both the front side and the back side of the base material.
【請求項10】 請求項1に記載された流体流動制御部
材において、前記主流毛細管通路の縦方向の溝は、溝の
側壁に横向きにオリフィスが形成され、隣接の溝同士が
これらオリフィスを通じて導通している流体流動制御部
材。
10. The fluid flow control member according to claim 1, wherein the longitudinal groove of the mainstream capillary passage has an orifice formed laterally on a side wall of the groove, and adjacent grooves are electrically connected to each other through these orifices. Fluid flow control member.
【請求項11】 請求項1に記載された流体流動制御部
材において、前記副流毛細管通路の横方向の溝は、溝の
側壁に縦向きにオリフィスが形成され、隣接する溝同士
がこれらオリフィスを通じて導通している流体流動制御
部材。
11. The fluid flow control member according to claim 1, wherein the lateral groove of the sub-flow capillary passageway has an orifice formed vertically on a side wall of the groove, and adjacent grooves pass through these orifices. A fluid flow control member that is in conduction.
【請求項12】 請求項1に記載された流体流動制御部
材において、前記基材が屋根材を兼ねる流体流動制御部
材。
12. The fluid flow control member according to claim 1, wherein the base material also serves as a roof material.
【請求項13】 請求項1に記載された流体流動制御部
材において、当該流体流動制御部材が壁面材を兼ねる流
体流動制御部材。
13. The fluid flow control member according to claim 1, wherein the fluid flow control member also serves as a wall material.
【請求項14】 請求項1に記載された流体流動制御部
材において、前記基材は両側の側縁に立ち上がった側壁
を持ち、トレイを形成してなる流体流動制御部材。
14. The fluid flow control member according to claim 1, wherein the base material has a side wall that rises on both side edges to form a tray.
【請求項15】 請求項1に記載された流体流動制御部
材において、当該流体流動制御部材は屋根材に接触して
布設され、屋根面を冷却する冷却手段として使用される
流体流動制御部材。
15. The fluid flow control member according to claim 1, wherein the fluid flow control member is laid in contact with a roof material and is used as a cooling means for cooling the roof surface.
【請求項16】 請求項1に記載された流体流動制御部
材において、当該流体流動制御部材は降雪面に接して布
設され、雪を溶かす融雪手段として使用される流体流動
制御部材。
16. The fluid flow control member according to claim 1, wherein the fluid flow control member is laid in contact with a snowfall surface and is used as snow melting means for melting snow.
【請求項17】 請求項1に記載された流体流動制御部
材において、前記流通路に沿って熱媒体の流通する配管
が設けられている流体流動制御部材。
17. The fluid flow control member according to claim 1, wherein a pipe through which a heat medium flows is provided along the flow passage.
【請求項18】 請求項1に記載された流体流動制御部
材において、前記流通路に沿って電気ヒーター線が設け
られている流体流動制御部材。
18. The fluid flow control member according to claim 1, wherein an electric heater wire is provided along the flow passage.
【請求項19】 請求項1に記載された流体流動制御部
材において、当該流体流動制御部材は、基材が面状のプ
レートヒーター、またはフィルムヒーターを備えている
流体流動制御部材。
19. The fluid flow control member according to claim 1, wherein the fluid flow control member comprises a plate heater or a film heater whose substrate has a planar shape.
【請求項20】 請求項1に記載された流体流動制御部
材において、流体流動制御部材は、前記主流毛細管通路
が傾斜した流動経路を形成するように傾けて用いられる
流体流動制御部材。
20. The fluid flow control member according to claim 1, wherein the fluid flow control member is tilted so that the mainstream capillary passage forms an inclined flow path.
【請求項21】 請求項1に記載された流体流動制御部
材において、流体流動制御部材は、前記主流毛細管通路
がほぼ水平な流動経路を形成するように用いられる流体
流動制御部材。
21. The fluid flow control member according to claim 1, wherein the fluid flow control member is used so that the mainstream capillary passage forms a substantially horizontal flow path.
【請求項22】 請求項1に記載された流体流動制御部
材において、前記主流毛細管通路および/または副流毛
細管通路は、表面をブラスト処理され微細な凹凸面を形
成している流体流動制御部材。
22. The fluid flow control member according to claim 1, wherein the main-flow capillary passage and / or the sub-flow capillary passage has a surface blasted to form a fine uneven surface.
【請求項23】 請求項1に記載された流体流動制御部
材において、前記主流毛細管通路および/または副流毛
細管通路は、表面に金属、樹脂、セラミック、サーメッ
ト等の溶射コーティング層が施されている流体流動制御
部材。
23. The fluid flow control member according to claim 1, wherein the main-flow capillary passage and / or the sub-flow capillary passage has a surface coated with a thermal spray coating of metal, resin, ceramic, cermet or the like. Fluid flow control member.
【請求項24】 請求項1に記載された流体流動制御部
材において、前記副流毛細管通路は主流毛細管通路に対
し全体がうね状に***し、主流毛細管通路は全体が窪み
を形成している流体流動制御部材。
24. The fluid flow control member according to claim 1, wherein the auxiliary flow capillary passage is entirely ridged with respect to the main flow capillary passage, and the main flow capillary passage is entirely formed with a depression. Fluid flow control member.
【請求項25】 請求項1に記載された流体流動制御部
材において、前記主流毛細管通路は副流毛細管通路に対
し全体がうね状に***し、副流毛細管通路は全体が窪み
を形成している流体流動制御部材。
25. The fluid flow control member according to claim 1, wherein the main-flow capillary passage is entirely ridged with respect to the sub-flow capillary passage, and the sub-flow capillary passage is entirely hollow. Fluid flow control member.
【請求項26】 吸液層を備えた流体流動制御部材にし
て、前記主流毛細管通路と副流毛細管通路は、これら毛
細管通路の溝壁の先端部が同一平面内に位置するように
形成されている流体流動制御部材。
26. A fluid flow control member having a liquid absorption layer, wherein the main flow capillary passage and the sub-flow capillary passage are formed such that the tips of the groove walls of these capillary passages are located in the same plane. Fluid flow control member.
【請求項27】 基材と、この基材の表面に形成され
た、流体の流動する縦方向に並列して延びる細かい多数
の溝からなり、移動する流体の一部を吸収し残りを露出
した形態で流す主流毛細管通路と、主流毛細管通路の溝
に交差して横方向に並列して延びる細かい多数の溝から
なり、主に主流毛細管通路の側から流体が導入される、
移動する流体の拡散領域を形成した、主流毛細管通路の
側部に隣接して配置された副流毛細管通路と、前記主流
毛細管通路を横切って横方向に並列して延びる細かい多
数の溝からなり、溝の両端が主流毛細管通路の両側に位
置した副流毛細管通路に連絡する横断毛細管通路とを有
し、主流毛細管通路を移動する流体は、横断毛細管通路
を通り過ぎる際、流体の一部がこの横断毛細管通路を通
じて隣接の主流毛細管通路に移動可能である流体流動制
御部材。
27. A base material and a large number of fine grooves formed on the surface of the base material and extending in parallel in the longitudinal direction in which the fluid flows, and absorbs a part of the moving fluid and exposes the rest. A mainstream capillary passage flowing in a form, and consisting of a large number of fine grooves that extend in parallel in the lateral direction crossing the groove of the mainstream capillary passage, the fluid is mainly introduced from the mainstream capillary passage side,
A secondary flow capillary passage formed adjacent to a side portion of the mainstream capillary passage forming a diffusion region of the moving fluid, and a plurality of fine grooves extending laterally in parallel across the mainstream capillary passage, Both ends of the groove have a transverse capillary passage communicating with a sidestream capillary passage located on both sides of the mainstream capillary passage, and the fluid moving in the mainstream capillary passage has a portion of the fluid passing through the transverse capillary passage. A fluid flow control member movable through a capillary passage to an adjacent mainstream capillary passage.
【請求項28】 内部に流体の流れる通路を持つ扁平な
形態をした扁平配管と、 扁平配管の管壁の外側表面に形成され、流体の流動する
縦方向に並列して延びる細かい多数の溝からなり、移動
する流体の一部を吸収し残りを露出した形態で流す主流
毛細管通路と、 主流毛細管通路と同様に扁平配管の上側表面に形成さ
れ、主流毛細管通路の溝に交差して横方向に並列して延
びる細かい多数の溝からなり、主に主流毛細管通路の側
から流体が導入される、移動する流体の拡散領域を形成
した、主流毛細管通路の側部に隣接して配置された副流
毛細管通路とを備えている流体流動制御部材。
28. A flat pipe having a flat shape having a passage through which a fluid flows, and a plurality of fine grooves formed on an outer surface of a pipe wall of the flat pipe and extending in parallel in a longitudinal direction in which the fluid flows. The mainstream capillary passage that absorbs a part of the moving fluid and flows the rest in an exposed form, and is formed on the upper surface of the flat pipe in the same way as the mainstream capillary passage, and intersects the groove of the mainstream capillary passage in the lateral direction. A secondary flow, which consists of a number of fine grooves extending in parallel and which forms a diffusion area for the moving fluid into which the fluid is mainly introduced from the mainstream capillary passage side, and which is arranged adjacent to the side portion of the mainstream capillary passage. A fluid flow control member having a capillary passage.
【請求項29】 請求項1に記載された流体流動制御部
材において、前記扁平配管は配管の上側壁に貫通穴を備
え、この貫通穴を介し配管内部の流体を配管の上側表面
に形成された主流毛細管通路または副流毛細管通路に供
給することのできる流体流動制御部材。
29. The fluid flow control member according to claim 1, wherein the flat pipe has a through hole in an upper side wall of the pipe, and the fluid inside the pipe is formed on the upper surface of the pipe through the through hole. A fluid flow control member that can be supplied to the mainstream capillary passage or the sidestream capillary passage.
JP13579096A 1996-05-02 1996-05-02 Fluid flow control member Pending JPH09296808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13579096A JPH09296808A (en) 1996-05-02 1996-05-02 Fluid flow control member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13579096A JPH09296808A (en) 1996-05-02 1996-05-02 Fluid flow control member

Publications (1)

Publication Number Publication Date
JPH09296808A true JPH09296808A (en) 1997-11-18

Family

ID=15159904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13579096A Pending JPH09296808A (en) 1996-05-02 1996-05-02 Fluid flow control member

Country Status (1)

Country Link
JP (1) JPH09296808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089879A (en) * 1996-09-12 1998-04-10 Mitsubishi Electric Corp Heat exchanger and manufacture of heat exchanging member of the heat exchanger
KR20130035881A (en) * 2011-09-30 2013-04-09 시케이디 가부시키가이샤 Liquid control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089879A (en) * 1996-09-12 1998-04-10 Mitsubishi Electric Corp Heat exchanger and manufacture of heat exchanging member of the heat exchanger
KR20130035881A (en) * 2011-09-30 2013-04-09 시케이디 가부시키가이샤 Liquid control apparatus
JP2013083344A (en) * 2011-09-30 2013-05-09 Ckd Corp Liquid control apparatus

Similar Documents

Publication Publication Date Title
EP1836046B1 (en) Method and materials for improving evaporative heat exchangers
TWI232961B (en) Manufacturing method of composite film, composite film, color filter made of composite film, display apparatus provided with color filter
TWI289192B (en) Method and apparatus for flexible fluid delivery for cooling desired hot spots in a heat producing device
US8287808B2 (en) Surface for reversible wetting-dewetting
JP2006516068A5 (en)
DE102005030517A1 (en) Control method for controlling temperature of heat source, e.g. microprocessor, involves channeling two temperature fluids to and from heat exchange surface, respectively, wherein fluid is channeled to minimize temperature differences along
CN101221023A (en) Vapor augmented heatsink with multi-wick structure
DE102005028902A1 (en) Heat exchanger for cooling heat source e.g. integrated circuit, has interface layer, and manifold layer with first set of individualized fluid paths positioned to minimize pressure drop within heat exchanger
JPS63305901A (en) Delivery filling element for tower
CA2173722A1 (en) Intensification of evaporation and heat transfer
JPH09296808A (en) Fluid flow control member
US3904369A (en) Method and apparatus for controlling the temperature of a tape
DE60033109T2 (en) Method and apparatus for achieving uniform ink temperatures in printheads
GB2285678A (en) Liquid distributor
US5724479A (en) Fluid flow controlling member
JPH09302993A (en) Fluid flow control member
CN110107736B (en) Phase-change micro-valve device
JPH09243180A (en) Sheet with restricting line
JP3231660B2 (en) Curtain-like flow-off device for flowing material
JP2935031B2 (en) Heat transfer liquid regulating means
AU696886B2 (en) Intensification of evaporation and heat transfer
JP2008163653A (en) Cooling unit and cooling structure of wall surface or roof surface using it
JPH0861784A (en) Heat exchange laminate structural body having downflow normarization performance of heat medium liquid
JP3220532B2 (en) Liquid distributor for mass exchange and / or heat exchange tower
KR20060053985A (en) A device for depositing adhesive under pressure