JPH0929644A - Abrasive cutting wheel - Google Patents

Abrasive cutting wheel

Info

Publication number
JPH0929644A
JPH0929644A JP18141195A JP18141195A JPH0929644A JP H0929644 A JPH0929644 A JP H0929644A JP 18141195 A JP18141195 A JP 18141195A JP 18141195 A JP18141195 A JP 18141195A JP H0929644 A JPH0929644 A JP H0929644A
Authority
JP
Japan
Prior art keywords
base plate
cutting
grindstone
abrasive grains
whetstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18141195A
Other languages
Japanese (ja)
Inventor
Takehisa Minowa
武久 美濃輪
Kazuhiro Takaguchi
和博 高口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP18141195A priority Critical patent/JPH0929644A/en
Publication of JPH0929644A publication Critical patent/JPH0929644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abrasive cutting wheel, to which diamond abrasive grains or CBN abrasive grains are fixed and which can eliminate generation of damage in the surface of the abrasive cutting wheel due to abrasive cutting chips and of which lifetime is prolonged even in the case where a blade thickness of the abrasive cutting wheel is thin and which can accurately cut material to be cut. SOLUTION: In an abrasive cutting wheel, in which diamond abrasive grains or CBN abrasive grains are fixed to the ends of a wheel bed plate, the surface of the wheel bed plate made of cemented carbide is coated with a super hard material at 0.5-15μm of thickness by a CVD method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種硬質材料をス
ライス切断するのに用いられるダイヤモンドまたはCB
N切断砥石に関するものである。
TECHNICAL FIELD The present invention relates to a diamond or CB used for slicing various hard materials.
It relates to an N cutting grindstone.

【0002】[0002]

【従来の技術】近年、各種の硬質材料を切断するのに、
ダイヤモンド砥粒あるいはCBN(立方晶窒化ホウ素)
砥粒の微粒子を含む砥石が広く用いられている。これ
は、ダイヤモンド砥粒およびCBN砥粒の微粒子が大き
な硬度をもち、さらに近年工業的に安価にこれらの微粒
子が生産されるようになってきたためである。各種ダイ
ヤモンド砥石(以下、特に断らない限りCBN砥石を含
むものとする)には、図1に示したような薄板円板を砥
石台板としてその外周部分にダイヤモンド砥粒を接着し
た外周切断ダイヤモンド砥石や、図2に示したような薄
板ドーナツ状円板の内周部分にダイヤモンド砥粒を接着
した内周切断ダイヤモンド砥石等があり、本発明の対象
とするものである。
2. Description of the Related Art Recently, for cutting various hard materials,
Diamond abrasive grains or CBN (cubic boron nitride)
A grindstone containing fine particles of abrasive grains is widely used. This is because the fine particles of diamond abrasive grains and CBN abrasive grains have great hardness, and in recent years, these fine particles have been industrially produced at low cost. For various diamond grindstones (hereinafter, including CBN grindstone unless otherwise specified), a thin disc as shown in FIG. 1 is used as a grindstone base plate and an outer peripheral cut diamond grindstone in which diamond abrasive grains are adhered to the outer peripheral portion thereof, There is an inner peripheral cutting diamond grindstone in which diamond abrasive grains are adhered to the inner peripheral portion of a thin doughnut-shaped disc as shown in FIG. 2, which is the subject of the present invention.

【0003】切断砥石を使用して硬質材料の切断加工す
る際、例えばある大きさのブロックを切断して多数の製
品を切り出す場合には、切断砥石の刃厚と被切断物の材
料歩留りとの関係が重要となり、できるだけ薄い刃を用
いて切断加工代を少なくし、得られる製品の数を多くし
て材料歩留りを上げ、生産性を高めることが肝要であ
る。薄い切断刃にするためには、当然砥石台板を薄くす
る必要がある。各種砥石台板材料のなかでも機械強度の
できるだけ大きなものを使用することにより、現状、外
周切断砥石では0.2mm 程度、内周切断砥石では0.05mm程
度の薄さの砥石台板まで製作可能である。砥石台板材料
としては、材料コスト、熱処理コスト及び機械強度を考
慮し、適切な材料が選択されて使用されている。
When cutting a hard material using a cutting grindstone, for example, when cutting a block of a certain size to cut out a large number of products, the blade thickness of the cutting grindstone and the material yield of the object to be cut are The relationship becomes important, and it is important to use as thin a blade as possible to reduce the cutting cost, increase the number of products to be obtained, increase the material yield, and improve the productivity. In order to obtain a thin cutting blade, it is necessary to make the whetstone base plate thin. At present, it is possible to manufacture grindstone base plates as thin as about 0.2 mm for outer cutting wheels and about 0.05 mm for inner cutting wheels by using materials with as much mechanical strength as possible among various grinding wheel base materials. . As the material of the grinding stone base plate, an appropriate material is selected and used in consideration of material cost, heat treatment cost and mechanical strength.

【0004】このような切断砥石において、砥石台板の
薄板化に伴い以下に説明するような問題点が発生してき
た。一般に、図1の外周切断砥石1に示したように、ダ
イヤモンド砥粒層4を砥石台板5の表面から0.02〜0.2m
m 突出させて、被切断物との間に隙間r(以下、逃げと
もいう)が設けられている。この逃げrは被切断物に切
断砥石が切り込んでその切り込み深さが外周切断刃のダ
イヤモンド砥粒層の帯幅qよりも深くなった時に、被切
断物から発生する切断研削粉を排除する役目をしてい
る。切断加工代即ち刃厚pを小さくするにはこの逃げや
砥石台板を出来るだけ薄くする必要があり、例えば砥石
台板の厚さが0.7mm 以下のような場合には逃げは片側で
僅か0.02〜0.05mm程度になってしまう。薄板砥石台板に
よる切断加工の問題点は、この逃げが小さ過ぎるため切
断研削粉を排除しきれなくなり、この切断研削粉が被切
断物と砥石台板の間に挟まって砥石台板に傷を付けてし
まうことである。被切断物が硬質材料の場合、一般的に
砥石台板材料よりも硬くて脆いのが普通である。これら
の硬くて脆い材料の切断破片が逃げから排除されずに溜
ってきて砥石台板と被切断物との間に挟まって高速回転
し、砥石台板に傷を付けることになる。砥石台板にこの
ような傷がつくと、傷部の塑性変形が原因となって砥石
台板表裏の応力バランスが狂い、曲がりやうねり等の変
形が砥石台板に発生する。薄い砥石台板であればある程
小さな傷によって、このような曲がりやうねりが大きく
発生する。一度このような傷によって砥石台板が変形し
てしまうと、切断時の応力がこの変形した砥石台板をさ
らに変形させるように加わり、曲がりやうねりは助長さ
れるので、得られた切断物の寸法精度は大きく失われる
ことになる。この現象は、図2に示した内周切断砥石2
においても同様である。
In such a cutting whetstone, the following problems have occurred as the whetstone base plate has become thinner. Generally, as shown in the outer peripheral cutting grindstone 1 of FIG. 1, the diamond abrasive grain layer 4 is 0.02 to 0.2 m from the surface of the grindstone base plate 5.
A gap r (hereinafter, also referred to as a relief) is provided between the object to be cut and the object to be cut. This relief r has a function of eliminating cutting grinding powder generated from the object to be cut when the cutting grindstone cuts into the object to be cut and the cutting depth becomes deeper than the band width q of the diamond abrasive grain layer of the outer peripheral cutting blade. Are doing In order to reduce the cutting allowance, that is, the blade thickness p, it is necessary to make this clearance and the grindstone base plate as thin as possible. For example, when the thickness of the grindstone base plate is 0.7 mm or less, the clearance is only 0.02 on one side. It will be about 0.05mm. The problem of cutting with a thin grinding stone base plate is that this escape is too small to remove the cutting grinding powder, and this cutting grinding powder is sandwiched between the workpiece and the grinding stone base plate and scratches the grinding stone base plate. It is to end up. When the material to be cut is a hard material, it is generally harder and more brittle than the grindstone base plate material. Cutting fragments of these hard and brittle materials are not removed from the escape and are collected, and are sandwiched between the grindstone base plate and the object to be rotated at a high speed to damage the grindstone base plate. When such a scratch is made on the grindstone base plate, the plastic deformation of the flaw portion causes the stress balance between the front and back of the grindstone base plate to be out of order, and deformation such as bending or undulation occurs in the grindstone base plate. The thinner the whetstone base plate, the smaller the scratches, and the larger the bending and waviness. Once the whetstone base plate is deformed by such scratches, the stress at the time of cutting is applied to further deform the deformed whetstone base plate, and bending and undulation are promoted. The dimensional accuracy will be greatly lost. This phenomenon is caused by the inner cutting wheel 2 shown in FIG.
The same applies to.

【0005】本発明者は先にこのような問題点を解決す
るため、鉄鋼板製砥石台板の表面にPVD法(特願平07
- 109764号)およびCVD法(特願平07- 109772号)に
より超硬質物質を砥石台板表面にコーティングすること
を提案した。この提案により砥石台板を薄くしても切断
精度が失われることなく、切断加工代が少なくなり、材
料歩留りが向上した。
In order to solve such a problem, the inventor of the present invention first applied a PVD method (Japanese Patent Application No. Hei 07) to the surface of a steel plate grinding stone base plate.
-109764) and the CVD method (Japanese Patent Application No. 07-109772), it was proposed to coat the surface of the whetstone base plate with an ultra-hard material. With this proposal, even if the grinding wheel base plate is thinned, the cutting accuracy is not lost, the cutting cost is reduced, and the material yield is improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、鉄鋼板
製砥石台板の表面に超硬質物質層をコーティングする際
に、鉄鋼板製砥石台板の温度がCVD法では約1000℃
に、PVD法では約 500℃になる場合もあるため、その
熱が原因で鉄鋼板製砥石台板が熱変形を起こしてしま
い、砥石台板として使用できなくなることが多々あり、
切断砥石の製造歩留りが悪かった。本発明は、このよう
な問題点を解決した、高温時の機械的強度を高めた砥石
台板にダイヤモンドまたはCBN砥粒を強力に結合した
ダイヤモンド切断砥石またはCBN切断砥石を提供しよ
うとするものである。
However, when coating the surface of the steel plate whetstone base plate with the ultra-hard material layer, the temperature of the steel plate whetstone base plate is about 1000 ° C. in the CVD method.
In addition, in the PVD method, the temperature may reach about 500 ° C., so that the heat generated from the iron steel plate grinding wheel base plate often causes it to become unusable as a grinding wheel base plate.
The manufacturing yield of the cutting whetstone was poor. The present invention is intended to provide a diamond cutting grindstone or a CBN cutting grindstone in which a diamond or CBN abrasive grain is strongly bonded to a grindstone base plate having improved mechanical strength at high temperature, which solves such problems. is there.

【0007】[0007]

【課題を解決するための手段】本発明者等は、かかる問
題点を解決すべく鋭意検討した結果、超硬合金製の砥石
台板表面がCVD(化学蒸着)法によってTi C、Ti
N、Ti (C,N)、Al23 等の超硬質物質層でコー
ティングされており、ダイヤモンドまたはCBN砥粒を
メタルボンド、レジンボンド、ビトリファイドボンド、
電鋳ボンド等の方法で砥石台板端部に固着した切断砥石
が極めて有効であることを見出し、本発明を完成したも
ので、その要旨は、ダイヤモンド砥粒またはCBN砥粒
を砥石台板端部に固着した切断砥石において、超硬合金
製の砥石台板の表面がCVD法による超硬質物質層で0.
5 〜15μmの厚さにコーティングされていることを特徴
とする切断砥石にある。
Means for Solving the Problems As a result of intensive studies made by the present inventors in order to solve such problems, the surface of the grinding wheel base plate made of cemented carbide is Ti C, Ti by the CVD (chemical vapor deposition) method.
It is coated with a super-hard material layer of N, Ti (C, N), Al 2 O 3, etc., and diamond or CBN abrasive grains are used for metal bond, resin bond, vitrified bond,
The present invention has been completed by finding that a cutting grindstone adhered to the end of the grindstone base plate by a method such as electroforming bond is extremely effective, and its gist is to use diamond abrasive grains or CBN abrasive grains for the grindstone base plate end. In the cutting grindstone stuck to the part, the surface of the grindstone base plate made of cemented carbide is 0.
It is a cutting grindstone characterized by being coated to a thickness of 5 to 15 μm.

【0008】以下、本発明を詳細に説明する。本発明の
最大の特徴は、砥石台板材料として超硬合金を用い、そ
の表面にTiC、Ti N、Ti (C,N)、Al23
の超硬質物質層を0.5 〜15μmの厚さにCVD法でコー
ティングすることにある。本発明を図面に基づいて説明
すると、図1は外周切断砥石1の一例で、(a)は平面
図、(b)はA−A線縦断面図、(c)は外周端部拡大
図である。砥石台板5の表面にCVD法により超硬質物
質層3をコーティングし、砥石台板外周端部にダイヤモ
ンドまたはCBN砥粒を固着して砥粒層4とし、外周切
断砥石を得る。図2は内周切断砥石2の一例で、(a)
は平面図、(b)はB−B線縦断面図、(c)は内周端
部拡大図である。砥石台板5の表面にCVD法により超
硬質物質層3をコーティングし、砥石台板内周端部にダ
イヤモンドまたはCBN砥粒を固着して砥粒層4とし、
内周切断砥石を得る。
Hereinafter, the present invention will be described in detail. The greatest feature of the present invention is to use a cemented carbide as a grinding stone base plate material, and a super hard material layer such as TiC, TiN, Ti (C, N), and Al 2 O 3 having a thickness of 0.5 to 15 μm on the surface. In addition, it is to coat by the CVD method. The present invention will be described with reference to the drawings. FIG. 1 is an example of a peripheral cutting grindstone 1, (a) is a plan view, (b) is a vertical sectional view taken along the line AA, and (c) is an enlarged view of an outer peripheral end. is there. The surface of the whetstone base plate 5 is coated with the ultra-hard material layer 3 by the CVD method, and diamond or CBN abrasive grains are fixed to the outer peripheral edge of the whetstone base plate to form the abrasive grain layer 4, and a peripheral cutting whetstone is obtained. FIG. 2 is an example of the inner circumference cutting grindstone 2 (a)
Is a plan view, (b) is a vertical cross-sectional view taken along line BB, and (c) is an enlarged view of an inner peripheral end portion. The surface of the whetstone base plate 5 is coated with the ultra-hard material layer 3 by the CVD method, and diamond or CBN abrasive grains are fixed to the inner peripheral edge of the whetstone base plate to form the abrasive grain layer 4.
Get the inner cutting whetstone.

【0009】本発明の対象となる砥石台板は、超硬合金
を材料として作られた薄板円板である。超硬合金は、W
C、Ti C、Mo C、Nb C、Ta C、Cr32 等のI
Va、Va、VIa 族に属する金属の炭化物粉末をCo、Ni、
Mo、Fe、Cu、Pb、Sn またはそれらの合金を用いて焼結
結合した合金であり、これらの中でも特にWC−Co
系、WC−Ti C−Co 系、WC−Ti C−Ta C−C
o 系の合金が良く使用され、本発明でもこれらの超硬合
金を使用することが好ましい。更に本発明ではこれら超
硬合金を薄板状にして使用するため、その抗折力が250k
g/cm2 を越えるような強度の高い超硬合金が好ましい。
このような高抗折力を有する超硬合金を得るためには、
Co 量、C量、WC粒子の粒度、焼結助剤等の添加物の
種類、添加量等を適切に制御することが必要である。
The whetstone base plate to which the present invention is applied is a thin disk made of cemented carbide. Cemented Carbide is W
I such as C, Ti C, Mo C, Nb C, Ta C, Cr 3 C 2
The powders of carbides of metals belonging to the Va, Va, and VIa groups are Co, Ni,
An alloy obtained by sinter-bonding with Mo, Fe, Cu, Pb, Sn or their alloys, and among them, WC-Co among others.
System, WC-Ti C-Co system, WC-Ti C-Ta C-C
O-based alloys are often used, and it is preferable to use these cemented carbides also in the present invention. Further, in the present invention, since these cemented carbides are used in the form of a thin plate, their transverse rupture strength is 250k.
Cemented carbide with high strength exceeding g / cm 2 is preferable.
In order to obtain a cemented carbide having such high transverse rupture strength,
It is necessary to properly control the amount of Co, the amount of C, the particle size of WC particles, the type of additive such as a sintering aid, and the amount added.

【0010】コーティング材料である超硬質物質として
は、Ti C等の炭化物、Ti N等の窒化物、Ti (C,
N)等の炭窒化物、Al23 等の酸化物等が使用され
る。これらのコーティング材から選択された1種を単層
で、あるいは2種以上を複層に組み合わせて、0.5 〜15
μm、好ましくは1〜10μmの厚さにコーティングを行
う。コーティング厚さを0.5 〜15μmに限定したのは、
コーティング厚さが0.5μm未満では切断時に砥石台板
に傷が付き易くなり、本発明の効果が十分に得られない
ためであり、また、15μmを越えるとコーティングする
際に時間やコストがかかり過ぎる上、超硬合金の強度が
劣化してしまい、切断加工中に切断砥石が損傷してしま
う等のトラブルが生じ易くなるためである。一般には、
密着性等の点から単層コーティングを施す際には、Ti
C層を用いることが多く、複層で用いる場合には、Ti
C層とTi N層、Ti C層とTi (C,N)層、Ti C
層とAl23 層の組合せで使用されることが多い。
As the superhard substance as a coating material, carbides such as Ti C, nitrides such as Ti N, Ti (C,
Carbonitrides such as N) and oxides such as Al 2 O 3 are used. One type selected from these coating materials can be used in a single layer, or two or more types can be used in multiple layers to form 0.5 to 15
The coating is applied to a thickness of μm, preferably 1 to 10 μm. Limiting the coating thickness to 0.5-15 μm is
If the coating thickness is less than 0.5 μm, the grindstone base plate is likely to be damaged during cutting, and the effect of the present invention cannot be sufficiently obtained. If it exceeds 15 μm, it takes too much time and cost for coating. In addition, the strength of the cemented carbide is deteriorated, and troubles such as damage to the cutting grindstone during the cutting process are likely to occur. Generally,
When applying a single layer coating from the viewpoint of adhesion etc., Ti
In many cases, the C layer is used.
C layer and Ti N layer, Ti C layer and Ti (C, N) layer, Ti C
Often used in combination with layers and Al 2 O 3 layers.

【0011】コーティングに使用するCVD法は基本的
には公知の方法でよく、コーティングする物質の種類等
によって反応条件は適宜選択される。超硬合金で作られ
た砥石台板を1000℃程度に保持された電気炉内反応容器
内に設置し、化学反応によって生成する被覆すべき超硬
質物質の原料となる反応ガスを導入する。反応ガスは、
Ti 系の被覆においては四塩化チタン(Ti Cl4 )の
蒸発ガスをメインとし、これにTi Cの場合には二酸化
炭素(CO2 )あるいはメタン(CH4 )を、Ti Nの
場合には窒素ガス(N2 )あるいはアンモニアガス(N
3 )を、Ti (C,N)の場合にはCO2 またはCH
4 およびN2 またはNH3 の混合ガスを使用し、さらに
いずれの場合も水素(H2 )やアルゴン(Ar )のキャ
リアーガスと共に混合して反応容器内に導入する。Al2
3 の場合には三塩化アルミニウム(Al Cl3 )の蒸
発ガスにH2 とCO2 を反応させる。導入された混合ガ
スは砥石台板の表面で反応し超硬質物質を析出する。各
析出反応式は下記の通りである。 TiCl4 +CH4 →TiC +4HCl TiCl4 +(1/2)N2 +2H2 →TiN +4HCl TiCl4 +(1-x)CH4+(x/2)N2 →Ti(C1-xNx)+4HCl 2AlCl3+3CO2+3H2 →Al2O3 +3CO +6HCl 砥石台板は中心の軸穴にステンレスのワイヤーを通して
反応容器の空間に保持される。これにより砥石台板の表
裏同時にコーティングされ、表と裏を別々に二回コーテ
ィングする必要がない。複層コーティングの場合には導
入ガスの組成をコーティング途中で切り替えることによ
って可能である。
The CVD method used for coating may be basically a known method, and the reaction conditions are appropriately selected depending on the type of substance to be coated. A grinding wheel base plate made of cemented carbide is installed in a reaction vessel in an electric furnace maintained at about 1000 ° C, and a reaction gas, which is a raw material of a superhard substance to be coated, which is generated by a chemical reaction is introduced. The reaction gas is
In Ti-based coating, titanium tetrachloride (Ti Cl 4 ) is mainly used as evaporative gas, and carbon dioxide (CO 2 ) or methane (CH 4 ) is used in the case of Ti C, and nitrogen is used in the case of Ti N. Gas (N 2 ) or ammonia gas (N
H 3 ) is CO 2 or CH in the case of Ti (C, N)
A mixed gas of 4 and N 2 or NH 3 is used, and in any case, mixed with a carrier gas of hydrogen (H 2 ) or argon (Ar) and introduced into the reaction vessel. Al 2
In the case of O 3 , the vaporized gas of aluminum trichloride (Al Cl 3 ) is reacted with H 2 and CO 2 . The introduced mixed gas reacts on the surface of the whetstone base plate to deposit an ultra-hard substance. Each precipitation reaction formula is as follows. TiCl 4 + CH 4 → TiC + 4HCl TiCl 4 + (1/2) N 2 + 2H 2 → TiN + 4HCl TiCl 4 + (1-x) CH 4 + (x / 2) N 2 → Ti (C 1-x N x ) + 4HCl 2AlCl 3 + 3CO 2 + 3H 2 → Al 2 O 3 + 3CO + 6HCl The grinding wheel base plate is held in the space of the reaction vessel by passing the stainless wire through the central shaft hole. As a result, the whetstone base plate is coated simultaneously on the front and back, and it is not necessary to coat the front and back twice separately. In the case of multi-layer coating, it is possible by changing the composition of the introduced gas during coating.

【0012】砥石台板の端部には、結合剤を用いてダイ
ヤモンド砥粒またはCBN砥粒を固着させる。結合剤に
は公知のメタルボンド、レジンボンド、ビトリファイド
ボンドまたは電着ボンドがあり、切断砥石の用途によっ
て適切なものが使用される。メタルボンドは、ブロンズ
系(Cu-Sn 系)等の合金粉末をダイヤモンド砥粒やC
BN砥粒と混合して1000℃以下の温度で焼き固めて砥石
台板に固着させる。また、レジンボンドでは一般に熱硬
化性フェノール樹脂が結合剤として用いられる。この樹
脂とダイヤモンド砥粒やCBN砥粒とを混合し、50〜20
0kg/cm2 で加圧形成し、100 〜200 ℃で加熱して砥石台
板に固着させる。
[0012] Diamond abrasive grains or CBN abrasive grains are fixed to the ends of the whetstone base plate using a binder. The binder may be a known metal bond, resin bond, vitrified bond or electrodeposition bond, and an appropriate one is used depending on the application of the cutting wheel. For metal bond, alloy powder such as bronze type (Cu-Sn type) is used as diamond abrasive or C
It is mixed with BN abrasive grains, baked at a temperature of 1000 ° C. or less, and fixed to the whetstone base plate. Further, in the resin bond, a thermosetting phenol resin is generally used as a binder. 50 to 20 by mixing this resin with diamond abrasive grains or CBN abrasive grains.
It is pressure-formed at 0 kg / cm 2 and heated at 100 to 200 ℃ to fix it to the grinding wheel base plate.

【0013】ビトリファイドボンドはガラス質の結合剤
を用いるもので、砥粒と混合して700 〜900 ℃でガラス
質結合剤を溶かして砥石台板に固着させる。電着ボンド
は、メッキ浴中にダイヤモンド砥粒、CBN砥粒を混
合、分散させ、そのメッキ浴中で砥石台板を電気メッキ
することによりメッキ膜中に砥粒を取り込んで砥石台板
に固着させる。また、砥石台板の表面にダイヤモンド砥
粒、CBN砥粒を散布し、そのまま砥石台板に電気メッ
キを施して砥粒を砥石台板に固着させる方法もある。
The vitrified bond uses a vitreous binder, which is mixed with abrasive grains to melt the vitreous binder at 700 to 900 ° C. to fix it to the whetstone base plate. Electrodeposition bond mixes and disperses diamond abrasive grains and CBN abrasive grains in the plating bath, and electroplates the stone base plate in the plating bath to incorporate the abrasive grains into the plating film and fix them to the stone base plate. Let There is also a method in which diamond abrasive grains and CBN abrasive grains are sprayed on the surface of the whetstone base plate, and the whetstone base plate is directly electroplated to fix the abrasive grains to the whetstone base plate.

【0014】[0014]

【発明の実施の形態】本発明の作用は、砥石台板材料と
して超硬合金を使用することにより、CVD法により砥
石台板が高温に曝されても熱変形を生ずることなく、従
って、砥石台板表面に超硬質物質層がコーティングされ
た薄板切断砥石を歩留り良く製造することができること
にある。また、砥石台板表面硬度の増大による耐摩耗性
の向上により、切断加工中に切断研削粉による砥石台板
表面の傷の発生がなく、従って切断砥石の刃厚が薄くて
も寿命が長く、また、精度よく被切断物を切断すること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The operation of the present invention is that by using a cemented carbide as the material for the grinding wheel base plate, thermal deformation does not occur even when the grinding wheel base plate is exposed to high temperature by the CVD method, and therefore, the grinding wheel is used. It is to be able to manufacture a thin plate cutting grindstone in which a super-hard material layer is coated on the surface of a base plate with good yield. Further, by improving the wear resistance by increasing the hardness of the whetstone base plate, there is no scratch on the surface of the whetstone base plate due to the cutting grinding powder during the cutting process, therefore the life is long even if the blade thickness of the cutting whetstone is thin, Further, the object to be cut can be cut accurately.

【0015】[0015]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1、比較例1)WC−20重量%Co 組成の超硬
合金(抗折力300kg/cm2 )を 150mmφ×40mmφ×0.6mmt
の形状とし、砥石台板とした。これを反応容器内に入
れ、Ti Cl4 ガスおよびCH4 ガスを反応容器内に導
入し、1000℃でTi C層を超硬合金製砥石台板上に堆積
させ、CVD法により砥石台板両面を全面コーティング
した。コーティング被膜の厚さは、片側各5μmとし
た。次いで、このTi C層を施した砥石台板の外周端部
にダイヤモンド砥粒を固着し、外周切断砥石を作製し
た。ダイヤモンド砥粒の結合剤はレジンボンドを使用し
た。円板砥石形状の金型に上記のコーティングされた砥
石台板を入れ、この外周部分に熱硬化性フェノール樹脂
をバインダーとし、12μmのNi コートを施した120 メ
ッシュの人工ダイヤモンド砥粒を重量比で3(砥粒):
1(レンジ)に混合した粉末を充填し、次いでプレスに
より砥石形状に成形した後、金型にセットしたまま180
℃で30分間加熱硬化させ、冷却後ラップ盤にてに刃厚の
仕上げを行い、刃厚が0.7mmtの外周切断砥石とした。以
上の工程により外周切断砥石を20枚作製した。
EXAMPLES Hereinafter, embodiments of the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. (Example 1, Comparative Example 1) WC-20 wt% Co composition cemented carbide (deformation strength 300 kg / cm 2 ) 150 mmφ × 40 mmφ × 0.6 mmt
And a whetstone base plate. This is placed in a reaction vessel, Ti Cl 4 gas and CH 4 gas are introduced into the reaction vessel, and a Ti C layer is deposited on a cemented carbide whetstone base plate at 1000 ° C., and both sides of the whetstone base plate are deposited by the CVD method. Was coated on the entire surface. The thickness of the coating film was 5 μm on each side. Next, diamond abrasive grains were fixed to the outer peripheral end of the grindstone base plate having the Ti C layer, to produce an outer peripheral cutting grindstone. Resin bond was used as a binder for the diamond abrasive grains. The above coated whetstone base plate is put into a disc whetstone-shaped die, and the thermosetting phenolic resin is used as a binder on the outer periphery of the whetstone base plate, and a 120 μm artificial diamond abrasive grain with a Ni coating of 12 μm is used in a weight ratio. 3 (abrasive):
1 (range) is filled with the mixed powder, and then pressed into a grindstone shape, then 180
After heat-curing for 30 minutes at ℃, after cooling, the blade thickness was finished on a lapping machine to obtain a peripheral cutting grindstone with a blade thickness of 0.7 mmt. Twenty peripheral cutting grindstones were produced by the above steps.

【0016】また、比較例1としてSKD製砥石台板を
用いて、実施例1と同様にTi C層コーティング、ダイ
ヤモンド砥粒の固着を行い、20枚のSKD製砥石台板を
用いた外周切断砥石を製造した。これら外周切断砥石の
平面度を測定し、平面度が20μm以上を不良品とした。
なお、平面度の測定は、夫々の砥石台板の内周端部から
半径方向へ向かって外周端部の砥粒層直前までの平面度
を5ヶ所測定してその平均値を採用した。その結果、超
硬合金製砥石台板により製造された外周切断砥石は20枚
中不良は1枚もなかったが、SKD製砥石台板を用いた
外周切断砥石では20枚中12枚が不良品であった。以上に
より、砥石台板材料として超硬合金を用いることによ
り、薄板の砥石台板にCVD法により超硬質物質層をコ
ーティングして切断砥石を製造すれば、歩留りよく製造
できることが確認できた。
Further, as Comparative Example 1, a SKD whetstone base plate was used, Ti C layer coating and diamond abrasive grain fixing were performed in the same manner as in Example 1, and outer circumference cutting was performed using 20 SKD whetstone base plates. The whetstone was manufactured. The flatness of these peripheral cutting grindstones was measured, and the flatness of 20 μm or more was determined as a defective product.
The flatness was measured by measuring the flatness from the inner peripheral end of each whetstone base plate in the radial direction to the position immediately before the abrasive grain layer at the outer peripheral end at five points, and using the average value thereof. As a result, the outer peripheral cutting whetstone manufactured by the cemented carbide whetstone base plate had no defects in 20 out of 12, but the outer peripheral cutting whetstone using the SKD whetstone base plate had 12 out of 20 defective products. Met. From the above, it was confirmed that, by using a cemented carbide as the material of the grinding stone base plate, if a thin grinding stone base plate is coated with a superhard substance layer by the CVD method to manufacture a cutting grindstone, it can be manufactured with high yield.

【0017】(実施例2、比較例2〜4)実施例1で作
製した外周切断砥石を用いて、R−Fe −B系希土類磁
石を被切断物として切断試験を行った。表1に切断時間
と砥石の変形量および被切断物の切断精度との関係につ
いて記載した。なお、切断テストは次のような条件で行
った。切断砥石8枚を2mm間隔でマルチに組んで、回転
数4500rpm 、切断速度8mm/minで被切断物を切断した。
被切断磁石の寸法は幅36mm×高さ10mm×長さ40mmで、こ
れをカーボン板に貼り付けてカーボン板と共に切断し
た。切断を始めて 500、1000、2000、3000時間後にマル
チに組んだ切断砥石を分解して、夫々の砥石台板の内周
端部から半径方向へ向かって外周端部の砥粒層直前まで
の平面度を5ヶ所測定して、その平均を砥石の変形量と
した。また、切断された切断物の隅部4点と中央部の計
5点の厚みをマイクロメーターで測定し、その最大値と
最小値の差を切断精度とした。比較例2〜4として実施
例2と同様な切断試験を表1に記載した砥石台板材質と
コーティング材質の組合せからなる外周切断砥石につい
て行い、結果を表1に併記した。表1から明らかなよう
に薄板の超硬合金製砥石台板にCVD法により超硬質物
質層をコーティングすることにより、刃厚が薄くても寿
命が長く、また、精度よく切断できることが確認され
た。
(Example 2, Comparative Examples 2 to 4) Using the peripheral cutting grindstone produced in Example 1, a cutting test was conducted using an R-Fe-B system rare earth magnet as an object to be cut. Table 1 shows the relationship between the cutting time, the amount of deformation of the grindstone, and the cutting accuracy of the object to be cut. The cutting test was performed under the following conditions. Eight cutting wheels were assembled into a multi at intervals of 2 mm, and the object to be cut was cut at a rotation speed of 4500 rpm and a cutting speed of 8 mm / min.
The magnet to be cut had dimensions of width 36 mm x height 10 mm x length 40 mm, which was attached to a carbon plate and cut together with the carbon plate. After 500, 1000, 2000, and 3000 hours from the start of cutting, disassemble the cutting grindstones assembled in multi, and a plane from the inner peripheral edge of each grinding stone base plate to the outer peripheral edge immediately before the abrasive grain layer in the radial direction. The degree of deformation was measured at five locations, and the average was taken as the amount of deformation of the grindstone. In addition, the thickness of 4 points in the corners and 5 points in the center of the cut product was measured with a micrometer, and the difference between the maximum value and the minimum value was taken as the cutting accuracy. As Comparative Examples 2 to 4, the same cutting test as in Example 2 was performed on the outer peripheral cutting wheels made of the combination of the grinding wheel base plate material and the coating material shown in Table 1, and the results are also shown in Table 1. As is clear from Table 1, it was confirmed that by coating a thin cemented carbide grinding wheel base plate with a super-hard material layer by the CVD method, even if the blade thickness is thin, the life is long and the cutting can be performed accurately. .

【0018】[0018]

【表1】 [Table 1]

【0019】(実施例3〜7)実施例1と同材質、同形
状の超硬合金砥石台板に表2に記載したコーティング材
質と膜厚との組合せをCVD法で施し、これら砥石台板
外周部にCBN砥粒を電着して電着ボンドCBN外周切
断砥石を作製した。砥石台板外周部と電極結合部を除い
てテープおよびマスキング剤にて絶縁した後、Ni ワッ
ト浴に120 メッシュのCBN砥粒をメッキ浴全量に対し
て5重量%混合した電着メッキ浴中にて10時間電着処理
した。電着層の厚みはおよそ 100μmであった。電着メ
ッキ浴はスターラーにて撹拌すると共に超音波をかけて
CBN砥粒の液中での分散を維持した。これらのコーテ
ィングを施した外周切断砥石をそれぞれ20枚ずつ作製
し、実施例1と同様に平面度を測定して切断砥石の製造
歩留りを調べたところ、これらの切断砥石では不良は生
じなかった。さらにこれらの切断砥石を用いて実施例2
と同様な切断試験を行った。その結果を表2に併記し
た。
(Examples 3 to 7) A cemented carbide whetstone base plate having the same material and shape as in Example 1 was coated with the coating material and film thickness combinations shown in Table 2 by the CVD method, and these whetstone base plates were used. CBN abrasive grains were electrodeposited on the outer peripheral portion to prepare an electrodeposited bond CBN peripheral cutting grindstone. After insulating with a tape and masking agent except for the outer periphery of the whetstone base plate and the electrode coupling part, the Ni watt bath was mixed in an electrodeposition plating bath in which 5% by weight of 120 mesh CBN abrasive grains were mixed with the total amount of the plating bath. And electroplated for 10 hours. The thickness of the electrodeposition layer was about 100 μm. The electrodeposition plating bath was stirred with a stirrer and ultrasonic waves were applied to maintain the dispersion of the CBN abrasive grains in the liquid. 20 pieces of each of the peripheral cutting grindstones coated with these coatings were prepared, and the flatness was measured in the same manner as in Example 1 to examine the manufacturing yield of the cutting grindstones. Further, using these cutting wheels, Example 2
The same cutting test was performed. The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】(実施例8、比較例5)実施例1と同材
質、同形状の超硬合金砥石台板にTi C層を表3に示す
ような種々の膜厚さにCVD法によりコーティングし、
これら砥石台板外周部にダイヤモンド砥粒を電着し、電
着ボンドダイヤモンド外周切断砥石を作製した。砥石台
板外周部と電極結合部を除いてテープおよびマスキング
剤にて絶縁した後、Niワット浴に12μmのNi コート
を施した120 メッシュの人工ダイヤモンド砥粒をメッキ
浴全量に対して5重量%混合した電着メッキ浴中にて10
時間電着処理した。電着層の厚みはおよそ 100μmであ
った。電着メッキ浴はスターラーにて撹拌すると共に超
音波をかけてダイヤモンド砥粒の液中での分散を維持し
た。これらの切断砥石を用いて実施例3と同様の切断試
験を行い、その結果を表3に示した。比較例5として、
Ti C層の膜厚を20μmにコーティングしたものは、切
断試験中 300時間後に切断砥石が割れてしまい、結果を
得ることができなかった。
(Example 8 and Comparative Example 5) A cemented carbide grinding wheel base plate having the same material and shape as in Example 1 was coated with a Ti C layer in various film thicknesses as shown in Table 3 by the CVD method. ,
Diamond abrasive grains were electrodeposited on the outer peripheral portions of these grinding stone base plates to produce electrodeposited bond diamond outer peripheral cutting stones. After insulating with a tape and a masking agent except for the outer periphery of the whetstone base plate and the electrode bonding part, a 120 watt artificial diamond abrasive grain with a Ni coating of 12 μm applied to a Ni watt bath is 5% by weight based on the total amount of the plating bath. 10 in mixed electroplating bath
It was electrodeposited for an hour. The thickness of the electrodeposition layer was about 100 μm. The electrodeposition plating bath was stirred with a stirrer and ultrasonic waves were applied to maintain the dispersion of diamond abrasive grains in the liquid. The same cutting test as in Example 3 was performed using these cutting wheels, and the results are shown in Table 3. As Comparative Example 5,
In the case where the Ti C layer was coated to a thickness of 20 μm, the cutting wheel was broken after 300 hours during the cutting test, and the result could not be obtained.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【発明の効果】本発明によれば、歩留りよく超硬合金砥
石台板に超硬質物質層がコーティングされた薄板切断砥
石を製造することができる。このようにして得られた切
断砥石の表面には、耐摩耗性のよい超硬質物質層のコー
ティングが施されているので切断研削粉による砥石台板
表面の傷の発生がなく、従って、切断砥石の刃厚が薄く
ても寿命が長く、また、精度よく被切断物を切断するこ
とができる。
According to the present invention, it is possible to manufacture a thin plate cutting whetstone in which a superhard material layer is coated on a cemented carbide whetstone base plate with good yield. The surface of the cutting wheel obtained in this way is coated with a super-hard material layer with good wear resistance, so there is no occurrence of scratches on the surface of the grinding wheel base plate due to cutting grinding powder. Even if the blade thickness is thin, the life is long, and the object to be cut can be cut accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による外周切断砥石の一例を示す図であ
る。(a)は上面図、(b)はA−A線縦断面図、
(c)は外周端部拡大図である。
FIG. 1 is a view showing an example of a peripheral cutting grindstone according to the present invention. (A) is a top view, (b) is a vertical sectional view taken along the line AA,
(C) is an enlarged view of an outer peripheral end portion.

【図2】本発明による内周切断砥石の一例を示す図であ
る。(a)は上面図、(b)はB−B線縦断面図、
(c)は内周端部拡大図である。
FIG. 2 is a view showing an example of an inner circumference cutting grindstone according to the present invention. (A) is a top view, (b) is a vertical cross-sectional view taken along the line BB,
(C) is an enlarged view of an inner peripheral end portion.

【符号の説明】[Explanation of symbols]

1 外周切断砥石 2 内周切
断砥石 3 超硬質物質コーティング層 4 砥粒層 5 超硬合金製砥石台板 p 刃厚ま
たは切断加工代 q 砥粒層帯幅 r 隙間ま
たは逃げ
1 Peripheral cutting grindstone 2 Inner peripheral cutting grindstone 3 Cemented carbide coating layer 4 Abrasive grain layer 5 Cemented carbide alloy whetstone base plate p Blade thickness or cutting cost q Abrasive grain layer band width r Gap or escape

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ダイヤモンド砥粒またはCBN砥粒を砥石
台板端部に固着した切断砥石において、超硬合金製の砥
石台板の表面がCVD法による超硬質物質層で0.5 〜15
μmの厚さにコーティングされていることを特徴とする
切断砥石。
1. A cutting grindstone in which diamond abrasive grains or CBN abrasive grains are fixed to the end portion of the grindstone base plate, the surface of the grindstone base plate made of cemented carbide is 0.5 to 15 as a superhard material layer formed by the CVD method.
A cutting grindstone characterized by being coated to a thickness of μm.
JP18141195A 1995-07-18 1995-07-18 Abrasive cutting wheel Pending JPH0929644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18141195A JPH0929644A (en) 1995-07-18 1995-07-18 Abrasive cutting wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18141195A JPH0929644A (en) 1995-07-18 1995-07-18 Abrasive cutting wheel

Publications (1)

Publication Number Publication Date
JPH0929644A true JPH0929644A (en) 1997-02-04

Family

ID=16100301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18141195A Pending JPH0929644A (en) 1995-07-18 1995-07-18 Abrasive cutting wheel

Country Status (1)

Country Link
JP (1) JPH0929644A (en)

Similar Documents

Publication Publication Date Title
EP0586683B1 (en) Multi-layer metal coated diamond abrasives with an electrolessly deposited metal layer
TWI458596B (en) Peripheral cutter and manufacturing method thereof
EP0480878B1 (en) Cubic boron nitride (CBN) abrasive tool
US6585565B2 (en) Grinding and polishing tool for diamond, method for polishing diamond, and polished diamond, single crystal diamond and single diamond compact obtained thereby
JP2868180B2 (en) Diamond wheel for cutting rare earth magnets and cutting method of rare earth magnets using the same
JP3132981B2 (en) Cutting whetstone
JPH0929644A (en) Abrasive cutting wheel
KR20120048769A (en) Grinding method for the glass of mobile phone
JP2001198833A (en) Diamond grinding wheel and diamond grinding method, ground diamond body obtained thereby, single-crystal diamond, sintered diamond body, composite diamond grinding wheel, and diamond grinding wheel segment
JP2009006409A (en) Thin edge grinding wheel
JP3132980B2 (en) Cutting whetstone
JP2002137168A (en) Super abrasive tool
JPH0929645A (en) Abrasive cutting wheel
JP7088598B2 (en) Metal hybrid grinding wheel with coated filler particles
JP2002160166A (en) Super abrasive grain tool
JP2003326466A (en) Highly rigid cutting blade and method of manufacturing the cutting blade
JPH0665745A (en) Diamond-coated hard material and its production
JP2002080964A (en) Titanium-chromium alloy coated diamond crystal used in saw blade and method for producing the same
EP0706850A1 (en) Brazable cobalt-containing CBN compacts
JP3210977B2 (en) Whetstone for diamond polishing, diamond polishing method and diamond-polished body
JPS60165340A (en) Selectively and partially modified sintered alloy
JPS6314869A (en) Diamond coated sintered hard alloy and its production
JP2002038205A (en) Coated cemented carbide having hard composite layer and its production method
JP2003211361A (en) Diamond polished body, single crystal diamond and diamond sintered body obtained by diamond polishing wheel
JP2001205568A (en) Grinding wheel blade for cutting rare-earth magnet