JPH09295945A - 成熟型骨誘導因子の製造方法 - Google Patents

成熟型骨誘導因子の製造方法

Info

Publication number
JPH09295945A
JPH09295945A JP8130618A JP13061896A JPH09295945A JP H09295945 A JPH09295945 A JP H09295945A JP 8130618 A JP8130618 A JP 8130618A JP 13061896 A JP13061896 A JP 13061896A JP H09295945 A JPH09295945 A JP H09295945A
Authority
JP
Japan
Prior art keywords
mature
gly
ala
leu
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8130618A
Other languages
English (en)
Inventor
Mikiko Takahashi
美樹子 高橋
Fusao Makishima
房夫 牧島
Michio Kimura
道夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOECHST YAKUHIN KOGYO KK
Original Assignee
HOECHST YAKUHIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOECHST YAKUHIN KOGYO KK filed Critical HOECHST YAKUHIN KOGYO KK
Priority to JP8130618A priority Critical patent/JPH09295945A/ja
Priority to PCT/JP1997/001474 priority patent/WO1997041250A1/ja
Priority to AU24084/97A priority patent/AU2408497A/en
Priority to CZ983449A priority patent/CZ344998A3/cs
Priority to EP97919717A priority patent/EP0915168A4/en
Priority to CA002253233A priority patent/CA2253233A1/en
Priority to PL97329610A priority patent/PL329610A1/xx
Priority to IL12676097A priority patent/IL126760A0/xx
Priority to KR1019980708701A priority patent/KR20000065110A/ko
Publication of JPH09295945A publication Critical patent/JPH09295945A/ja
Priority to NO985041A priority patent/NO985041D0/no
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/51Bone morphogenetic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】 (修正有) 【課題】 動物細胞によって産生された種々の分子量の
骨誘導因子前駆体から実質的に単一の分子量を有する成
熟型骨誘導因子を製造する方法を提供する。 【解決手段】 骨誘導因子前駆体にプロセシング酵素を
作用させることにより成熟型骨誘導因子を製造すること
ができる。骨誘導因子前駆体へのプロセシング酵素の作
用は、骨誘導因子前駆体の発現ベクターおよびプロセシ
ング酵素の発現ベクターを動物細胞株に導入することに
より行われ、該細胞株を培養して成熟型骨誘導因子を産
生せしめ、培養液から成熟型骨誘導因子を分離すること
により成熟型骨誘導因子が得られる。あるいは、骨誘導
因子前駆体へのプロセシング酵素の作用は、骨誘導因子
前駆体を含有する溶液にプロセシング酵素を含有する溶
液を加えることにより行われ、該混合溶液をインキュベ
ートすることにより成熟型骨誘導因子が得られる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、成熟型骨誘導因子
の製造方法に関する。さらに詳しくは、本発明は、骨誘
導因子前駆体にプロセシング酵素を作用させることを特
徴とする成熟型骨誘導因子の製造方法に関する。
【0002】
【従来の技術】骨基質に蛋白性の骨誘導因子が存在する
ことがUristらにより発見され(Science 150, pp.893-8
99, 1965)、bone morphogenic protein(以下BMPと
略す)と命名された。近年、複数のBMP関連遺伝子が
クローニングされ、いずれもトランスフォーミング成長
因子−β(以下TGF−βと略す)スーパーファミリー
に属していることが知られている。これらのうち、いく
つかは組換体が生産され、それを用いて骨誘導活性が確
認され、骨疾患の治療への応用が期待されている。
【0003】これらのTGF−βスーパーファミリーに
属する蛋白質は、その遺伝子構造から生体内では、いず
れも前駆体として合成された後、種々のプロセシングを
受け、成熟型(活性型)のペプチド二量体を形成すると
考えられている。ヒトTGF−β1の成熟型はC末端側
112残基のペプチドの二量体であることが知られている
(Nature 316, 701-705, 1985)。実際に動物細胞にお
いて、前駆体をコードするcDNAを導入することによ
りBMP−2、あるいはBMP−6/Vgr−1を生産
させると、培養上清中には、成熟型のペプチド二量体の
ほかに、種々の成熟型よりも大きな分子量のペプチド二
量体(分子量の大きな単量体から成る二量体、および分
子量の大きな単量体と成熟型の単量体から成るヘテロ二
量体)が多く含まれることが知られている(Growth Fac
tors 7, pp.139-150, 1992, J. Biol. Chem. 126, pp.1
595-1609, 1994)。これらの成熟型よりも大きな分子量
のペプチド二量体は、前駆体から成熟型へのプロセシン
グ途中にある分子に相当すると考えられる。この成熟型
より大きな分子量のペプチド二量体を以下前駆体二量体
と呼ぶ。これら種々の二量体のうち、ある単一の分子量
のペプチド二量体、たとえば成熟型二量体のみを選択的
に大量に産生させたり、あるいは効率よく分離すること
は、技術的に非常に困難であり、その解決が渇望されて
いた。
【0004】
【発明が解決しようとする課題】本発明の目的は、骨誘
導因子の種々の分子量の前駆体二量体の中から、単一の
分子量からなる成熟型二量体のみを、動物細胞におい
て、効率よく大量に生産する方法を提供することにあ
る。
【0005】近年、高等動物における蛋白質の前駆体か
らのプロセシング酵素として、一群のKex2様プロテ
アーゼ、フリン(furin)、PC−2、PC−3、PA
CE4、PC6等が同定された(Biochem. J. 299, pp.
1-18, 1994)。 このうち、フリンはC末端に疎水性の
膜貫通領域を持ち、細胞内のゴルジ膜に局在する。ヒト
フリンをコードするcDNA配列はvan den Ouwelandら
により既に報告されている(Nucleic Acids Res. 18, p
p.664, 1990)。フリンはその切断部位の上流4アミノ酸
の配列としてArg−X1−X2−Arg(X1は任意のアミノ
酸、X2は任意のアミノ酸のうち主にLysあるいはA
rgを示す)を認識するがことが明らかにされた(J. B
iol. Chem. 266, pp.12127-12130, 1991)。さらに、フ
リンは膜貫通ドメイン以降を欠いたN末端側だけを動物
細胞で発現させると細胞外に分泌され、その分泌部位の
みでもアミノ酸配列特異的な切断活性を維持しているこ
とが報告されている(J. Biol. Chem. 269, pp.25830-2
5837, 1994)。本発明者らは、このフリンを用いること
により、動物細胞において、前駆体二量体を含むことな
く、成熟型二量体のみを、組換えDNA技術を用いて効
率よく大量に産生させることに初めて成功した。
【0006】
【課題を解決するための手段】本発明によれば、成熟型
骨誘導因子は骨誘導因子前駆体にプロセシング酵素を作
用させることにより製造される。本発明によれば、骨誘
導因子前駆体へのプロセシング酵素の作用は、骨誘導因
子前駆体の発現ベクターおよびプロセシング酵素の発現
ベクターを動物細胞株に導入することにより行われ、該
細胞株を培養して成熟型骨誘導因子を産生せしめ、培養
液から成熟型骨誘導因子を分離することにより成熟型骨
誘導因子が得られる。
【0007】さらに本発明によれば、骨誘導因子前駆体
へのプロセシング酵素の作用は、骨誘導因子前駆体を含
有する溶液にプロセシング酵素を含有する溶液を加える
ことにより行われ、該混合溶液をインキュベートするこ
とにより成熟型骨誘導因子が得られる。好適には、ヒト
MP52前駆体の発現ベクターおよび分泌型フリン変異
体の発現ベクターを動物細胞株に導入し、該細胞株を培
養して成熟型骨誘導因子を産生せしめ、培養液から成熟
型骨誘導因子を分離することにより製造される。
【0008】本発明において、成熟型骨誘導因子とは、
活性型ヒトTGF−β1のC末端側112アミノ酸残基
と相同性のあるアミノ酸配列から実質的に構成される骨
誘導因子を意味する。骨誘導因子の活性はこの活性型ヒ
トTGF−β1のC末端側112アミノ酸残基と相同性
のあるアミノ酸配列領域にあると考えられ、それ以外の
アミノ酸配列領域はできるだけ含まないのが望ましい。
本発明において、プロセシング酵素としては、一群のK
ex2様プロテアーゼ、フリン、PC−2、PC−3、
PACE4、PC6などが使用されるが、特にフリンが
好適に使用される。フリンをコードするcDNAとして
は、フリンの全アミノ酸配列をコードするDNA塩基配
列を用いることができるが、好ましくは、膜貫通ドメイ
ンを含まず、しかもアミノ酸配列特異的な切断活性を維
持しているアミノ酸配列部分(以下、分泌型フリン変異
体という)をコードするDNA塩基配列を用いる。
【0009】本発明の好ましい実施態様においては、分
泌型フリン変異体cDNAを含むDNA断片を、ヒト細
胞株HepG2(ATCC HB8065)から抽出したトータル
RNAから、合成DNAプライマーを用いたRT−PC
R法によりクローニングする。この分泌型フリン変異体
cDNAのDNA塩基配列は、配列表の配列番号1の1
63番目から2014番目のヌクレオチドである。さら
にこのDNA断片を、発現用ベクターに挿入することに
より分泌型フリン変異体発現ベクターを構築する。ここ
で用いる発現用ベクターは、真核細胞プロモーターの下
流に、発現させる遺伝子をクローニングする制限酵素サ
イト、ポリA付加シグナルを含む。更に、この発現用ベ
クターは形質転換体の選別に有利な薬剤耐性マーカーを
有していても良い。このような発現用ベクターとして、
例えば、ヒトサイトメガロウィルスプロモーター・エン
ハンサー、ポリリンカー、ウシ成長ホルモンポリA付加
シグナル及びネオマイシン耐性マーカーを含むpRc/
CMV(INVITROGEN社より入手可能)などを用いること
ができる。
【0010】本発明は、骨誘導因子がヒトTGF−βス
ーパーファミリーに属する蛋白質の製造方法に用いるこ
とができる。例えばMP52、BMP−2、BMP−
4、BMP−6、あるいはBMP−7の単一な分子量か
らなる成熟型骨誘導因子の製造方法に用いることができ
る。特に骨誘導因子として、PCT出願WO93/16
099およびWO95/04819に開示されている骨
誘導活性を有するヒトMP52が好適に用いられる。好
ましい実施態様は、ヒトMP52前駆体をコードするc
DNAを発現用ベクターに挿入してヒトMP52前駆体
発現ベクターを構築し、動物細胞に導入することによ
り、前駆体、および成熟型MP52二量体を産生してい
る動物細胞株を作製することである。ここで宿主細胞と
して適した動物細胞は、例えばチャイニーズハムスター
オバリー(CHO)細胞、BHK細胞、293細胞、マ
ウスL細胞などであるが、CHO細胞が好適である。こ
のヒトMP52産生動物細胞株(MC−2:寄託番号FE
RM BP-5142)に、分泌型フリン変異体発現ベクターをさ
らに導入し、両蛋白質を共発現させることにより、その
培養上清中に、成熟型MP52二量体のみを生産させる
ことができる。
【0011】さらに、前駆体からの成熟型への変換は、
プロセシング酵素を含む溶液を前駆体を含む溶液と混合
し、32〜40℃、好ましくは37℃で一晩加温するこ
とにより達成することもできる。本発明の方法によって
得られる成熟型骨誘導因子は医薬品で許容されうる担体
物質、添加物質、希釈剤および(または)賦形剤を必要
により配合して骨、軟骨または歯の損傷の治療または予
防、人工歯根に適用することができる。骨代謝異常に因
る骨疾患の治療のためには、成熟型骨誘導因子を注射、
例えば静脈注射、筋肉内注射および腹腔内注射、経口投
与、非経口投与、例えば座剤、また他のいずれかの常法
により全身投与する事ができる。
【0012】骨折の治療のためには、これらのものは注
射、経口および非経口投与により全身または局所投与す
ることができる。また、成熟型骨誘導因子を含むマトリ
ックスを骨折した骨に近い領域に移植するのが好まし
い。適当なマトリックスは、天然重合体例えばコラーゲ
ンおよびフィブリン接着剤および人工重合体例えばポリ
乳酸グリコール酸共重合体である。
【0013】整形外科的再構築、骨移植および人工歯根
の場合、成熟型骨誘導因子を例えば移植すべき骨または
歯の表面にコラーゲン・ペースト、フィブリン接着剤お
よびその他の接着物質によって被覆することができる。
骨移植の場合、このものは天然および人工骨双方に使用
することができる。成熟型骨誘導因子の投与量は、目的
および適用方法に基づいて定められる。一般に、全身投
与の時は、投与量は1μg〜100μg/kgである。局所
投与に使用するときは、好適な投与量は30μg〜30m
g/部位である。
【0014】
【実施例】次に、実施例を示して本発明の効果を具体的
に説明する。 実施例1 ヒト分泌型フリン変異体およびヒトMP52を共発現す
るCHO細胞株による成熟型ヒトMP52二量体の産生 (1) ヒト分泌型フリン変異体cDNAのクローニングおよ
び発現ベクターの構築 ヒトフリン蛋白質はN末端側より、シグナルペプチド、
ズブチリシン様プロテアーゼドメイン、膜貫通ドメイ
ン、細胞質側ドメインなどのドメイン構造をとる。本発
明では膜貫通ドメインを欠いたN末端側をコードするヒ
ト分泌型フリン変異体cDNAをRT−PCR法にクロ
ーニングし発現に用いた。
【0015】ヒトHepG2細胞よりトータルRNAを
抽出し、それを鋳型として上流側のアンチセンスプライ
マー1(配列表配列番号1に示したヒトフリンのcDN
A配列の931番目から914番目)および下流側のア
ンチセンスプライマー2(2095番目から2071番
目)を用いてrTth RNAポリメラーゼにより逆転
写反応を行った。続いて、それぞれの産物についてセン
スプライマー3(配列表配列番号2)とアンチセンスプ
ライマー4(配列表配列番号3)、およびセンスプライ
マー5(配列表配列番号4)とアンチセンスプライマー
6(配列表配列番号5)の組み合わせでPCR反応を行
い、上流側と下流側の2つのcDNAフラグメントを得
た。これらのフラグメントを連結しプラスミドpUC1
19(宝酒造より入手)のHindIII−SalIサイトに挿入
し、595アミノ酸をコードするヒト分泌型フリン変異
体cDNAを得た。得られたcDNAを制限酵素消化お
よびDNA塩基配列決定により確認した。ヒト分泌型フ
リン変異体cDNAのDNA塩基配列は配列表の配列番
号1に示した163番目から2014番目のヌクレオチ
ドであった。このヒト分泌型フリン変異体cDNAのD
NA配列が、van den Ouwelandらに報告されたDNA配
列と比較して異なる点は、165番目の塩基がアデニン
であることにより翻訳に悪影響を及ぼす可能性のある不
要な開始コドンが消去され、また、2004番目の塩基
がチミンであることによりストップコドンが形成されて
いる点である。次に、ヒト分泌型フリン変異体cDNA
をHindIII−XbaI消化により切り出し、INVITROGEN社か
ら購入したpRc/CMVベクターのHindIII−XbaI部
位に挿入し、図1に示すヒト分泌型フリン変異体cDN
A発現ベクター pDfurpRC/CMVを作製した。
【0016】(2)ヒトMP52の発現ベクターの構築 Biopharm GmbHのDr. Hoettenから提供されたヒトMP5
2遺伝子を含むpSK52sプラスミドから、HindIII
消化によりヒトMP52遺伝子を含むDNA断片を単離
し、Behringwerke AGのDr. Zettlmeisslから提供された
pABstopベクターのHindIII部位に挿入し、図2に示すヒ
トMP52発現ベクターpMSS99を作製した。その構造を
DNA塩基配列決定および制限酵素消化により確認し
た。pMSS99のヒトMP52 DNA塩基配列は、
配列表の配列番号6に示した576番目から2279番
目までのヌクレオチドであった。
【0017】(3)種々の前駆体ヒトMP52二量体を産
生するチャイニーズハムスターオバリー(CHO)細胞株
MC−2の樹立 Behringwerke AGのDr. Zettlmeisslから提供されたCHO
−DUKX−B11細胞、すなわちCHO細胞の突然変異株
に、pMSS99およびDr. Zettlmeisslから提供され
たpSVOAdhfrをリン酸カルシウムDNA共沈法により導
入した。次に、ヒトMP52の高産生細胞株をメソトレ
キセート(MTX)を用いる遺伝子増幅法により樹立し
た。
【0018】pMSS99(10μg)およびpSV0Adhf
r(2μg)を25mM HEPES、140mM NaCl、0.75m
M Na2HPO4(pH7.05)1mlに溶解し、続いて50μl
の2.5M CaCl2と混合した。得られた沈澱を10cmディ
ッシュ中のCHO−DUKX−B11細胞に重層し、室温で30分
放置した。次に10%ウシ胎児血清(FBS)を含むリ
ボおよびデオキシリボヌクレオチド含有MEM−ALP
HA(MEM−α+)培地8mlを細胞層に加え、CO2
ンキュベーター中で4〜6時間培養した。細胞を10%
グリセロールで室温3分間処理した後、10%FBSを
含むMEM−α+培地で2日間培養した。次に10%透
析FBSを含むリボおよびデオキシリボヌクレオチド不
含MEM−ALPHA(MEM−α-)培地中にまき直
して形質転換株を選択した。ヒトMP52の産生は(5)
で記述するウェスタンブロッティング分析により検定し
た。
【0019】さらにヒトMP52産生細胞株の培地中に
MTXを加え、その濃度を順次上げることにより、MP
52遺伝子が増幅した細胞株を選択した。MTX濃度4
00nMで、種々の分子量の前駆体ヒトMP52二量体お
よび成熟型ヒトMP52二量体を産生する細胞株MC−
2が得られた。この細胞株MC−2は1995年6月2
1日付けで通商産業省工業技術院生命工学工業技術研究
所に寄託番号FERMBP−5142として寄託され
た。
【0020】(4)ヒト分泌型フリン変異体発現ベクター
を、ヒトMP52産生CHO細胞株MC−2へ導入する
ことよる、ヒトMP52とヒト分泌型フリン変異体の共
発現細胞株の樹立 種々の前駆体ヒトMP52二量体および成熟型MP52
二量体を産生しているCHO細胞株MC−2に、ヒト分
泌型フリン変異体発現ベクターpDfurpRC/CMVをリン酸
カルシウムDNA共沈法により導入し、形質転換細胞を
333μg/mlG418および400nM MTX存在下で
選択することにより、ヒトMP52およびヒト分泌型フ
リン変異体の共発現細胞株を樹立した。
【0021】pDfurpRC/CMV(4.8μg)を用いて、実施
例1(2)と同様の方法でリン酸カルシウムDNA共沈澱
を作製し、10cmディッシュ中のMC−2細胞に重層
し、室温で30分放置した。次に10%FBSを含むリ
ボおよびデオキシリボヌクレオチド不含MEM−ALPHA(M
EM−α-)培地8mlを細胞層に加え、CO2インキュベ
ーター中で4〜6時間培養した。細胞を10%グリセロ
ールで室温3分間処理した後、10%FBSを含むME
M−α-培地で2日間培養した。次に、10%FBS、
400nM MTXおよび333μg/ml G418を含む
MEM−α-培地中に細胞をまき直して形質転換株を選
択した。ヒトMP52の産生は次の(5)で記述したウェ
スタンブロッティング分析により検定した。また、ヒト
分泌型フリン変異体の産生は(6)で記述する酵素活性測
定法により検定した。得られたヒトMP52とヒト分泌
型フリン変異体の共発現細胞株の1つの無血清培養上清
を毎日培地交換を行い回収された培養上清を還元条件下
でSDS−ポリアクリルアミド電気泳動し、ウェスタン
ブロッティング分析を行った結果の写真を図3に示す。
各レーンに培養上清0.5μl分が流されている。レーン
1は1日目、レーン2は2日目、レーン3は3日目の培
養上清である。成熟型MP52単量体のバンドを矢印で
示す。培養上清中で分子量の大きな前駆体MP52は検
出されず、すべてのMP52は分子量約15Kのペプチ
ドで、それは成熟型MP52の単量体に相当していた。
このペプチドは非還元条件下での分析で、分子量約28
Kの成熟型MP52二量体を形成していた。また、生産
量は、共発現細胞株ではMP52発現細胞株MC−2の
約3〜8倍で約8μg/ml/24時間であった。以上よ
り、ヒトMP52とヒト分泌型フリン変異体の共発現系
を用いることにより、成熟型MP52二量体のみを、こ
れまでの方法よりも大量に産生する細胞株を樹立するこ
とに初めて成功した。
【0022】(5)培養上清中のヒトMP52のウェスタ
ンブロッティングによる検出 培養上清液をSDS−ポリアクリルアミドゲル電気泳動
(15〜25%ポリアクリルアミド勾配ゲル、第一化学)に
より分離し、次に蛋白質をPVDF膜(ClearBlot Memb
rane-P, ATTO)に転写した。膜をBlock Ace(大日本製
薬)で1時間ブロックし、トリス緩衝食塩水(TBS)
ですすぎ、次にヒトMP52に対するニワトリ抗体10
μg/mlで1晩処理した。膜を0.1%Tween 20を含
むTBS(TTBS)で洗った後、アルカリ性フォスフ
ァターゼーウサギ抗ニワトリIgG複合体(Sigma A917
1)で処理した。膜をTTBSで洗い、アルカリ性フォ
スファターゼ基質キット(BIO−RAD)によりMP52に
相当するバンドを可視化した。
【0023】(6)培養上清中のヒト分泌型フリン変異体
の活性の検出 培養上清液20μlに30μlの精製水と200μlの蛍
光基質溶液、すなわち100μM Boc−Arg−Arg−Val−
Arg−MCA(蛋白工学研究所より購入)と1.25mM CaCl
2を含む125mM MES/NaOH(pH7.0)を加え37℃で
10分間加温し、遊離されてきた蛍光物質AMCを励起
波長380nm蛍光波長450nmにより測定した。フリン
の活性の単位として、1分間に1pmolのAMCを遊離す
る活性を1ユニット(U)と定義した。
【0024】(7)ヒト分泌型フリン変異体と共発現する
ことにより産生された成熟型MP52の精製およびN末
端アミノ酸配列分析 ヒトMP52とヒト分泌型フリン変異体の共発現細胞株
の無血清培養上清に10分の1容の0.2Mリン酸ナト
リウム緩衝液(pH6.0)を混和し、50mM NaClを含む
20mMリン酸ナトリウム緩衝液(pH6.0)で平衡化し
たHi Trap SF (1ml, Pharmacia)にかけ、同緩衝液で
洗浄後、蛋白質を6Mグアニジン塩酸を含む0.1Mリ
ン酸ナトリウム緩衝液(pH6.0)で溶出した。溶出液
を逆相HPLCカラムResource RPC(3ml,
Pharmacia)にかけ、蛋白質を25〜55%アセトニト
リルで溶出した。溶出された成熟型MP52を含むフラ
クションは、パルス液ガス相シークエンサー(Applied
Biosystems model 476)によるN末端アミノ酸配列分析
にかけた。結果を表1に示す。
【0025】
【表1】 サイクル アミノ酸配列1 (pmol) アミノ酸配列2 (pmol) 1 Arg 11.95 Ala 25.51 2 Ala 28.75 Pro 14.75 3 Pro 17.55 Leu 18.07 4 Leu 16.47 Ala 14.46 5 Ala 16.99 Thr 5.02 6 Thr 7.15 Arg 7.38 7 Arg 9.21 Gln 9.08 8 Gln 9.54 Gly 13.23 9 Gly 11.29 Lys 5.29 10 Lys 8.04 Arg 6.52 表1より、アミノ酸配列1は配列表の配列番号6のAr
g354から、アミノ酸配列2はAla355からに由
来し、そのモル比は約1:1と考えられた。
【0026】実施例2 ヒト分泌型フリン変異体によるヒトMP52の前駆体二
量体から成熟型二量体への変換 (1)ヒト分泌型フリン変異体を産生するCHO細胞株の
樹立 Behringwerke社のDr. Zettlmeisslから提供されたCHO−
DUKX−B11細胞に、実施例1(1)で示したヒト分泌型フ
リン変異体発現ベクターpDfurpRC/CMVをリン酸カルシ
ウムDNA共沈法により導入し、形質転換細胞をG41
8存在下で選択し、ヒト分泌型フリン変異体高発現株を
樹立した。
【0027】実施例1(3)に述べた方法に従いpDfurpRC
/CMVとリン酸カルシウムの共沈澱を作製し、10cmデ
ィッシュ中のCHO−DUKX−B11細胞に重層し、室温で30
分放置した。次に10%FBSを含むリボおよびデオキ
シリボヌクレオチド含有MEM−ALPHA(MEM−
α+)培地8mlを細胞層に加え、CO2インキュベーター
中で4〜6時間培養した。細胞を10%グリセロールで
室温3分間処理した後、10% FBSおよび400μg
/ml G418を含むMEM−α+培地中に細胞をまき直
して形質転換株を選択した。ヒト分泌型フリン変異体を
産生する細胞株は実施例1(6)で記述した酵素活性測定
法により検定し、フリン活性として500〜1000U
/24時間産生する細胞株を得た。
【0028】(2)ヒト分泌型フリン変異体によるヒト前
駆体MP52二量体の成熟型への変換 ヒトMP52産生CHO細胞株MC−2の無血清培養上
清(前駆体および成熟型MP52二量体を含む)に、ヒ
ト分泌型フリン変異体発現細胞株の無血清培養上清(1
000U/ml)を種々の割合で混合し、37℃で一晩加
温した。反応後、実施例1(5)に記述したウェスタンブ
ロッティング分析を還元条件下で行い、前駆体MP52
の成熟型への変換を検定した。この結果の写真を図4に
示す。レーン1〜5にはMC−2の培養上清1μl分と
種々の容量のヒト分泌型フリン変異体発現細胞株の培養
上清の混合液がそれぞれ流されている。ヒト分泌型フリ
ン変異体の最終濃度はそれぞれレーン1は0U/ml、レ
ーン2は50U/ml、レーン3は100U/ml、レーン
4は200U/ml、レーン5は400U/mlである。前
駆体MP52単量体のバンドを矢印AおよびBで、成熟
型MP52単量体のバンドを矢印Cで示す。図4に示す
ように、ヒト分泌型フリン変異体発現細胞株の培養上清
を、最終活性濃度として200U/ml以上加えると、M
P52はすべて成熟型に変換されていた。その結果、成
熟型MP52二量体が約3倍に増加していた。
【0029】
【発明の効果】従来、成熟型骨誘導因子は、動物細胞に
より生成された骨誘導因子の種々な分子量の二量体の混
合物から分離することにより得られていたが、成熟型骨
誘導因子を選択的に大量に産生させたり、上記混合物か
ら効率よく成熟型骨誘導因子を分離する技術が開発され
ていないため、成熟型骨誘導因子を得ることは困難であ
った。しかるに本発明の方法によれば、骨誘導因子前駆
体から成熟型骨誘導因子を製造することができるので、
成熟型骨誘導因子を大量に得ることが容易である。さら
に、本発明の方法によって得られる成熟型骨誘導因子
は、実質的に単一な分子量のペプチドからなる純度の高
い物質であるので、特に医薬として用いるのに適してい
る。
【0030】
【配列表】
配列番号:1 配列の長さ:4180 配列の型:アミノ酸 鎖の数:二本鎖 トポロジー:直線状 配列の種類:ペプチド フラグメント型: 起源: 生物名:ヒト(homo sapiens) 組織の種類:ヒト肝細胞ガン 配列の特徴: 存在位置: 他の情報:プロセッシング酵素フリン 配列: GCGGGGAAGC AGCAGCGGCC AGGATGAATC CCAGGTGCTC TGGAGCTGGA TGGTGAAGGT 60 CGGCACTCTT CACCCTCCCG AGCCCTGCCC GTCTCGGCCC CATGCCCCCA CCAGTCAGCC 120 CCGGGCCACA GGCAGTGAGC AGGCACCTGG GAGCCGAGGC CCTAAGACCA GGCCAAGGAG 180 ACGGGCGCTC CAGGGTCCCA GCCACCTGTC CCCCCC ATG GAG CTG AGG CCC TGG 234 Met Glu Leu Arg Pro Trp 1 5 TTG CTA TGG GTG GTA GCA GCA ACA GGA ACC TTG GTC CTG CTA GCA GCT 282 Leu Leu Trp Val Val Ala Ala Thr Gly Thr Leu Val Leu Leu Ala Ala 10 15 20 GAT GCT CAG GGC CAG AAG GTC TTC ACC AAC ACG TGG GCT GTG CGC ATC 330 Asp Ala Gln Gly Gln Lys Val Phe Thr Asn Thr Trp Ala Val Arg Ile 25 30 35 CCT GGA GGC CCA GCG GTG GCC AAC AGT GTG GCA CGG AAG CAT GGG TTC 378 Pro Gly Gly Pro Ala Val Ala Asn Ser Val Ala Arg Lys His Gly Phe 40 45 50 CTC AAC CTG GGC CAG ATC TTC GGG GAC TAT TAC CAC TTC TGG CAT CGA 426 Leu Asn Leu Gly Gln Ile Phe Gly Asp Tyr Tyr His Phe Trp His Arg 55 60 65 70 GGA GTG ACG AAG CGG TCC CTG TCG CCT CAC CGC CCG CGG CAC AGC CGG 474 Gly Val Thr Lys Arg Ser Leu Ser Pro His Arg Pro Arg His Ser Arg 75 80 85 CTG CAG AGG GAG CCT CAA GTA CAG TGG CTG GAA CAG CAG GTG GCA AAG 522 Leu Gln Arg Glu Pro Gln Val Gln Trp Leu Glu Gln Gln Val Ala Lys 90 95 100 CGA CGG ACT AAA CGG GAC GTG TAC CAG GAG CCC ACA GAC CCC AAG TTT 570 Arg Arg Thr Lys Arg Asp Val Tyr Gln Glu Pro Thr Asp Pro Lys Phe 105 110 115 CCT CAG CAG TGG TAC CTG TCT GGT GTC ACT CAG CGG GAC CTG AAT GTG 618 Pro Gln Gln Trp Tyr Leu Ser Gly Val Thr Gln Arg Asp Leu Asn Val 120 125 130 AAG GCG GCC TGG GCG CAG GGC TAC ACA GGG CAC GGC ATT GTG GTC TCC 666 Lys Ala Ala Trp Ala Gln Gly Tyr Thr Gly His Gly Ile Val Val Ser 135 140 145 150 ATT CTG GAC GAT GGC ATC GAG AAG AAC CAC CCG GAC TTG GCA GGC AAT 714 Ile Leu Asp Asp Gly Ile Glu Lys Asn His Pro Asp Leu Ala Gly Asn 155 160 165 TAT GAT CCT GGG GCC AGT TTT GAT GTC AAT GAC CAG GAC CCT GAC CCC 762 Tyr Asp Pro Gly Ala Ser Phe Asp Val Asn Asp Gln Asp Pro Asp Pro 170 175 180 CAG CCT CGG TAC ACA CAG ATG AAT GAC AAC AGG CAC GGC ACA CGG TGT 810 Gln Pro Arg Tyr Thr Gln Met Asn Asp Asn Arg His Gly Thr Arg Cys 185 190 195 GCG GGG GAA GTG GCT GCG GTG GCC AAC AAC GGT GTC TGT GGT GTA GGT 858 Ala Gly Glu Val Ala Ala Val Ala Asn Asn Gly Val Cys Gly Val Gly 200 205 210 GTG GCC TAC AAC GCC CGC ATT GGA GGG GTG CGC ATG CTG GAT GGC GAG 906 Val Ala Tyr Asn Ala Arg Ile Gly Gly Val Arg Met Leu Asp Gly Glu 215 220 225 230 GTG ACA GAT GCA GTG GAG GCA CGC TCG CTG GGC CTG AAC CCC AAC CAC 954 Val Thr Asp Ala Val Glu Ala Arg Ser Leu Gly Leu Asn Pro Asn His 235 240 245 ATC CAC ATC TAC AGT GCC AGC TGG GGC CCC GAG GAT GAC GGC AAG ACA 1002 Ile His Ile Tyr Ser Ala Ser Trp Gly Pro Glu Asp Asp Gly Lys Thr 250 255 260 GTG GAT GGG CCA GCC CGC CTC GCC GAG GAG GCC TTC TTC CGT GGG GTT 1050 Val Asp Gly Pro Ala Arg Leu Ala Glu Glu Ala Phe Phe Arg Gly Val 265 270 275 AGC CAG GGC CGA GGG GGG CTG GGC TCC ATC TTT GTC TGG GCC TCG GGG 1098 Ser Gln Gly Arg Gly Gly Leu Gly Ser Ile Phe Val Trp Ala Ser Gly 280 285 290 AAC GGG GGC CGG GAA CAT GAC AGC TGC AAC TGC GAC GGC TAC ACC AAC 1146 Asn Gly Gly Arg Glu His Asp Ser Cys Asn Cys Asp Gly Tyr Thr Asn 295 300 305 310 AGT ATC TAC ACG CTG TCC ATC AGC AGC GCC ACG CAG TTT GGC AAC GTG 1194 Ser Ile Tyr Thr Leu Ser Ile Ser Ser Ala Thr Gln Phe Gly Asn Val 315 320 325 CCG TGG TAC AGC GAG GCC TGC TCG TCC ACA CTG GCC ACG ACC TAC AGC 1242 Pro Trp Tyr Ser Glu Ala Cys Ser Ser Thr Leu Ala Thr Thr Tyr Ser 330 335 340 AGT GGC AAC CAG AAT GAG AAG CAG ATC GTG ACG ACT GAC TTG CGG CAG 1290 Ser Gly Asn Gln Asn Glu Lys Gln Ile Val Thr Thr Asp Leu Arg Gln 345 350 355 AAG TGC ACG GAG TCT CAC ACG GGC ACC TCA GCC TCT GCC CCC TTA GCA 1338 Lys Cys Thr Glu Ser His Thr Gly Thr Ser Ala Ser Ala Pro Leu Ala 360 365 370 GCC GGC ATC ATT GCT CTC ACC CTG GAG GCC AAT AAG AAC CTC ACA TGG 1386 Ala Gly Ile Ile Ala Leu Thr Leu Glu Ala Asn Lys Asn Leu Thr Trp 375 380 385 390 CGG GAC ATG CAA CAC CTG GTG GTA CAG ACC TCG AAG CCA GCC CAC CTC 1434 Arg Asp Met Gln His Leu Val Val Gln Thr Ser Lys Pro Ala His Leu 395 400 405 AAT GCC AAC GAC TGG GCC ACC AAT GGT GTG GGC CGG AAA GTG AGC CAC 1482 Asn Ala Asn Asp Trp Ala Thr Asn Gly Val Gly Arg Lys Val Ser His 410 415 420 TCA TAT GGC TAC GGG CTT TTG GAC GCA GGC GCC ATG GTG GCC CTG GCC 1530 Ser Tyr Gly Tyr Gly Leu Leu Asp Ala Gly Ala Met Val Ala Leu Ala 425 430 435 CAG AAT TGG ACC ACA GTG GCC CCC CAG CGG AAG TGC ATC ATC GAC ATC 1578 Gln Asn Trp Thr Thr Val Ala Pro Gln Arg Lys Cys Ile Ile Asp Ile 440 445 450 CTC ACC GAG CCC AAA GAC ATC GGG AAA CGG CTC GAG GTG CGG AAG ACC 1626 Leu Thr Glu Pro Lys Asp Ile Gly Lys Arg Leu Glu Val Arg Lys Thr 455 460 465 470 GTG ACC GCG TGC CTG GGC GAG CCC AAC CAC ATC ACT CGG CTG GAG CAC 1674 Val Thr Ala Cys Leu Gly Glu Pro Asn His Ile Thr Arg Leu Glu His 475 480 485 GCT CAG GCG CGG CTC ACC CTG TCC TAT AAT CGC CGT GGC GAC CTG GCC 1722 Ala Gln Ala Arg Leu Thr Leu Ser Tyr Asn Arg Arg Gly Asp Leu Ala 490 495 500 ATC CAC CTG GTC AGC CCC ATG GGC ACC CGC TCC ACC CTG CTG GCA GCC 1770 Ile His Leu Val Ser Pro Met Gly Thr Arg Ser Thr Leu Leu Ala Ala 505 510 515 AGG CCA CAT GAC TAC TCC GCA GAT GGG TTT AAT GAC TGG GCC TTC ATG 1818 Arg Pro His Asp Tyr Ser Ala Asp Gly Phe Asn Asp Trp Ala Phe Met 520 525 530 ACA ACT CAT TCC TGG GAT GAG GAT CCC TCT GGC GAG TGG GTC CTA GAG 1866 Thr Thr His Ser Trp Asp Glu Asp Pro Ser Gly Glu Trp Val Leu Glu 535 540 545 550 ATT GAA AAC ACC AGC GAA GCC AAC AAC TAT GGG ACG CTG ACC AAG TTC 1914 Ile Glu Asn Thr Ser Glu Ala Asn Asn Tyr Gly Thr Leu Thr Lys Phe 555 560 565 ACC CTC GTA CTC TAT GGC ACC GCC CCT GAG GGG CTG CCC GTA CCT CCA 1962 Thr Leu Val Leu Tyr Gly Thr Ala Pro Glu Gly Leu Pro Val Pro Pro 570 575 580 GAA AGC AGT GGC TGC AAG ACC CTC ACG TCC AGT CAG GCC TGA 2004 Glu Ser Ser Gly Cys Lys Thr Leu Thr Ser Ser Gln Ala *** 585 590 595 GTGGTGTGCG AGGAAGGCTT CTCCCTGCAC CAGAAGAGCT GTGTCCAGCA CTGCCCTCCA 2064 GGCTTCGCCC CCCAAGTCCT CGATACGCAC TATAGCACCG AGAATGACGT GGAGACCATC 2124 CGGGCCAGCG TCTGCGCCCC CTGCCACGCC TCATGTGCCA CATGCCAGGG GCCGGCCCTG 2184 ACAGACTGCC TCAGCTGCCC CAGCCACGCC TCCTTGGACC CTGTGGAGCA GACTTGCTCC 2244 CGGCAAAGCC AGAGCAGCCG AGAGTCCCCG CCACAGCAGC AGCCACCTCG GCTGCCCCCG 2304 GAGGTGGAGG CGGGGCAACG GCTGCGGGCA GGGCTGCTGC CCTCACACCT GCCTGAGGTG 2364 GTGGCCGGCC TCAGCTGCGC CTTCATCGTG CTGGTCTTCG TCACTGTCTT CCTGGTCCTG 2424 CAGCTGCGCT CTGGCTTTAG TTTTCGGGGG GTGAAGGTGT ACACCATGGA CCGTGGCCTC 2484 ATCTCCTACA AGGGGCTGCC CCCTGAAGCC TGGCAGGAGG AGTGCCCGTC TGACTCAGAA 2544 GAGGACGAGG GCCGGGGCGA GAGGACCGCC TTTATCAAAG ACCAGAGCGC CCTCTGATGA 2604 GCCCACTGCC CACCCCCTCA AGCCAATCCC CTCCTTGGGC ACTTTTTAAT TCACCAAAGT 2664 ATTTTTTTAT CTTGGGACTG GGTTTGGACC CCAGCTGGGA GGCAAGAGGG GTGGAGACTG 2724 TTTCCCATCC TACCCTCGGG CCCACCTGGC CACCTGAGGT GGGCCCAGGA CCAGCTGGGG 2784 CGTGGGGAGG GCCGTACCCC ACCCTCAGCA CCCCTTCCAT GTGGAGAAAG GAGTGAAACC 2844 TTTAGGGCAG CTTGCCCCGG CCCCGGCCCC AGCCAGAGTT CCTGCGGAGT GAAGAGGGGC 2904 AGCCCTTGCT TGTTGGGATT CCTGACCCAG GCCGCAGCTC TTGCCCTTCC CTGTCCCTCT 2964 AAAGCAATAA TGGTCCCATC CAGGCAGTCG GGGGCTGGCC TAGGAGATAT CTGAGGGAGG 3024 AGGCCACCTC TCCAAGGGCT TCTGCACCCT CCACCCTGTC CCCCAGCTCT GGTGAGTCTT 3084 GGCGGCAGCA GCCATCATAG GAAGGGACCA AGGCAAGGCA GGTGCCTCCA GGTGTGCACG 3144 TGGCATGTGG CCTGTGGCCT GTGTCCCATG ACCCACCCCT GTGCTCCGTG CCTCCACCAC 3204 CACTGGCCAC CAGGCTGGCG CAGCCAAGGC CGAAGCTCTG GCTGAACCCT GTGCTGGTGT 3264 CCTGACCACC CTCCCCTCTC TTGCACCCGC CTCTCCCGTC AGGGCCCAAG TCCCTGTTTT 3324 CTGAGCCCGG GCTGCCTGGG CTGTTGGCAC TCACAGACCT GGAGCCCCTG GGTGGGTGGT 3384 GGGGAGGGGC GCTGGCCCAG CCGGCCTCTC TGGCCTCCCA CCCGATGCTG CTTTCCCCTG 3444 TGGGGATCTC AGGGGCTGTT TGAGGATATA TTTTCACTTT GTGATTATTT CACTTTAGAT 3504 GCTGATGATT TGTTTTTGTA TTTTTAATGG GGGTAGCAGC TGGACTACCC ACGTTCTCAC 3564 ACCCACCGTC CGCCCTGCTC CTCCCTGGCT GCCCTGGCCC TGAGGTGTGG GGGCTGCAGC 3624 ATGTTGCTGA GGAGTGAGGA ATAGTTGAGC CCCAAGTCCT GAAGAGGCGG GCCAGCCAGG 3684 CGGGCTCAAG GAAAGGGGGT CCCAGTGGGA GGGGCAGGCT GACATCTGTG TTTCAAGTGG 3744 GGCTCGCCAT GCCGGGGGTT CATAGGTCAC TGGCTCTCCA AGTGCCAGAG GTGGGCAGGT 3804 GGTGGCACTG AGCCCCCCCA ACACTGTGCC CTGGTGGAGA AAGCACTGAC CTGTCATGCC 3864 CCCCTCAAAC CTCCTCTTCT GACGTGCCTT TTGCACCCCT CCCATTAGGA CAATCAGTCC 3924 CCTCCCATCT GGGAGTCCCC TTTTCTTTTC TACCCTAGCC ATTCCTGGTA CCCAGCCATC 3984 TGCCCAGGGG TGCCCCCTCC TCTCCCATCC CCCTGCCCTC GTGGCCAGCC CGGCTGGTTT 4044 TGTAAGATAC TGGGTTGGTG CACAGTGATT TTTTTCTTGT AATTTAAACA GGCCCAGCAT 4104 TGCTGGTTCT ATTTAATGGA CATGAGATAA TGTTAGAGGT TTTAAAGTGA TTAAACGTGC 4164 AGACTATGCA AACCAG 4180
【0031】配列番号:2 配列の長さ:29 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状 配列の種類:他の核酸 起源:なし 生物名:なし 株名:なし 配列の特徴:フリンのセンスプライマー3 配列: GCGAAGCTTA AGACCAGGCC AAGGAGACG 29
【0032】配列番号:3 配列の長さ:26 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状 配列の種類:他の核酸 起源:なし 生物名:なし 株名:なし 配列の特徴:フリンのアンチセンスプライマー4 配列: CCTCGCCA TC CAGCATGCGC ACCCCT 26
【0033】配列番号:4 配列の長さ:26 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状 配列の種類:他の核酸 起源:なし 生物名:なし 株名:なし 配列の特徴:フリンのセンスプライマー5 配列: TGGAGGGGTG CGCATGCTGG ATGGCG 26
【0034】配列番号:5 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状 配列の種類:他の核酸 起源:なし 生物名:なし 株名:なし 配列の特徴:フリンのアンチセンスプライマー6 配列: GGCGTCGACG CACACCACTC AGGCCTGACT 30
【0035】配列番号:6 配列の長さ:2703 配列の型:アミノ酸 鎖の数:二本鎖 トポロジー:直線状 配列の種類:ペプチド フラグメント型: 起源: 生物名:ヒト(homo sapiens) 組織の種類:ヒト胎児 配列の特徴: 存在位置: 他の情報:骨誘導因子MP52 配列: CCATGGCCTC GAAAGGGCAG CGGTGATTTT TTTCACATAA ATATATCGCA CTTAAATGAG 60 TTTAGACAGC ATGACATCAG AGAGTAATTA AATTGGTTTG GGTTGGAATT CCGTTTCCAA 120 TTCCTGAGTT CAGGTTTGTA AAAGATTTTT CTGAGCACCT GCAGGCCTGT GAGTGTGTGT 180 GTGTGTGTGT GTGTGTGTGT GTGTGTGTGA AGTATTTTCA CTGGAAAGGA TTCAAAACTA 240 GGGGGAAAAA AAAACTGGAG CACACAGGCA GCATTACGCC ATTCTTCCTT CTTGGAAAAA 300 TCCCTCAGCC TTATACAAGC CTCCTTCAAG CCCTCAGTCA GTTGTGCAGG AGAAAGGGGG 360 CGGTTGGCTT TCTCCTTTCA AGAACGAGTT ATTTTCAGCT GCTGACTGGA GACGGTGCAC 420 GTCTGGATAC GAGAGCATTT CCACTATGGG ACTGGATACA AACACACACC CGGCAGACTT 480 CAAGAGTCTC AGACTGAGGA GAAAGCCTTT CCTTCTGCTG CTACTGCTGC TGCCGCTGCT 540 TTTGAAAGTC CACTCCTTTC ATGGTTTTTC CTGCCAAACC AGAGGCACCT TTGCTGCTGC 600 CGCTGTTCTC TTTGGTGTCA TTCAGCGGCT GGCCAGAGG ATG AGA CTC CCC AAA 654 Met Arg Leu Pro Lys -25 CTC CTC ACT TTC TTG CTT TGG TAC CTG GCT TGG CTG GAC CTG GAA TTC 702 Leu Leu Thr Phe Leu Leu Trp Tyr Leu Ala Trp Leu Asp Leu Glu Phe -20 -15 -10 ATC TGC ACT GTG TTG GGT GCC CCT GAC TTG GGC CAG AGA CCC CAG GGG 750 Ile Cys Thr Val Leu Gly Ala Pro Asp Leu Gly Gln Arg Pro Gln Gly -5 1 5 10 ACC AGG CCA GGA TTG GCC AAA GCA GAG GCC AAG GAG AGG CCC CCC CTG 798 Thr Arg Pro Gly Leu Ala Lys Ala Glu Ala Lys Glu Arg Pro Pro Leu 15 20 25 GCC CGG AAC GTC TTC AGG CCA GGG GGT CAC AGC TAT GGT GGG GGG GCC 846 Ala Arg Asn Val Phe Arg Pro Gly Gly His Ser Tyr Gly Gly Gly Ala 30 35 40 ACC AAT GCC AAT GCC AGG GCA AAG GGA GGC ACC GGG CAG ACA GGA GGC 894 Thr Asn Ala Asn Ala Arg Ala Lys Gly Gly Thr Gly Gln Thr Gly Gly 45 50 55 CTG ACA CAG CCC AAG AAG GAT GAA CCC AAA AAG CTG CCC CCC AGA CCG 942 Leu Thr Gln Pro Lys Lys Asp Glu Pro Lys Lys Leu Pro Pro Arg Pro 60 65 70 GGC GGC CCT GAA CCC AAG CCA GGA CAC CCT CCC CAA ACA AGG CAG GCT 990 Gly Gly Pro Glu Pro Lys Pro Gly His Pro Pro Gln Thr Arg Gln Ala 75 80 85 90 ACA GCC CGG ACT GTG ACC CCA AAA GGA CAG CTT CCC GGA GGC AAG GCA 1038 Thr Ala Arg Thr Val Thr Pro Lys Gly Gln Leu Pro Gly Gly Lys Ala 95 100 105 CCC CCA AAA GCA GGA TCT GTC CCC AGC TCC TTC CTG CTG AAG AAG GCC 1086 Pro Pro Lys Ala Gly Ser Val Pro Ser Ser Phe Leu Leu Lys Lys Ala 110 115 120 AGG GAG CCC GGG CCC CCA CGA GAG CCC AAG GAG CCG TTT CGC CCA CCC 1134 Arg Glu Pro Gly Pro Pro Arg Glu Pro Lys Glu Pro Phe Arg Pro Pro 125 130 135 CCC ATC ACA CCC CAC GAG TAC ATG CTC TCG CTG TAC AGG ACG CTG TCC 1182 Pro Ile Thr Pro His Glu Tyr Met Leu Ser Leu Tyr Arg Thr Leu Ser 140 145 150 GAT GCT GAC AGA AAG GGA GGC AAC AGC AGC GTG AAG TTG GAG GCT GGC 1230 Asp Ala Asp Arg Lys Gly Gly Asn Ser Ser Val Lys Leu Glu Ala Gly 155 160 165 170 CTG GCC AAC ACC ATC ACC AGC TTT ATT GAC AAA GGG CAA GAT GAC CGA 1278 Leu Ala Asn Thr Ile Thr Ser Phe Ile Asp Lys Gly Gln Asp Asp Arg 175 180 185 GGT CCC GTG GTC AGG AAG CAG AGG TAC GTG TTT GAC ATT AGT GCC CTG 1326 Gly Pro Val Val Arg Lys Gln Arg Tyr Val Phe Asp Ile Ser Ala Leu 190 195 200 GAG AAG GAT GGG CTG CTG GGG GCC GAG CTG CGG ATC TTG CGG AAG AAG 1374 Glu Lys Asp Gly Leu Leu Gly Ala Glu Leu Arg Ile Leu Arg Lys Lys 205 210 215 CCC TCG GAC ACG GCC AAG CCA GCG GCC CCC GGA GGC GGG CGG GCT GCC 1422 Pro Ser Asp Thr Ala Lys Pro Ala Ala Pro Gly Gly Gly Arg Ala Ala 220 225 230 CAG CTG AAG CTG TCC AGC TGC CCC AGC GGC CGG CAG CCG GCC TCC TTG 1470 Gln Leu Lys Leu Ser Ser Cys Pro Ser Gly Arg Gln Pro Ala Ser Leu 235 240 245 250 CTG GAT GTG CGC TCC GTG CCA GGC CTG GAC GGA TCT GGC TGG GAG GTG 1518 Leu Asp Val Arg Ser Val Pro Gly Leu Asp Gly Ser Gly Trp Glu Val 255 260 265 TTC GAC ATC TGG AAG CTC TTC CGA AAC TTT AAG AAC TCG GCC CAG CTG 1566 Phe Asp Ile Trp Lys Leu Phe Arg Asn Phe Lys Asn Ser Ala Gln Leu 270 275 280 TGC CTG GAG CTG GAG GCC TGG GAA CGG GGC AGG GCC GTG GAC CTC CGT 1614 Cys Leu Glu Leu Glu Ala Trp Glu Arg Gly Arg Ala Val Asp Leu Arg 285 290 295 GGC CTG GGC TTC GAC CGC GCC GCC CGG CAG GTC CAC GAG AAG GCC CTG 1662 Gly Leu Gly Phe Asp Arg Ala Ala Arg Gln Val His Glu Lys Ala Leu 300 305 310 TTC CTG GTG TTT GGC CGC ACC AAG AAA CGG GAC CTG TTC TTT AAT GAG 1710 Phe Leu Val Phe Gly Arg Thr Lys Lys Arg Asp Leu Phe Phe Asn Glu 315 320 325 330 ATT AAG GCC CGC TCT GGC CAG GAC GAT AAG ACC GTG TAT GAG TAC CTG 1758 Ile Lys Ala Arg Ser Gly Gln Asp Asp Lys Thr Val Tyr Glu Tyr Leu 335 340 345 TTC AGC CAG CGG CGA AAA CGG CGG GCC CCA CTG GCC ACT CGC CAG GGC 1806 Phe Ser Gln Arg Arg Lys Arg Arg Ala Pro Leu Ala Thr Arg Gln Gly 350 355 360 AAG CGA CCC AGC AAG AAC CTT AAG GCT CGC TGC AGT CGG AAG GCA CTG 1854 Lys Arg Pro Ser Lys Asn Leu Lys Ala Arg Cys Ser Arg Lys Ala Leu 365 370 375 CAT GTC AAC TTC AAG GAC ATG GGC TGG GAC GAC TGG ATC ATC GCA CCC 1902 His Val Asn Phe Lys Asp Met Gly Trp Asp Asp Trp Ile Ile Ala Pro 380 385 390 CTT GAG TAC GAG GCT TTC CAC TGC GAG GGG CTG TGC GAG TTC CCA TTG 1950 Leu Glu Tyr Glu Ala Phe His Cys Glu Gly Leu Cys Glu Phe Pro Leu 395 400 405 410 CGC TCC CAC CTG GAG CCC ACG AAT CAT GCA GTC ATC CAG ACC CTG ATG 1998 Arg Ser His Leu Glu Pro Thr Asn His Ala Val Ile Gln Thr Leu Met 415 420 425 AAC TCC ATG GAC CCC GAG TCC ACA CCA CCC ACC TGC TGT GTG CCC ACG 2046 Asn Ser Met Asp Pro Glu Ser Thr Pro Pro Thr Cys Cys Val Pro Thr 430 435 440 CGG CTG AGT CCC ATC AGC ATC CTC TTC ATT GAC TCT GCC AAC AAC GTG 2094 Arg Leu Ser Pro Ile Ser Ile Leu Phe Ile Asp Ser Ala Asn Asn Val 445 450 455 GTG TAT AAG CAG TAT GAG GAC ATG GTC GTG GAG TCG TGT GGC TGC AGG 2142 Val Tyr Lys Gln Tyr Glu Asp Met Val Val Glu Ser Cys Gly Cys Arg 460 465 470 TAG CAGCACTGGC CCTCTGTCTT CCTGGGTGGC ACATCCCAAG AGCCCCTTCC 2195 *** 475 TGCACTCCTG GAATCACAGA GGGGTCAGGA AGCTGTGGCA GGAGCATCTA CACAGCTTGG 2255 GTGAAAGGGG ATTCCAATAA GCTTGCTCGC TCTCTGAGTG TGACTTGGGC TAAAGGCCCC 2315 CTTTTATCCA CAAGTTCCCC TGGCTGAGGA TTGCTGCCCG TCTGCTGATG TGACCAGTGG 2375 CAGGCACAGG TCCAGGGAGA CAGACTCTGA ATGGGACTGA GTCCCAGGAA ACAGTGCTTT 2435 CCGATGAGAC TCAGCCCACC ATTTCTCCTC ACCTGGGCCT TCTCAGCCTC TGGACTCTCC 2495 TAAGCACCTC TCAGGAGAGC CACAGGTGCC ACTGCCTCCT CAAATCACAT TTGTGCCTGG 2555 TGACTTCCTG TCCCTGGGAC AGTTGAGAAG CTGACTGGGC AAGAGTGGGA GAGAAGAGGA 2615 GAGGGCTTGG ATAGAGTTGA GGAGTGTGAG GCTGTTAGAC TGTTAGATTT AAATGTATAT 2675 TGATGAGATA AAAAGCAAAA CTGTGCCT 2703
【図面の簡単な説明】
【図1】ヒト分泌型フリン変異体の発現ベクター pDfur
pRC/CMV(7.2kb)のプラスミドマップである。
【図2】ヒトMP52発現ベクターpMSS99(5.0 kb)
のプラスミドマップである。
【図3】成熟型ヒトMP52二量体とヒト分泌型フリン
変異体の共発現細胞株の無血清培養上清の還元条件下で
のウェスタンブロッティング分析図の写真である。
【図4】種々の前駆体ヒトMP52二量体が、ヒト分泌
型フリン変異体を作用させることにより、成熟型MP5
2に変換されることを示す還元条件下でのウェスタンブ
ロッティング分析図の写真である。
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 21/06 9282−4B C12N 15/00 ZNAA //(C12N 9/64 C12R 1:91) (C12P 21/02 C12R 1:91)

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 骨誘導因子前駆体にプロセシング酵素を
    作用させることを特徴とする成熟型骨誘導因子の製造方
    法。
  2. 【請求項2】 骨誘導因子前駆体の発現ベクターおよび
    プロセシング酵素の発現ベクターを動物細胞株に導入
    し、該細胞株を培養して成熟型骨誘導因子を産生せし
    め、培養液から成熟型骨誘導因子を分離することを特徴
    とする成熟型骨誘導因子の製造方法。
  3. 【請求項3】 成熟型骨誘導因子が成熟型のMP52、
    BMP−2、BMP−4、BMP−6またはBMP−7
    である請求項1記載の製造方法。
  4. 【請求項4】 プロセシング酵素がフリンである請求項
    1ないし請求項3のいずれかの項に記載の製造方法。
  5. 【請求項5】 プロセシング酵素がフリンの全アミノ酸
    配列を有するものである請求項1ないし請求項4のいず
    れかの項に記載の製造方法。
  6. 【請求項6】 プロセシング酵素が分泌型フリン変異体
    である請求項1ないし請求項4のいずれかの項に記載の
    製造方法。
  7. 【請求項7】 ヒトMP52前駆体の発現ベクターおよ
    び分泌型フリン変異体の発現ベクターを動物細胞株に導
    入し、該細胞株を培養して成熟型骨誘導因子を産生せし
    め、培養液から成熟型骨誘導因子を分離することを特徴
    とする請求項1ないし請求項5に記載の製造方法。
  8. 【請求項8】 骨誘導因子前駆体を含有する溶液にプロ
    セシング酵素を含有する溶液を加え、インキュベートす
    ることを特徴とする成熟型骨誘導因子の製造方法。
JP8130618A 1996-04-30 1996-04-30 成熟型骨誘導因子の製造方法 Pending JPH09295945A (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP8130618A JPH09295945A (ja) 1996-04-30 1996-04-30 成熟型骨誘導因子の製造方法
CA002253233A CA2253233A1 (en) 1996-04-30 1997-04-28 Process for producing maturation bone morphogenetic protein
AU24084/97A AU2408497A (en) 1996-04-30 1997-04-28 Process for producing maturation bone morphogenetic protein
CZ983449A CZ344998A3 (cs) 1996-04-30 1997-04-28 Způsob výroby morfogenetického proteinu zrání kosti
EP97919717A EP0915168A4 (en) 1996-04-30 1997-04-28 METHOD FOR PRODUCING BONE MATURATION-SPECIFIC, MORPHOGENETIC PROTEIN
PCT/JP1997/001474 WO1997041250A1 (fr) 1996-04-30 1997-04-28 Procede pour produire une proteine morphogenetique osseuse de maturation
PL97329610A PL329610A1 (en) 1996-04-30 1997-04-28 Method of obtaining mature morphogenetic bone protein
IL12676097A IL126760A0 (en) 1996-04-30 1997-04-28 Process for producing maturation bone morphogenetic protein
KR1019980708701A KR20000065110A (ko) 1996-04-30 1997-04-28 성숙형뼈유도인자의제조방법
NO985041A NO985041D0 (no) 1996-04-30 1998-10-29 FremgangsmÕte for fremstilling av modent benmorfogenetisk protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8130618A JPH09295945A (ja) 1996-04-30 1996-04-30 成熟型骨誘導因子の製造方法

Publications (1)

Publication Number Publication Date
JPH09295945A true JPH09295945A (ja) 1997-11-18

Family

ID=15038542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8130618A Pending JPH09295945A (ja) 1996-04-30 1996-04-30 成熟型骨誘導因子の製造方法

Country Status (10)

Country Link
EP (1) EP0915168A4 (ja)
JP (1) JPH09295945A (ja)
KR (1) KR20000065110A (ja)
AU (1) AU2408497A (ja)
CA (1) CA2253233A1 (ja)
CZ (1) CZ344998A3 (ja)
IL (1) IL126760A0 (ja)
NO (1) NO985041D0 (ja)
PL (1) PL329610A1 (ja)
WO (1) WO1997041250A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507929A (ja) * 2012-02-14 2015-03-16 ポートラ ファーマシューティカルズ, インコーポレイテッド 第Xa因子阻害剤に対する組み換え拮抗剤を製作するためのプロセス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074620A1 (en) * 1999-08-06 2001-02-07 HyGene AG Monomeric protein of the TGF-beta family
US6596526B1 (en) * 2000-06-09 2003-07-22 Baxter Aktiengesellschaft Furin polypeptides with improved characteristics

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992009698A1 (en) * 1990-11-26 1992-06-11 Genetics Institute, Inc. Expression of pace in host cells and methods of use thereof
ES2160591T3 (es) * 1991-12-06 2001-11-16 Genentech Inc Celulas transformadas por convertasas prohormonales.
IL110589A0 (en) * 1993-08-10 1994-11-11 Bioph Biotech Entw Pharm Gmbh Growth/differentiation factor of the TGF- beta family

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507929A (ja) * 2012-02-14 2015-03-16 ポートラ ファーマシューティカルズ, インコーポレイテッド 第Xa因子阻害剤に対する組み換え拮抗剤を製作するためのプロセス

Also Published As

Publication number Publication date
IL126760A0 (en) 1999-08-17
AU2408497A (en) 1997-11-19
NO985041L (no) 1998-10-29
CA2253233A1 (en) 1997-11-06
EP0915168A1 (en) 1999-05-12
CZ344998A3 (cs) 1999-03-17
WO1997041250A1 (fr) 1997-11-06
KR20000065110A (ko) 2000-11-06
EP0915168A4 (en) 1999-11-17
NO985041D0 (no) 1998-10-29
PL329610A1 (en) 1999-03-29

Similar Documents

Publication Publication Date Title
KR100214740B1 (ko) 골유도조성물
JP2740417B2 (ja) ヒト神経成長因子の遺伝子組換えによる調製法
US6569434B1 (en) Vascular endothelial cell growth factor C subunit
US5221620A (en) Cloning and expression of transforming growth factor β2
AU729880C (en) Recombinant vascular endothelial cell growth factor D (VEGF-D)
JPH0724584B2 (ja) 卵胞刺激ホルモン
CA2181431A1 (en) Haemopoietic maturation factor
WO1988001297A1 (en) Expression of g-csf and muteins thereof
JPH07188294A (ja) 新規なポリペプチド、その製造方法、そのポリペプチドをコードするdna、そのdnaからなるベクター、そのベクターで形質転換された宿主細胞、そのポリペプチドの抗体、およびそのポリペプチドまたは抗体を含有する薬学的組成物
AU669331B2 (en) TGF-beta 1/beta 2: a novel chimeric transforming growth factor-beta
JPH06502538A (ja) 上皮細胞成長因子(egf)との相同性をもつヘパリン結合性マイトジェン
AU634733B2 (en) Tgf-beta 1/beta 2: a novel chimeric transforming growth factor-beta
AU704364B2 (en) New protein HMW human MP52
Madisen et al. High-level expression of TGF-β2 and the TGF-β2 (414) precursor in Chinese hamster ovary cells
JPH09295945A (ja) 成熟型骨誘導因子の製造方法
HU197939B (en) Process for producing deoxyribonucleic acid, or its precursor, determining human growth hormone releasing factor
CA2227204A1 (en) Human mp52 arg protein
MXPA98008915A (en) Process to produce the bone morphogenetic protein by madurac
IE60918B1 (en) Cloning and expression of transforming growth factor beta 2
AU783059B2 (en) Recombinant sequence, its preparation and use
KR100247216B1 (ko) 골 유도 조성물
IL103749A (en) Method for production of transforming growth factor beta 2
CN1224467A (zh) 生产成熟型骨形态发生蛋白的方法
JP2000034298A (ja) 骨誘導因子の精製方法