JPH0929407A - Continuous caster - Google Patents

Continuous caster

Info

Publication number
JPH0929407A
JPH0929407A JP18874595A JP18874595A JPH0929407A JP H0929407 A JPH0929407 A JP H0929407A JP 18874595 A JP18874595 A JP 18874595A JP 18874595 A JP18874595 A JP 18874595A JP H0929407 A JPH0929407 A JP H0929407A
Authority
JP
Japan
Prior art keywords
mold
solidified shell
cooling water
shell thickness
breakout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18874595A
Other languages
Japanese (ja)
Other versions
JP3188148B2 (en
Inventor
Michio Yamauchi
道雄 山内
Yasuo Fujikawa
安生 藤川
Osamu Nishimura
統 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18874595A priority Critical patent/JP3188148B2/en
Publication of JPH0929407A publication Critical patent/JPH0929407A/en
Application granted granted Critical
Publication of JP3188148B2 publication Critical patent/JP3188148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alarming system which is applied to a continuous caster of a steel and predicts the danger of developing breakout. SOLUTION: In the continuous caster for continuously casting molten steel 12 in a mold 1, a cooling water quantity F, inlet cooling water temp. T1 and outlet cooling water temp. T2 of the mold 1 and drawing velocity V of a cast slab 14 are always measured and inputted to a computer 10. Together with this, an average solidified shell thickness (da) formed in the mold is obtd. through the operation by the equation da=F(T2 -T1 )/k.v based on the precalculated factor K from a casting condition of casting size, kind of steel, etc., and physical value of the steel. Further, the min. solidified shell thickness is obtd. from an unevenness and compared with a breakout developing limit solidified thickness. At the time of becoming near the breakout developing limit solidified thickness, the alarm for the increase of the danger of developing the breakout is sounded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は鋼の連続鋳造機に適
用されるもので、ブレークアウト発生の危険性を事前に
予知する警報システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a steel continuous casting machine and relates to an alarm system for predicting a risk of breakout occurrence in advance.

【0002】[0002]

【従来の技術】鋼の連続鋳造機において、モールド内に
おいて凝固シェル厚の薄い部分が破れるいわゆるブレー
クアウト(以下「B.O」という)事故の予知と、その
防止技術の確立は永遠の課題である。特に最近のビレッ
ト用連鋳機では高生産性を目的とした高速鋳造化の要求
が高くなっているが、鋳造速度が早くなるほど、鋳型内
で形成される凝固シェル厚さが薄くなり、B.Oの発生
する危険性が大きくなるので、B.O事故の予知と防止
対策が必要になる。
2. Description of the Related Art In a continuous casting machine for steel, it is an eternal task to predict a so-called breakout (hereinafter referred to as "BO") accident in which a thin solidified shell portion is broken in a mold and to establish a prevention technique therefor. is there. Particularly in the recent continuous casting machine for billets, there is an increasing demand for high-speed casting for the purpose of high productivity, but as the casting speed increases, the thickness of the solidified shell formed in the mold becomes thinner, and B. Since the risk of occurrence of O increases, B. O Accident prediction and preventive measures are required.

【0003】従来、パウダ鋳造を行うブルーム、スラブ
用連鋳機においては、鋳型内において、潤滑不良によっ
て発生する拘束型のB.Oについては、鋳型内の温度分
布を計測することによる種々のB.O予知、警報技術が
開発され、実用化の段階に入っている。しかし、油潤滑
が主体であるビレット用連鋳機においては、拘束型B.
Oの発生することは稀であり、殆どのB.Oが鋳型内に
おける不均一凝固により鋳型直下で発生するコーナ部の
縦割れが原因である。しかもこの型のB.Oは、鋳込速
度が早くなるほど、鋳型内で形成される平均凝固シェル
厚さが薄くなるため、不均一凝固によるB.O発生の危
険性が大きくなる傾向を有しており、このことがビレッ
ト連鋳機における鋳込速度を制限していた。
Conventionally, in a continuous casting machine for blooms and slabs that performs powder casting, a constrained type B.D. For O., various B.O. O Prediction and alarm technology have been developed and are in the stage of practical application. However, in the continuous casting machine for billets, which mainly uses oil lubrication, the B.
O is rarely generated, and most of B. This is due to the vertical cracking of the corner portion generated immediately below the mold due to the non-uniform solidification of O in the mold. Moreover, this type of B.I. Since the average solidified shell thickness formed in the mold becomes smaller as the casting speed becomes faster, B.O. There is a tendency for the risk of O generation to increase, which limits the casting speed in the billet continuous casting machine.

【0004】そこで、ビレット連鋳機においても従来か
らB.O予知技術の開発が行なわれており、鋳型内で発
生する不均一凝固を、鋳片の菱形変形と関連ずけ、菱形
変形の程度を検出して、B.Oの危険を予知する方法や
鋳型直下における鋳片表面温度分布を計測して、凝固シ
ェルの異常に薄い部分を検知してB.Oを予知する方法
等が考案されたが、いずれも実用化に至らなかった。
Therefore, even in the billet continuous casting machine, B. O prediction technology has been developed. The uneven solidification generated in the mold is not related to the rhombus deformation of the slab, and the degree of rhombus deformation is detected. The method of predicting the danger of O or measuring the temperature distribution of the slab surface immediately below the mold to detect an abnormally thin portion of the solidified shell, and Although a method for predicting O was devised, none of them was put to practical use.

【0005】[0005]

【発明が解決しようとする課題】ビレット連鋳機におい
て発生するB.Oは鋳型内における不均一凝固により局
部的に凝固シェルの薄いコーナ部が鋳型直下で破断する
ことによるものが殆どである。したがって、鋳込中の鋳
型内凝固シェル厚さの変化を時々刻々と計測することが
出来れば、B.Oの予知も可能と考えられる。しかし、
鋳型直下における鋳片の凝固シェル厚さを直接計測する
ことは、非常に難しく、現状の技術では不可能と考えら
れる。
The B.B. which occurs in a billet continuous casting machine. Most of O is locally caused by the non-uniform solidification in the mold, so that the thin corner portion of the solidified shell is broken just below the mold. Therefore, if the change in the solidified shell thickness in the mold during casting can be measured moment by moment, B. It is considered possible to predict O. But,
It is very difficult to directly measure the thickness of the solidified shell of the slab directly below the mold, and it is considered impossible with the current technology.

【0006】また、鋳型内で形成される凝固シェル厚さ
は、溶鋼温度、鋳型の抜熱能力、鋳込速度等により変化
するものであり、しかも鋳型内においては、鋳片の凝固
収縮により、コーナー部は早期に鋳型壁から離れ、エヤ
ーギャップが形成され、コーナー部の凝固シェルが薄く
なる不均一凝固が発生する宿命を有しており、鋳型直下
の凝固シェル厚さの変化を予想することさえ困難である
と考えられていた。
Further, the thickness of the solidified shell formed in the mold varies depending on the temperature of molten steel, the heat removal capacity of the mold, the pouring speed, and the like, and in the mold, due to solidification shrinkage of the slab, The corner has the fate that it is separated from the mold wall at an early stage, an air gap is formed, and uneven solidification occurs where the solidified shell in the corner becomes thin.Therefore, expect a change in the thickness of the solidified shell immediately below the mold. Even was considered difficult.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の連続鋳造機の構成は、鋳型内の溶融鋼を連続的に鋳
造する連続鋳造機において、上記鋳型の冷却水量
(F),入口冷却水温度(T 1 ),出口冷却水温度(T
2 )及び鋳片の引抜速度(V)を常時計測し、電算機に
インプットすると共に、上記鋳込寸法、鋼種等の鋳込条
件及び鋼の物性値から、予め計算される係数(K)を基
にして、数式da =F(T2 −T1 )/K・Vによっ
て、鋳型内で形成される平均凝固シェル厚さ(da )を
演算によって求め、さらに、最小凝固シェル厚さを不均
一度から求め、ブレークアウト発生限界凝固シェル厚さ
と比較することにより、ブレークアウト発生限界凝固シ
ェル厚さ以下になるとブレークアウト発生の危険性増大
の警報を出す手段を具えたことを特徴とする。
[MEANS FOR SOLVING THE PROBLEMS]
Ming's continuous casting machine configuration continuously casts molten steel in the mold.
In the continuous casting machine to build, the cooling water amount of the above mold
(F), inlet cooling water temperature (T 1), Outlet cooling water temperature (T
Two) And the withdrawal speed (V) of the slab are constantly measured and displayed on a computer.
In addition to inputting, cast dimensions such as the above-mentioned casting dimensions and steel types
Based on the coefficient (K) calculated in advance from the condition and the physical properties of the steel
Then, the equation da = F (TTwo-T1) / By K ・ V
The average solidified shell thickness (da) formed in the mold
Calculated and calculated the minimum solidified shell thickness
Obtained from once, breakout occurrence limit solidified shell thickness
By comparing with
The risk of breakout increases when the thickness is less than 100 mm
It is characterized by having a means for issuing the alarm of.

【0008】すなわち、連続鋳造の鋳込条件及び鋳型の
冷却能率の変化に応じて鋳型の抜熱能力は変化している
ので、鋳型における抜熱量を鋳型冷却水量と冷却水の温
度上昇と積として実測データから常に把握し、その常時
変化している抜熱量に対応した鋳込条件とから、演算に
よって鋳型内で形成される平均凝固シェル厚さの変化を
推定計算することが出来る。一方、多くの操業経験から
鋳型直下の鋳片の凝固シェル厚さの不均一度(最小厚/
平均厚)は一般的に0.6〜0.7であり、又B.Oの発生
しない限界凝固シェル厚さは5〜6mmであることも把握
している。
That is, since the heat removal capacity of the mold changes according to the casting conditions of continuous casting and the change of the cooling efficiency of the mold, the heat removal amount in the mold is defined as the product of the mold cooling water amount and the temperature rise of the cooling water. It is possible to always grasp from the measured data, and from the casting conditions corresponding to the constantly changing heat removal amount, the change in the average solidified shell thickness formed in the mold can be estimated and calculated by calculation. On the other hand, from the experience of many operations, the unevenness of the thickness of the solidified shell of the slab directly under the mold (minimum thickness /
The average thickness) is generally 0.6 to 0.7, and B. It is also known that the limit solidified shell thickness where O does not occur is 5 to 6 mm.

【0009】以上のことを最近の連鋳機に採用している
電算機制御システムに適用することによって、電算機に
インプットされている設備・鋳込条件と操業条件の変化
から、鋳型直下の平均凝固シェル厚を演算し、その変化
を常時監視すると共に、最小凝固シェル厚を指定して、
B.O限界凝固シェル厚と比較して、B.Oの発生する
危険性を判断して、警報を出すシステムが成立する。
By applying the above to the computer control system adopted in the recent continuous casting machine, the average directly below the mold can be obtained from the changes in the equipment / casting conditions and operating conditions input to the computer. The solidified shell thickness is calculated, the change is constantly monitored, and the minimum solidified shell thickness is specified.
B. Compared to the O-critical solidified shell thickness, B. A system that issues a warning by determining the risk of occurrence of O is established.

【0010】[0010]

【発明の実施の形態】連続鋳造機では鋳型内において十
分な強度を有する凝固シェルを形成することか大切であ
り、凝固シェルの形成が不十分であると鋳型を出た途端
に種々の外力及び熱応力にさらされ、凝固シェルの薄い
部分は、シェル温度も高いため強度も低いこともあっ
て、その部分が破断し、B.Oが発生すると言われてい
る。この場合、B.Oの発生しない限界凝固シェル厚さ
は、理論的には5〜6mm程度と言われている。
BEST MODE FOR CARRYING OUT THE INVENTION In a continuous casting machine, it is important to form a solidified shell having sufficient strength in the mold. If the solidified shell is not sufficiently formed, various external forces are applied as soon as it leaves the mold. And the thin portion of the solidified shell exposed to thermal stress has a low shell strength because the shell temperature is high, and the thin portion breaks. It is said that O occurs. In this case, B. The critical solidified shell thickness at which O is not generated is theoretically said to be about 5 to 6 mm.

【0011】しかし、実際に連鋳機の鋳型で形成される
凝固シェルは、図2の鋳型直下の鋳片断面図に示すよう
に、鋳片14の外殻を形成する凝固シェル13は、凝固
収縮によるコーナ部のエヤーギャップの発生によりコー
ナ部の凝固の進行が遅れ、いわゆる不均一凝固の発生し
た状態となる。この鋳型内の不均一凝固は宿命的なもの
であり、鋳型本体の設計条件により多少の変化はある
が、不均一度=(最小凝固厚さdmin /平均凝固シェル
厚da )で表わしてdmin /da =0.6〜0.7である。
However, the solidified shell actually formed by the mold of the continuous casting machine is solidified by the solidified shell 13 forming the outer shell of the cast piece 14 as shown in the sectional view of the cast piece immediately below the mold in FIG. Due to the occurrence of the air gap at the corner portion due to the contraction, the progress of the solidification at the corner portion is delayed, and the so-called non-uniform solidification occurs. This non-uniform solidification in the mold is fatal, and it varies somewhat depending on the design conditions of the mold body, but the non-uniformity = (minimum solidification thickness dmin / average solidification shell thickness da) dmin / da = 0.6 to 0.7.

【0012】次に、設備条件、鋳造条件及び操業条件と
鋳型内で形成される平均凝固シェル厚さ(一律に凝固が
進行したと仮定)との関係について考えてみる。まず鋳
込条件として、断面寸法A×B(m)の鋳片と鋳込鋼種
から鋼の物性値,凝固シェルの比重度γ(kg/m3),比熱
P (kcal/kg℃),潜熱H(kcal/kg)を与える。次に、
操業条件として鋳込速度V(m/min),鋳込温度T
S (℃)鋳型冷却水量F(l/min),冷却水の温度上昇Δ
T(℃),鋳型直下の鋳片表面温度TSU(℃)とする。
鋳型内で形成される平均凝固シェル厚さda (m)とす
ると、鋳型における抜熱量Q(kcal/min) と凝固シェル
の形成に必要な熱量は等しいと考えられ、次式が成立す
る。
Next, let us consider the relationship between equipment conditions, casting conditions and operating conditions and the average thickness of the solidified shell formed in the mold (assuming that solidification proceeds uniformly). First, as casting conditions, physical properties of the steel from slab and the casting steel grades sectional dimension A × B (m), a specific gravity of γ (kg / m 3) of the solidified shell, specific heat C P (kcal / kg ℃) , Giving latent heat H (kcal / kg). next,
Casting speed V (m / min) and casting temperature T as operating conditions
S (℃) Mold cooling water amount F (l / min), cooling water temperature rise Δ
Let T (° C) be the surface temperature of the slab just below the mold T SU (° C).
If the average solidified shell thickness da (m) formed in the mold is taken, it is considered that the heat removal amount Q (kcal / min) in the mold is equal to the heat amount required to form the solidified shell, and the following equation holds.

【0013】[0013]

【数1】 [Equation 1]

【0014】したがって、必要な情報を与えることによ
って、平均凝固シェル厚(da )は、上記(2)式によ
り計算可能である。
Therefore, the average solidified shell thickness (da) can be calculated by the above equation (2) by giving necessary information.

【0015】そこで、実際の計算制御システムについて
図面を参照して説明する。図1は、本発明の実施形態例
としてのシステム構成図、図3は本システムのフローチ
ャートを各々示す。これらの図面中、符号1は鋳型、2
は引抜駆動ロール、3は引抜ピンチロール、4は駆動用
電動機、5は冷却水給水、6は回転速度計、7は流量
計、8,9冷却水温度計、10は電算機、11はモニタ
ー画面、12は溶鋼、13は凝固シェル、14は鋳片を
各々図示する。図1及び図3において、本連続鋳造機は
鋳型1と引抜ピンチロール2,3によって代表的に構成
している。溶鋼12は、鋳型1の上方から連続的に供給
され、上記鋳型1の水冷壁に接触して強冷され、凝固し
て凝固シェル13が形成され、所定断面形状を有する鋳
片14が製造され、ピンチロール2,3によって、引抜
・矯正され製品ビレットが連続的に所定の引抜速度15
で生産される。
Therefore, an actual calculation control system will be described with reference to the drawings. FIG. 1 is a system configuration diagram as an embodiment of the present invention, and FIG. 3 is a flowchart of the present system. In these drawings, reference numeral 1 is a mold, 2
Is a drawing drive roll, 3 is a drawing pinch roll, 4 is a driving motor, 5 is cooling water supply water, 6 is a tachometer, 7 is a flow meter, 8 and 9 are cooling water thermometers, 10 is a computer, and 11 is a monitor. A screen, 12 is molten steel, 13 is a solidified shell, and 14 is a slab. 1 and 3, the continuous casting machine is typically constituted by a mold 1 and drawing pinch rolls 2 and 3. Molten steel 12 is continuously supplied from above the mold 1, is brought into contact with the water-cooling wall of the mold 1 and is strongly cooled, solidified to form a solidified shell 13, and a slab 14 having a predetermined cross-sectional shape is manufactured. The product billet is drawn and straightened by the pinch rolls 2 and 3, and the product billet is continuously drawn at a predetermined drawing speed 15
Produced in.

【0016】ここで上記鋳型1は、多量の冷却水5を下
部から給水して強制冷却し、上部から排水5aされる構
造としたものであり、流量計7および温度計8,9によ
って、冷却水量F及び入口冷却温度T1 、出口冷却温度
2 の信号を常時電算機10にイップットしている。
Here, the mold 1 has a structure in which a large amount of cooling water 5 is supplied from the lower part to be forcibly cooled and then drained 5a from the upper part, and is cooled by a flow meter 7 and thermometers 8 and 9. The signals of the water amount F, the inlet cooling temperature T 1 , and the outlet cooling temperature T 2 are constantly set in the computer 10.

【0017】一方、引抜ピンチロール2,3において
は、駆動ロール2は減速機を介して電動機4によって駆
動されており、電動機に直結した回転計6から引抜速度
Vの信号を電算機10へインプットする。
On the other hand, in the pull-out pinch rolls 2 and 3, the drive roll 2 is driven by the electric motor 4 via a speed reducer, and a signal of the pull-out speed V is input to the computer 10 from the tachometer 6 directly connected to the electric motor. To do.

【0018】上記電算機10においては、予め与えられ
た鋳込条件及び鋼の物性値等と常時インプットされてい
る操業データ(F,T1 ,T2 ,V)とから、上記
(2)式によって平均凝固シェル厚da を演算し、その
変化をモニタ画面11に表示する。
In the computer 10, from the casting conditions and the physical properties of the steel given in advance and the operation data (F, T 1 , T 2 , V) which are constantly input, the above equation (2) is used. The average solidified shell thickness da is calculated by and the change is displayed on the monitor screen 11.

【0019】平均凝固シェル厚さda の計算と同時に、
予め想定された不均一度から最小凝固シェル厚dmin も
計算し、限界凝固シェル厚(経験的に5〜6mmで設定し
ておく)と比較し、限界値に接近することに対して警報
を発出するシステムを構成する。
Simultaneously with the calculation of the average solidified shell thickness da,
The minimum solidification shell thickness dmin is also calculated from the presumed inhomogeneity, compared with the critical solidification shell thickness (empirically set at 5 to 6 mm), and an alarm is issued when the critical value is approached. Configure the system to

【0020】[0020]

【実施例】以下本発明の好適な一実施例について説明す
るが、本発明はこれに限定されるものではない。
EXAMPLE A preferred example of the present invention will be described below, but the present invention is not limited thereto.

【0021】実施例としては、150mm角ビレット、S
D鋳造に対し適用した場合を説明する。鋳込条件として
鋳込寸法A=0.15m,B=0.15m,鋳込温度TS
1550℃、鋳片表面温度TSU=1100℃、及び鋼の
物性値(γ=7400kg/m3 ,H=65kcal/kg ,CP
=0.21kcal/kg℃)を与えるとK=4.98×105
なり(2)式はda =F(T2 −T1)/4.98×105
×Vと簡略化される。
As an example, a 150 mm square billet, S
The case of application to D casting will be described. As casting conditions, casting dimensions A = 0.15 m, B = 0.15 m, casting temperature T S =
1550 ° C., slab surface temperature T SU = 1100 ° C., and physical properties of steel (γ = 7400 kg / m 3 , H = 65 kcal / kg, C P
= 0.21 kcal / kg ° C.), K = 4.98 × 10 5 , and equation (2) is da = F (T 2 −T 1 ) /4.98×10 5
It is simplified as xV.

【0022】実際の操業においては、鋳込温度及び鋳片
表面温度は連続計測を困難でありインプットデータとは
していないが、経験上大きな変化はせず、理論計算によ
る推定値を条件としても、大きな誤差はないと考えてい
る。また、鋳型の冷却水量はF=300l/min 、ほぼ一
定の操業を行ったが、鋳型の抜熱能力は、鋳型と鋳片の
接触度合及びスケール析出による冷却能率低下の影響を
受け大幅に変化したため、抜熱量はΔT=T2 −T1
8〜13℃の範囲に変化した。
In actual operation, the casting temperature and the slab surface temperature are difficult to measure continuously and are not used as input data. However, experience does not significantly change them, and the estimated values obtained by theoretical calculation are used as conditions. , I don't think there is a big error. Moreover, the cooling water amount of the mold was F = 300 l / min, and the operation was almost constant. However, the heat removal capacity of the mold changed significantly due to the contact degree between the mold and the slab and the decrease in cooling efficiency due to scale precipitation. Therefore, the heat removal amount is ΔT = T 2 −T 1 =
It changed into the range of 8 to 13 ° C.

【0023】これに対し、鋳込速度はV=2.2〜3.2m/
min の広い範囲の操業を行い、電算機により演算した平
均凝固シェル厚は、da =8〜16mmの範囲に変化し、
B.O限界シェル厚さにも接近したことがあり、B.O
警報が出た。上記B.O警報が出ると、鋳込速度を低下
して操業を継続し、B.O事故を防止する。
On the other hand, the casting speed is V = 2.2-3.2 m /
Operating in a wide range of min, the average solidified shell thickness calculated by the computer changes to the range of da = 8-16 mm,
B. I have also approached the O-limit shell thickness, and O
I got an alarm. The above B. When the O alarm is issued, the pouring speed is reduced to continue the operation, and B. O Prevent accidents.

【0024】[0024]

【発明の効果】以上のように、従来より、鋳型直下にお
ける凝固シェル未発達によるコーナー部のB.O事故は
鋳型抜熱能力の異常な低下と不適正な鋳込速度に原因が
あると考えられ、B.O事故が発生してから原因に気付
くことが多かったが、本発明においては、常時凝固シェ
ルの形成量を監視しており、凝固シェル厚さまで減少す
ると、B.O発生の危険性増大に対する警報が出され、
鋳込条件の変更等によるB.O防止対策を実施すること
が可能となり、非常に実用的である。最近の連鋳機にお
いては、電算機を使用した計算機制御システムが多く採
用されており、本発明システムを適用することは容易で
あり、連鋳機の高速鋳造の高生産性化に大きく役立つ。
As described above, as described above, the B. The O accident is considered to be caused by an abnormal decrease in mold heat removal capacity and an improper pouring speed. Although the cause was often noticed after the occurrence of the O accident, in the present invention, the formation amount of the solidified shell is constantly monitored. An alarm is issued for the increased risk of O
B. Due to changes in casting conditions, etc. O preventive measures can be implemented, which is very practical. In a recent continuous casting machine, a computer control system using a computer is often adopted, and it is easy to apply the system of the present invention, which is very useful for high productivity in high speed casting of the continuous casting machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例としてのシステム構成図であ
る。
FIG. 1 is a system configuration diagram as an embodiment of the present invention.

【図2】鋳型直下の凝固シェルの形成状況を示す鋳片の
横断面図である。
FIG. 2 is a cross-sectional view of a slab showing a formation state of a solidified shell immediately below a mold.

【図3】本システムのフローチャートである。FIG. 3 is a flowchart of the present system.

【符号の説明】[Explanation of symbols]

1 鋳型 2 引抜駆動ロール 3 引抜ピンチロール 4 駆動用電動機 5 冷却水給水 5a 冷却水排水 6 回転速度計 7 流量計 8,9 冷却水温度計 10 電算機 11 モニター画面 12 溶鋼 13 凝固シェル 14 鋳片 DESCRIPTION OF SYMBOLS 1 Mold 2 Pulling drive roll 3 Pulling pinch roll 4 Driving electric motor 5 Cooling water supply 5a Cooling water drainage 6 Tachometer 7 Flowmeter 8, 9 Cooling water thermometer 10 Computer 11 Monitor screen 12 Molten steel 13 Solidification shell 14 Slab

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋳型内の溶融鋼を連続的に鋳造する連続
鋳造機において、 上記鋳型の冷却水量(F),入口冷却水温度(T1 ),
出口冷却水温度(T2)及び鋳片の引抜速度(V)を常
時計測し、電算機にインプットすると共に、 上記鋳込寸法、鋼種等の鋳込条件及び鋼の物性値から、
予め計算される係数(K)を基にして、数式da =F
(T2 −T1 )/K・Vによって、鋳型内で形成される
平均凝固シェル厚さ(da )を演算によって求め、 さらに、最小凝固シェル厚さを不均一度から求め、 ブレークアウト発生限界凝固シェル厚さと比較すること
により、 ブレークアウト発生限界凝固シェル厚さ以下になるとブ
レークアウト発生の危険性増大の警報を出す手段を具え
たことを特徴とする連続鋳造機。
1. A continuous casting machine for continuously casting molten steel in a mold, wherein the mold has a cooling water amount (F), an inlet cooling water temperature (T 1 ),
The outlet cooling water temperature (T 2 ) and the withdrawal speed (V) of the slab are constantly measured and input to a computer. From the above-mentioned casting dimensions, casting conditions such as steel grade, and physical property values of steel,
Based on the coefficient (K) calculated in advance, the formula da = F
The average solidified shell thickness (da) formed in the mold is calculated by (T 2 −T 1 ) / K · V, and the minimum solidified shell thickness is calculated from the nonuniformity to determine the breakout occurrence limit. A continuous casting machine comprising means for issuing an alarm of an increased risk of breakout occurrence when the solidified shell thickness is below the breakout limit solidified shell thickness by comparing with the solidified shell thickness.
JP18874595A 1995-07-25 1995-07-25 Continuous casting machine Expired - Fee Related JP3188148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18874595A JP3188148B2 (en) 1995-07-25 1995-07-25 Continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18874595A JP3188148B2 (en) 1995-07-25 1995-07-25 Continuous casting machine

Publications (2)

Publication Number Publication Date
JPH0929407A true JPH0929407A (en) 1997-02-04
JP3188148B2 JP3188148B2 (en) 2001-07-16

Family

ID=16229036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18874595A Expired - Fee Related JP3188148B2 (en) 1995-07-25 1995-07-25 Continuous casting machine

Country Status (1)

Country Link
JP (1) JP3188148B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038456A (en) * 1999-07-06 2001-02-13 Sms Schloeman Siemag Ag Method and device for guiding molten metal in continuous casting machine
KR101277627B1 (en) * 2011-01-28 2013-06-21 현대제철 주식회사 Device for estimating breakout of solidified shell in continuous casting process and method therefor
KR101388071B1 (en) * 2012-07-31 2014-04-25 현대제철 주식회사 Cooling method of mold for continuous casting
CN106914594A (en) * 2017-05-04 2017-07-04 盐城工学院 A kind of sheet billet continuous casting breakout prediction system
JP2018192500A (en) * 2017-05-17 2018-12-06 Jfe条鋼株式会社 Continuous casting method for square billet or square bloom

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038456A (en) * 1999-07-06 2001-02-13 Sms Schloeman Siemag Ag Method and device for guiding molten metal in continuous casting machine
KR101277627B1 (en) * 2011-01-28 2013-06-21 현대제철 주식회사 Device for estimating breakout of solidified shell in continuous casting process and method therefor
KR101388071B1 (en) * 2012-07-31 2014-04-25 현대제철 주식회사 Cooling method of mold for continuous casting
CN106914594A (en) * 2017-05-04 2017-07-04 盐城工学院 A kind of sheet billet continuous casting breakout prediction system
JP2018192500A (en) * 2017-05-17 2018-12-06 Jfe条鋼株式会社 Continuous casting method for square billet or square bloom

Also Published As

Publication number Publication date
JP3188148B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
JP2609476B2 (en) Method and apparatus for detecting blowing in continuous casting
JPS6353903B2 (en)
JPH0929407A (en) Continuous caster
JP2007185675A (en) Method for predicting dangerous portion causing surface defect in continuously cast slab, and method for manufacturing continuously cast slab
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JPH0790343B2 (en) Breakout prediction method in continuous casting
JPS5916865B2 (en) Breakout prediction device
KR101267347B1 (en) Device for monitoring crack using frictional force in mold and method therefor
JP3103498B2 (en) Predicting and preventing breakouts in continuous casting.
JPH01143748A (en) Continuous casting method
US5482106A (en) Process for the casting of metals in a continuous casting installation with continuous strand withdrawal
KR100399233B1 (en) Casting Monitoring Method of Billet Continuous Casting Machine
JPH0126791B2 (en)
JPH05305408A (en) Casting method at the time of lacking in continuous casting
JPS63119963A (en) Method for predicting breakout in continuous casting
JPH0556224B2 (en)
JPS6330162A (en) Measurement for shell thickness in continuous casting
JP3062723B2 (en) Measurement method of slab surface dent shape due to solidification shrinkage in mold
JPH0259157A (en) Method for detecting surface defect on continuous casting round cast billet
JPS6138763A (en) Method for predicting breakout in continuous casting
JPH10272546A (en) Method for preventing variation of molten metal surface level in continuous casting and device therefor
Mugwagwa et al. Neural Network Breakout Prediction Model for Continuous Casting
JPS61251757A (en) Detecting method for abnormality of cast piece in mold
JPS63207459A (en) Method for predicting breakout in continuous casting
JPS61279350A (en) Method for controlling continuous casting of steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees