JPH09293440A - Relay control method - Google Patents

Relay control method

Info

Publication number
JPH09293440A
JPH09293440A JP10506296A JP10506296A JPH09293440A JP H09293440 A JPH09293440 A JP H09293440A JP 10506296 A JP10506296 A JP 10506296A JP 10506296 A JP10506296 A JP 10506296A JP H09293440 A JPH09293440 A JP H09293440A
Authority
JP
Japan
Prior art keywords
relay
microcomputer
contact welding
contact
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10506296A
Other languages
Japanese (ja)
Inventor
Mototsugu Nagamura
元嗣 長村
Mitsuhiko Kikuoka
三彦 菊岡
Satoru Shibata
悟 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10506296A priority Critical patent/JPH09293440A/en
Publication of JPH09293440A publication Critical patent/JPH09293440A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits

Landscapes

  • Relay Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a safe control method with high reliability by foreseeing occurrence of an abrasion trouble at the terminal stage of a lifetime of contacts in a relay by means of a microcomputer, and previously outputting an alarm so as to forcibly stop the relay. SOLUTION: A relay drive output is first checked. When the output is OFF, contact welding is checked based on a switching state of contacts 4a, 4b. When the contacts are opened, a control sequence is returned to a normal routine. In contrast, when the contacts are closed, it is judged that the contact welding is generated, to add '1' to a first shock pulse counter M, so that a shock pulse is added once to a relay 2, to confirm whether the contacts are opened again or not. When the contacts are not opened, the shock pulse is applied to the relay 2 until the contacts are opened. Upon release of the contact welding, it is judged whether the number of contact welding times is first or not. The answer is NO since this time is not a first time. An arithmetic expression of F←(1/N).M (a second counter for measuring N the number of normal operation times of the relay) is executed. A sign of the contact welding is judged at a predetermined timing of F>=5, whereby the relay 2 is forcibly stopped, thereby stopping a microcomputer 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はマイクロコンピュー
タで継電器を駆動する際に利用される継電器の制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a relay control method used when a microcomputer drives a relay.

【0002】[0002]

【従来の技術】マイクロコンピュータで継電器の駆動を
制御する場合に、継電器の接点に溶着が起こってもマイ
クロコンピュータの制御信号を衝撃化することにより、
制御回路が自力で接点の溶着を解除するという技術が従
来より提案されており、その例として特開平3−458
53号公報に開示されたものを図7、図8を用いて以下
に説明する。
2. Description of the Related Art When controlling the drive of a relay with a microcomputer, even if welding occurs at the contact of the relay, the control signal of the microcomputer is shocked to
Conventionally, a technique has been proposed in which a control circuit releases the welding of contacts by itself, and an example thereof is Japanese Patent Laid-Open No. 3-458.
The one disclosed in Japanese Patent No. 53 will be described below with reference to FIGS. 7 and 8.

【0003】図7は前記公報により開示された技術の回
路図であり、同図において1はマイクロコンピュータ、
1aはマイクロコンピュータ1の電源入力(VDD)、
6は負荷駆動用電源、1bは負荷駆動用電源6と共通ラ
インとした電源入力(VSS)、2は継電器、1cは継
電器2の制御出力、3は継電器駆動用トランジスタ、4
a,4bは継電器2の接点、5は負荷である。
FIG. 7 is a circuit diagram of the technique disclosed in the above publication, in which 1 is a microcomputer,
1a is a power input (VDD) of the microcomputer 1,
6 is a power source for driving the load, 1b is a power input (VSS) on a common line with the power source for driving the load 2, 2 is a relay, 1c is a control output of the relay 2, 3 is a transistor for driving the relay, 4
a and 4b are contacts of the relay 2 and 5 is a load.

【0004】マイクロコンピュータ1の継電器2の制御
出力1cは継電器駆動用トランジスタ3を介して継電器
2に接続され、継電器2の接点4aは負荷5と負荷駆動
用電源6に接続され、接点4bは接点4aが溶着した場
合の接点溶着検出用入力信号1dとしてマイクロコンピ
ュータ1に接続された構成を示している。
The control output 1c of the relay 2 of the microcomputer 1 is connected to the relay 2 via the transistor 3 for driving the relay, the contact 4a of the relay 2 is connected to the load 5 and the power source 6 for driving the load, and the contact 4b is the contact. 4 shows a configuration in which a contact welding detection input signal 1d when 4a is welded is connected to the microcomputer 1.

【0005】図8は上記図7の構成による回路の動作の
タイミングチャートであり、モード1は継電器2の正常
動作状態を示し、マイクロコンピュータ1の継電器2の
制御出力信号1cが継電器駆動用トランジスタ3を介し
て継電器2に与えられる系において、継電器2の制御出
力信号1cと継電器2のコイル電圧の各々の信号波形が
同一であり、継電器2の動作遅れ時間を無視すれば負荷
動作の信号波形も前記継電器2の制御出力信号1cと前
記継電器2のコイル電圧の信号波形と同じになり、マイ
クロコンピュータ1の継電器2の制御出力信号1cはそ
のまま負荷5の動作時間と考えることができる。
FIG. 8 is a timing chart of the operation of the circuit configured as shown in FIG. 7. Mode 1 shows the normal operation state of the relay 2 and the control output signal 1c of the relay 2 of the microcomputer 1 is the transistor 3 for driving the relay. In the system given to the relay 2 via the relay, the signal waveforms of the control output signal 1c of the relay 2 and the coil voltage of the relay 2 are the same, and if the operation delay time of the relay 2 is ignored, the signal waveform of the load operation is also The control output signal 1c of the relay 2 and the signal waveform of the coil voltage of the relay 2 become the same, and the control output signal 1c of the relay 2 of the microcomputer 1 can be considered as the operating time of the load 5 as it is.

【0006】モード2は継電器2の接点溶着と溶着解除
の動作状態を示し、継電器2が正常動作状態であればマ
イクロコンピュータ1の継電器2の制御出力信号1cが
ONからOFFに切り替わると継電器2のコイル電圧は
OFFになり負荷5もOFFになるが、接点が溶着した
場合は図7で、接点4aから接点4bに切り替わらず、
接点はONの状態のままとなっている。
Mode 2 shows the operating state of contact welding and unwelding of the relay 2. If the control output signal 1c of the relay 2 of the microcomputer 1 is switched from ON to OFF when the relay 2 is in a normal operating state, the mode of the relay 2 is changed. Although the coil voltage is turned off and the load 5 is also turned off, when the contact is welded, the contact 4a is not switched to the contact 4b in FIG.
The contact remains on.

【0007】従って接点溶着検出用の接点4bからはマ
イクロコンピュータ1の電源入力(VSS)1bに信号
が入らないので(マイクロコンピュータ1は)接点4a
が溶着状態と判断し、マイクロコンピュータ1の継電器
2の制御出力信号1cは継電器2の接点溶着を解除させ
る以下のようなシーケンスに切り替わる。
Therefore, no signal is input to the power source input (VSS) 1b of the microcomputer 1 from the contact welding detection contact 4b (in the microcomputer 1).
Is judged to be in the welding state, and the control output signal 1c of the relay 2 of the microcomputer 1 is switched to the following sequence for releasing the contact welding of the relay 2.

【0008】つまり図8のA点で接点溶着を検出した
後、B点でマイクロコンピュータ1の継電器2の制御出
力信号1cで10msecから500msecの衝撃パ
ルスを継電器2のコイルに与えるとその衝撃が接点溶着
部に伝わり、C点で接点溶着は解除され、継電器2は正
常状態に復帰する。
That is, when contact welding is detected at the point A in FIG. 8 and a shock output pulse of 10 msec to 500 msec is applied to the coil of the relay 2 by the control output signal 1c of the relay 2 of the microcomputer 1 at the point B, the shock is applied to the contact. It is transmitted to the welded portion, the contact welding is released at point C, and the relay 2 returns to the normal state.

【0009】モード3はモード2のように1回の衝撃パ
ルスで継電器2の接点溶着が解除されない場合の継電器
2の接点溶着と溶着解除の動作状態を示し、モード2と
同じようにA1点で接点溶着を検出後B1点でマイクロ
コンピュータ1の継電器2の制御出力信号1cで1回目
の衝撃パルスを与えるが、1回目で接点溶着が解除され
ない場合はB2点で2回目の衝撃パルスを与え、2回目
でも接点溶着が解除されない場合はB3点で3回目の衝
撃パルスを与えるというように、接点溶着が解除される
までマイクロコンピュータ1から繰り返し衝撃パルスの
継電器2の制御出力信号1cを接点溶着部に与え、Cn
点で接点溶着が解除され、継電器2は正常状態に復帰す
るというように構成されたものである。
[0009] Mode 3 shows the operation state of contact welding and de-welding of the relay 2 when the contact welding of the relay 2 is not released by one shock pulse like the mode 2, and like the mode 2, at A1 point. After the contact welding is detected, the first impact pulse is given at the B1 point by the control output signal 1c of the relay 2 of the microcomputer 1. However, if the contact welding is not released at the first time, the second impact pulse is given at the B2 point, When the contact welding is not canceled even at the second time, the third impact pulse is given at the point B3, and the control output signal 1c of the relay 2 of the shock pulse is repeatedly applied from the microcomputer 1 until the contact welding is canceled. To Cn
The contact welding is released at the points, and the relay 2 returns to the normal state.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、接点微溶着によるトラブルの防止には効果
があるが、接点4a,4bの寿命末期での接点摩耗や接
点微溶着による何等かの不具合を事前に確認できず、発
覚後にメンテナンス処理することが通例になっていたば
かりでなく、機器本体の破損につながる場合もあり課題
となっていた。
However, although the above-mentioned conventional structure is effective in preventing the trouble due to the slight contact welding, the contact wear at the end of the life of the contacts 4a and 4b and some troubles due to the slight contact welding. It was not always possible to confirm in advance, and it was not only customary to carry out maintenance processing after detection, but there was also the problem that it could lead to damage to the equipment body.

【0011】本発明はこのような従来の課題を解決し、
継電器の接点寿命末期での接点摩耗や接点微溶着による
摩耗故障の発生をマイクロコンピュータにより事前に予
知して、事前警告表示や事前警告信号を出力して継電器
を強制停止させ、安全でかつ信頼性の高い継電器の制御
方法を提供することを目的とするものである。
The present invention solves such a conventional problem,
A microcomputer is used to predict in advance the occurrence of contact wear at the end of the contact life of the relay and wear failure due to slight welding of the contact, and a pre-warning display or pre-warning signal is output to forcibly stop the relay, ensuring safe and reliable operation. It is an object of the present invention to provide a relay control method with high reliability.

【0012】[0012]

【課題を解決するための手段】この課題を解決するため
に本発明による継電器の制御方法は、継電器の接点溶着
を検出し、かつその信号をマイクロコンピュータの入力
とする接点溶着検出入力手段と、接点溶着時にマイクロ
コンピュータの継電器制御信号を短いパルス信号に切り
替える継電器制御手段と、前記短いパルスの発生数を数
える第1のカウンタ手段と、前記継電器が動作する回数
を数える第2のカウンタ手段と、前記第1及び第2のカ
ウンタ手段で数えた結果をマイクロコンピュータで処理
する演算処理手段と、その演算結果で前記継電器の制御
信号を停止させる強制停止手段からなる方法としたもの
である。
In order to solve this problem, a relay control method according to the present invention comprises a contact welding detection input means for detecting the contact welding of the relay and using the signal as an input to a microcomputer. A relay control means for switching the relay control signal of the microcomputer to a short pulse signal at the time of contact welding, a first counter means for counting the number of occurrences of the short pulse, and a second counter means for counting the number of times the relay operates. The method comprises an arithmetic processing means for processing the results counted by the first and second counter means by a microcomputer and a forced stopping means for stopping the control signal of the relay according to the arithmetic result.

【0013】この本発明によれば、マイクロコンピュー
タにより継電器の接点が寿命末期での摩耗故障に至る前
に摩耗故障の発生を予知することができ、警告手段によ
る機器本体のメンテナンス時期の報知や継電器を停止さ
せる強制停止手段により、突発故障や機器本体の破損等
が回避できる。
According to the present invention, the microcomputer can predict the occurrence of wear failure before the contact of the relay reaches the wear failure at the end of its life, and the warning means notifies the maintenance time of the equipment main body and the relay. With the forced stop means for stopping, it is possible to avoid a sudden failure, damage to the device body, and the like.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、継電器の接点溶着を検出し、かつその信号をマイク
ロコンピュータの入力とする接点溶着検出入力手段と、
接点溶着時にマイクロコンピュータの継電器制御信号を
短いパルス信号に切り替える継電器制御手段と、前記短
いパルス信号の発生数を数える第1のカウンタ手段と、
前記継電器が動作する回数を数える第2のカウンタ手段
と、前記第1及び第2のカウンタ手段で数えた結果をマ
イクロコンピュータで処理する演算処理手段と、その演
算結果で前記継電器の制御信号を停止させる強制停止手
段からなる方法としたものであり、継電器の接点寿命末
期での摩耗故障の発生を事前に予知し、継電器を強制的
に停止させることができるという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention comprises contact welding detection input means for detecting contact welding of a relay and using the signal as an input to a microcomputer.
Relay control means for switching the relay control signal of the microcomputer to a short pulse signal at the time of contact welding, and a first counter means for counting the number of the short pulse signals generated,
A second counter means for counting the number of times the relay operates, an arithmetic processing means for processing a result counted by the first and second counter means by a microcomputer, and a control signal for the relay stopped by the arithmetic result. The method includes a forced stop means for causing the relay to have a function of predicting the occurrence of a wear failure at the end of the contact life of the relay in advance and forcibly stopping the relay.

【0015】請求項2に記載の発明は、請求項1記載の
発明において、マイクロコンピュータで処理した演算結
果によりマイクロコンピュータが継電器の末期症状と判
断した場合に警告を発する警告表示手段、又は警告音発
生手段を設けた方法としたものであり、継電器の接点寿
命末期での摩耗故障の発生を事前に予知し、機器本体の
メンテナンス時期を表示又は警告等で報知させることが
できるという作用を有する。
According to a second aspect of the present invention, in the first aspect of the invention, a warning display means or a warning sound for issuing a warning when the microcomputer judges that it is the terminal symptom of the relay based on the calculation result processed by the microcomputer. This is a method in which the generation means is provided, and has an effect that it is possible to predict in advance the occurrence of a wear failure at the end of the contact life of the relay, and to notify the maintenance time of the device body by displaying or warning.

【0016】請求項3に記載の発明は、請求項1または
2記載の発明において、継電器を強制停止させた状態を
記憶させる強制停止記憶手段を設けた方法としたもので
あり、万が一マイクロコンピュータの電源が一時的に切
られたり、リセット等された場合にマイクロコンピュー
タが判断した強制停止状態あるいは末期症状警告報知状
態をコンデンサに記憶し、再通電、再スタート時にも前
記状態を確保できるという作用を有する。
According to a third aspect of the present invention, there is provided a method according to the first or second aspect of the present invention, in which a forced stop storage means for storing a state in which the relay is forcibly stopped is provided. When the power is temporarily cut off or reset, the microcomputer stores the forced stop state or the terminal symptom warning notification state in the capacitor so that the state can be maintained even when the power is turned on or restarted again. Have.

【0017】以下、本発明の実施の形態について、図1
から図6を用いて説明する。 (実施の形態1)図1は本発明の第1の実施の形態にお
ける継電器の制御方法を示す基本回路図であり、図1に
おいて、21はマイクロコンピュータ、21aはマイク
ロコンピュータ21の電源入力(VDD)、6は負荷駆
動用電源、21bは負荷駆動用電源6と共通ラインとし
た電源入力(VSS)、2は継電器、21cは継電器2
の制御出力、3は継電器駆動用トランジスタ、4a,4
bは継電器2の接点、5は負荷、7は直流電源(VD
D)である。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
From now on, description will be made with reference to FIG. (Embodiment 1) FIG. 1 is a basic circuit diagram showing a control method of a relay according to a first embodiment of the present invention. In FIG. 1, 21 is a microcomputer, 21a is a power input (VDD ), 6 is a power source for driving the load, 21b is a power source input (VSS) common to the power source for driving the load 6, 2 is a relay, 21c is a relay 2
Control output, 3 is a relay drive transistor, 4a, 4
b is a contact of the relay 2, 5 is a load, 7 is a DC power source (VD
D).

【0018】マイクロコンピュータ21の継電器2の制
御出力21cは継電器駆動用トランジスタ3を介して継
電器2に接続され、継電器2の接点4aは負荷5と負荷
駆動用電源6に接続され、接点4bは接点4aが溶着し
た場合の接点溶着検出用入力信号21dとしてマイクロ
コンピュータ21に接続された構成である。
The control output 21c of the relay 2 of the microcomputer 21 is connected to the relay 2 via the relay driving transistor 3, the contact 4a of the relay 2 is connected to the load 5 and the load driving power source 6, and the contact 4b is a contact. 4a is connected to the microcomputer 21 as a contact welding detection input signal 21d when the welding is performed.

【0019】図2は同実施の形態1における接点溶着検
出処理ルーチンのフローチャートであり、図2により以
下に詳細な動作を説明する。
FIG. 2 is a flowchart of the contact welding detection processing routine in the first embodiment, and the detailed operation will be described below with reference to FIG.

【0020】まず、継電器駆動出力がON状態かOFF
状態かをチェックし、ON状態であれば検出領域外のた
め、接点溶着検出処理ルーチンを終了する。
First, the relay drive output is ON or OFF
If it is in the ON state, the contact welding detection processing routine ends.

【0021】OFFであれば次のステップで接点溶着の
有無を接点の開閉状態でチェックし、開いていれば正常
ルーチンへ戻し、閉じていれば接点溶着が発生している
と判断し、衝撃パルスカウンタMに1をプラスしてMに
戻し、継電器2のコイル信号に衝撃パルスを1回加えて
再度接点が開いたか否かを確認する。開かない場合はま
だ接点溶着が外れていないと判断し、外れるまで衝撃パ
ルスを継電器2のコイルに印加する。
If it is OFF, the presence or absence of contact welding is checked in the next step by checking the open / closed state of the contact. If it is open, it returns to the normal routine. If it is closed, it is determined that contact welding has occurred, and an impact pulse is generated. The counter M is incremented by 1 and returned to M, and a shock pulse is added once to the coil signal of the relay 2 to confirm whether or not the contact is opened again. If it does not open, it is determined that the contact welding has not been removed, and a shock pulse is applied to the coil of the relay 2 until it is removed.

【0022】途中で接点溶着が外れた場合は接点溶着回
数が1回目か否かを判断し、1回目の場合は継電器2の
正常に動作した回数を数えるカウンタNをクリアし、接
点溶着検出ルーチンを終了する。2回目の場合は接点溶
着検出処理ルーチンへ再度戻ってきて、前回と同様に接
点溶着有りと判断したら、衝撃パルスカウンタMの積算
数に1をプラスしてMに戻し継電器2に衝撃パルスを加
える。
If the contact welding is removed during the process, it is judged whether or not the number of times of contact welding is the first time, and if it is the first time, the counter N for counting the number of times the relay 2 has normally operated is cleared, and the contact welding detection routine is performed. To finish. In the case of the second time, the process returns to the contact welding detection processing routine again, and if it is determined that there is contact welding as in the previous case, the integrated number of the shock pulse counter M is incremented by 1 and returned to M, and a shock pulse is applied to the relay 2. .

【0023】接点溶着が外れなければ外れるまで衝撃パ
ルスを印加するのは従来例と同様であるが、接点溶着が
外れると接点溶着回数が1回目か否かを判断するが、今
回は1回目でないのでNOとなり、F←(1/N)・M
で示される演算式を実行し、事前に設定したF≧5の時
点で接点溶着の前兆と判別される。従って、Fが5以上
の場合は接点溶着の前兆ありと判断して、継電器2を強
制停止させてマイクロコンピュータ21をストップさせ
る。Fが5未満の場合は継電器2が正常動作した回数を
数えるカウンタNをクリアし、接点溶着ルーチンを終了
する。3回目以降も前記と同様なことを繰り返す。
If the contact welding does not come off, the impact pulse is applied until it comes off, as in the conventional example. When the contact welding comes off, it is judged whether or not the number of times of contact welding is the first time, but this time it is not the first time. Therefore, it becomes NO and F ← (1 / N) ・ M
The arithmetic expression shown by is executed, and it is determined that it is a precursor of contact welding at a preset time point of F ≧ 5. Therefore, when F is 5 or more, it is determined that there is a sign of contact welding, and the relay 2 is forcibly stopped and the microcomputer 21 is stopped. When F is less than 5, the counter N that counts the number of times the relay 2 has normally operated is cleared, and the contact welding routine ends. The same as above is repeated from the third time onward.

【0024】このように従来例の構成に加え、継電器2
が正常動作した回数を数えるカウンタ手段と、継電器2
に与えた衝撃パルスの発生回数を数えるカウンタ手段
と、それぞれのカウンタ情報の結果をマイクロコンピュ
ータで処理する演算処理手段を設けたことにより、マイ
クロコンピュータが自己診断を行い、継電器2の接点末
期症状を事前に検出し、接点溶着の故障が発生する前に
継電器2を強制停止させることができるので、機器本体
の突発故障や破損等が回避できるという効果が得られ
る。
Thus, in addition to the structure of the conventional example, the relay 2
And a relay means for counting the number of times the
By providing the counter means for counting the number of occurrences of the impact pulse given to the computer and the arithmetic processing means for processing the result of each counter information by the microcomputer, the microcomputer performs self-diagnosis and detects the terminal end symptom of the relay 2. Since the relay 2 can be detected in advance and the relay 2 can be forcibly stopped before the contact welding failure occurs, it is possible to avoid an unexpected failure or damage of the device body.

【0025】(実施の形態2)図3は本発明の第2の実
施の形態における継電器の制御方法を示す回路図であ
り、前記第1の実施の形態における継電器の制御方法を
示す図1に警告表示手段12を設けた構成としたもので
あり、図4は同実施の形態2における接点溶着検出処理
ルーチンのフローチャートである。
(Embodiment 2) FIG. 3 is a circuit diagram showing a relay control method according to a second embodiment of the present invention. FIG. 1 is a circuit diagram showing the relay control method according to the first embodiment. The warning display means 12 is provided, and FIG. 4 is a flow chart of a contact welding detection processing routine in the second embodiment.

【0026】図1と重複する符号の説明は省くが、図3
において、21gはマイクロコンピュータ21の表示駆
動出力信号で、警告表示手段12の抵抗10と発光ダイ
オード11を介して直流電源(VDD)7に接続されて
いる。
A description of the reference numerals overlapping with those in FIG. 1 is omitted, but FIG.
In the figure, 21 g is a display drive output signal of the microcomputer 21, which is connected to the DC power supply (VDD) 7 via the resistor 10 and the light emitting diode 11 of the warning display means 12.

【0027】警告表示手段12は図4の接点溶着処理ル
ーチンのM≧1の判断ステップで、Mが1以上になった
場合にメンテナンス情報を警告表示手段12で表示し、
継電器2の保守を知らせる。また同図4のF≧5の判断
ステップで、Fが5以上になった場合に継電器2の故障
を警告表示手段12で表示し、継電器2を強制停止させ
てマイクロコンピュータ21をストップさせるという動
作を行う。
The warning display means 12 displays the maintenance information on the warning display means 12 when M becomes 1 or more in the judgment step of M ≧ 1 in the contact welding processing routine of FIG.
Notify maintenance of relay 2. Further, in the determination step of F ≧ 5 in FIG. 4, when F becomes 5 or more, the failure of the relay 2 is displayed by the warning display means 12, and the operation of forcibly stopping the relay 2 and stopping the microcomputer 21 is performed. I do.

【0028】このように本発明の第2の実施の形態にお
ける継電器の制御方法によれば、接点溶着の故障が発生
する前に継電器を強制停止させると同時に警告表示がで
きるので、機器本体の突発故障や破損等が回避できると
いう効果に加え、機器本体のメンテナンス時期の報知や
継電器2が強制停止状態であることを知らせるという効
果が得られる。
As described above, according to the relay control method of the second embodiment of the present invention, the relay can be forcibly stopped and a warning can be displayed at the same time before the contact welding failure occurs. In addition to the effect of avoiding failure or damage, it is possible to obtain the effect of notifying the maintenance time of the device main body and notifying that the relay 2 is in the forced stop state.

【0029】さらに継電器2の接点溶着の初期症状(M
が1の時)が検出された段階で、警告表示手段12によ
り機器本体から継電器のメンテナンス時期を知らせる警
告表示も容易に実現できるものである。
Furthermore, the initial symptom of contact welding of the relay 2 (M
When 1) is detected, the warning display means 12 can easily realize a warning display from the device main body to inform the maintenance time of the relay.

【0030】(実施の形態3)図5は本発明の第3の実
施の形態における継電器の制御方法を示す回路図であ
り、図6はその動作タイミングチャートである。
(Third Embodiment) FIG. 5 is a circuit diagram showing a method of controlling a relay according to a third embodiment of the present invention, and FIG. 6 is an operation timing chart thereof.

【0031】図5において、21はマイクロコンピュー
タ、2は継電器、3はマイクロコンピュータ21の継電
器2の制御出力(信号)21cにより継電器2を駆動す
る継電器駆動用トランジスタ、4a,4bは継電器2の
接点、5は接点4aに直列に接続されている負荷、6は
負荷駆動用電源、8はダイオード、9は充電用コンデン
サで、接点溶着の入力は継電器2の接点4bからマイク
ロコンピュータ21の接点溶着検出用入力信号21dに
接続されている。ダイオード8は充電用コンデンサ9に
充電された電荷がマイクロコンピュータ21の出力ポー
ト等からの放電防止用である。
In FIG. 5, reference numeral 21 is a microcomputer, 2 is a relay, 3 is a relay driving transistor for driving the relay 2 by the control output (signal) 21c of the relay 2 of the microcomputer 21, and 4a and 4b are contacts of the relay 2. Reference numeral 5 is a load connected in series to the contact 4a, 6 is a power source for driving the load, 8 is a diode, and 9 is a charging capacitor. The contact welding input is from the contact 4b of the relay 2 to the contact welding detection of the microcomputer 21. For input signal 21d. The diode 8 prevents the electric charge charged in the charging capacitor 9 from being discharged from the output port of the microcomputer 21 or the like.

【0032】上記の構成において、マイクロコンピュー
タ21は継電器2からの接点溶着検出用入力信号21d
で接点溶着信号を得るので、直流電源(VDD)7が切
れてもこの情報を記憶するためコンデンサ9にダイオー
ド8を介して充電する。直流電源(VDD)7が復帰し
たときはコンデンサ9の電荷をマイクロコンピュータ2
1のアナログ/デジタル変換入力(以下、「A/D入
力」と表現する)21fで判断し、継電器2の制御信号
出力21cで継電器2を強制停止させる。
In the above structure, the microcomputer 21 has the contact welding detection input signal 21d from the relay 2.
Since the contact welding signal is obtained at, the capacitor 9 is charged through the diode 8 in order to store this information even when the DC power supply (VDD) 7 is cut off. When the direct current power supply (VDD) 7 is restored, the charge of the capacitor 9 is transferred to the microcomputer 2
The analog / digital conversion input 1 (hereinafter, referred to as “A / D input”) 21f makes a determination, and the control signal output 21c of the relay 2 forcibly stops the relay 2.

【0033】以下、図6によって動作を説明する。図6
において、横軸のイ点では接点溶着判別結果の出力21
eがLOレベルなのでコンデンサ9の両端電圧もLOレ
ベルのため、A/D入力21fはLOレベルであり、継
電器2の制御信号出力21cはHIレベルで継電器2は
駆動状態を示している。
The operation will be described below with reference to FIG. FIG.
At the point a on the horizontal axis, the contact welding determination result output 21
Since e is at the LO level, the voltage across the capacitor 9 is also at the LO level, so the A / D input 21f is at the LO level, the control signal output 21c of the relay 2 is at the HI level, and the relay 2 is in a driving state.

【0034】次に、ロ点は継電器2の接点溶着判別結果
の出力21eがHIレベルとなった点であり、継電器2
の制御信号出力21cは強制停止する。また接点溶着判
別結果の出力21eによりダイオード8を介してコンデ
ンサ9が充電される。この充電電圧が、A/D入力21
fの判定レベルd線を越えたaレベルに達すると記憶領
域に入る。この時マイクロコンピュータ21のRAM領
域で構成する記憶フラグがf点でセットされる。
Next, point B is a point at which the output 21e of the contact welding determination result of the relay 2 becomes HI level.
The control signal output 21c of is forcibly stopped. Further, the output 21e of the contact welding determination result charges the capacitor 9 via the diode 8. This charging voltage is the A / D input 21
When it reaches the level a which exceeds the judgment level d of f, it enters the storage area. At this time, the storage flag formed in the RAM area of the microcomputer 21 is set at the point f.

【0035】接点溶着判別結果の出力21eはマイクロ
コンピュータ21の直流電源(VDD)7が確保されて
いる間はHI状態を維持するが、直流電源(VDD)7
が切れるハ点では接点溶着判別結果の出力21eもLO
レベルになる。この時前記コンデンサ9の両端電圧は自
己放電程度の緩やかな電圧降下状態に入るが、ダイオー
ド8はマイクロコンピュータ21の接点溶着判別結果の
出力21eを通してコンデンサ9に充電された電荷が放
電することを防いでいる。またA/D入力21fは常時
HIインピーダンスのために直接接続が可能になってい
る。
The output 21e of the contact welding determination result maintains the HI state while the DC power supply (VDD) 7 of the microcomputer 21 is secured, but the DC power supply (VDD) 7
At the point C where the contact breaks, the output 21e of the contact welding determination result is also LO
Become a level. At this time, the voltage across the capacitor 9 enters a gentle voltage drop state of about self-discharge, but the diode 8 prevents discharge of the electric charge charged in the capacitor 9 through the output 21e of the contact welding determination result of the microcomputer 21. I'm out. Further, the A / D input 21f can always be directly connected because of the HI impedance.

【0036】コンデンサ9の自己放電でニ点のbレベル
で直流電源(VDD)7が復帰した場合は、A/D入力
21fは[M]のようにマイクロコンピュータ21は記
憶状態と判断し、継電器2の制御信号出力21cの停止
を維持すると共に、g点で記憶フラグが再度セットされ
マイクロコンピュータ21の接点溶着判別結果の出力2
1eがHIになりコンデンサ9の両端電圧は再度電荷が
充電され、記憶がリフレッシュされる。
When the direct-current power supply (VDD) 7 is restored at the two-point b level by self-discharge of the capacitor 9, the microcomputer 21 judges that the A / D input 21f is [M], and the relay is in the memory state. The control signal output 21c of No. 2 is maintained stopped, the memory flag is set again at the point g, and the output 2 of the contact welding determination result of the microcomputer 21 is output.
1e becomes HI, and the voltage across the capacitor 9 is charged again to refresh the memory.

【0037】しかし、コンデンサ9の両端電圧がeレベ
ルのようにA/D入力21fの判定レベルd線に達しな
い場合は、A/D入力21fは[R]のようにLOレベ
ルのままで、記憶はリセットされ、継電器2の制御信号
出力21cはhのように駆動状態に入ってしまうが、こ
のようなことが実用上問題の無いレベルを実験で確認し
た結果、図6のハからニまでの間の記憶期待時間を16
8時間(1週間)必要とすると、コンデンサ9に自己放
電の低いグレードを採用すれば220μFで十分である
ことを得た。
However, when the voltage across the capacitor 9 does not reach the judgment level d line of the A / D input 21f like the e level, the A / D input 21f remains at the LO level like [R], The memory is reset, and the control signal output 21c of the relay 2 enters the driving state like h, but as a result of confirming the level in which this is not a problem in practical use by experiment, from c to d in FIG. Expected time to remember between 16
If 8 hours (1 week) is required, 220 μF is sufficient if a grade with low self-discharge is adopted as the capacitor 9.

【0038】このように本発明の第3の実施の形態にお
ける継電器の制御方法によれば、万が一マイクロコンピ
ュータの電源が切られたり、リセット等された場合にマ
イクロコンピュータが判断した強制停止状態あるいは末
期症状警告報知状態をコンデンサに記憶し、再通電、再
スタート時にも前記状態を確保できるので、安全で信頼
性が高い継電器の制御ができるという効果が得られる。
As described above, according to the relay control method of the third embodiment of the present invention, the microcomputer is forced to stop the power supply or reset it, or the terminal is in the final stop state. Since the symptom warning notification state is stored in the capacitor and the state can be secured even when the power is turned on and restarted again, the effect of being able to control the relay with safety and high reliability can be obtained.

【0039】[0039]

【発明の効果】以上のように本発明による継電器の制御
方法は、継電器の接点溶着を検出し、かつその信号をマ
イクロコンピュータの入力とする接点溶着検出入力手段
と、接点溶着時にマイクロコンピュータの継電器制御信
号を短いパルス信号に切り替える継電器制御手段と、前
記短いパルスの発生数を数える第1のカウンタ手段と、
前記継電器が動作する回数を数える第2のカウンタ手段
と、前記第1及び第2のカウンタ手段で数えた結果をマ
イクロコンピュータで処理する演算処理手段と、その演
算結果で前記継電器の制御信号を停止させる強制停止手
段と、前記マイクロコンピュータで処理した演算結果で
前記マイクロコンピュータが前記継電器の接点溶着の初
期症状と判断した場合に警告を発する警告表示手段又は
警告音発生手段と、末期症状と判断した場合の継電器を
強制停止させた状態を記憶させる強制停止記憶手段とを
備えた構成としたものであり、マイクロコンピュータに
より継電器の接点が寿命末期での摩耗故障に至る前に摩
耗故障の発生を予知することができ、警告手段による機
器本体のメンテナンス時期の報知や継電器を停止させる
強制停止手段および警報報知状態や強制停止状態を記憶
させる強制停止記憶手段により、突発故障や機器本体の
破損等が回避できるという効果が得られるものである。
As described above, according to the relay control method of the present invention, the contact welding detection input means for detecting the contact welding of the relay and using the signal as the input of the microcomputer, and the relay of the microcomputer at the time of contact welding. Relay control means for switching the control signal to a short pulse signal, first counter means for counting the number of occurrences of the short pulse,
A second counter means for counting the number of times the relay operates, an arithmetic processing means for processing a result counted by the first and second counter means by a microcomputer, and a control signal for the relay stopped by the arithmetic result. Forced stop means to make, the warning display means or warning sound generating means to issue a warning when the microcomputer determines that it is the initial symptom of contact welding of the relay based on the calculation result processed by the microcomputer, and the terminal symptom. In this case, the configuration is provided with a forced stop storage means for storing the state in which the relay is forcibly stopped, and the occurrence of a wear failure is predicted by the microcomputer before the contact of the relay reaches the wear failure at the end of life. It is possible to notify the maintenance time of the equipment main body by the warning means and forced stop means for stopping the relay. Forced stop storage means for storing an alarm notification condition and forced stop state, in which the effect is obtained that damage of catastrophic failures and device body can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1における回路図FIG. 1 is a circuit diagram according to a first embodiment of the present invention.

【図2】同実施の形態1における接点溶着検出処理ルー
チンのフローチャート
FIG. 2 is a flowchart of a contact welding detection processing routine according to the first embodiment.

【図3】同実施の形態2における回路図FIG. 3 is a circuit diagram according to the second embodiment.

【図4】同実施の形態2における接点溶着検出処理ルー
チンのフローチャート
FIG. 4 is a flowchart of a contact welding detection processing routine according to the second embodiment.

【図5】同実施の形態3における回路図FIG. 5 is a circuit diagram of the third embodiment.

【図6】同実施の形態3におけるタイミングチャートFIG. 6 is a timing chart in the third embodiment.

【図7】従来例(特開平3−45853号公報)による
回路図
FIG. 7 is a circuit diagram according to a conventional example (JP-A-3-45853).

【図8】従来例(特開平3−45853号公報)による
タイミングチャート
FIG. 8 is a timing chart according to a conventional example (JP-A-3-45853).

【符号の説明】[Explanation of symbols]

2 継電器 3 継電器駆動用トランジスタ 4a 継電器2の接点 4b 継電器2の接点 5 負荷 6 負荷駆動用電源 7 直流電源(VDD) 21 マイクロコンピュータ 21a 電源入力(VDD) 21b 負荷駆動用電源6と共通ラインとした電源入力
(VSS) 21c 継電器2の制御出力 21d 接点溶着検出用入力信号 21e 接点溶着判別結果の出力
2 relay 3 relay drive transistor 4a relay 2 contact 4b relay 2 contact 5 load 6 load drive power supply 7 direct current power supply (VDD) 21 microcomputer 21a power supply input (VDD) 21b load drive power supply 6 and common line Power input (VSS) 21c Control output of relay 2 21d Input signal for contact welding detection 21e Output of contact welding determination result

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 継電器の接点溶着を検出し、かつその信
号をマイクロコンピュータの入力とする接点溶着検出入
力手段と、接点溶着時にマイクロコンピュータの継電器
制御信号を短いパルス信号に切り替える継電器制御手段
と、前記短いパルス信号の発生数を数える第1のカウン
タ手段と、前記継電器が動作する回数を数える第2のカ
ウンタ手段と、前記第1及び第2のカウンタ手段で数え
た結果をマイクロコンピュータで処理する演算処理手段
と、その演算結果で前記継電器の制御信号を停止させる
強制停止手段からなる継電器の制御方法。
1. A contact welding detection input means for detecting contact welding of a relay and using the signal as an input of a microcomputer, and a relay control means for switching a relay control signal of the microcomputer to a short pulse signal at the time of contact welding. A first counter means for counting the number of the short pulse signals generated, a second counter means for counting the number of times the relay operates, and a microcomputer for processing the results counted by the first and second counter means. A method of controlling a relay, comprising arithmetic processing means and forced stop means for stopping the control signal of the relay according to the result of the arithmetic processing.
【請求項2】 マイクロコンピュータで処理した演算結
果によりマイクロコンピュータが継電器の末期症状と判
断した場合に警告を発する警告表示手段、又は警告音発
生手段を設けた請求項1記載の継電器の制御方法。
2. The relay control method according to claim 1, further comprising warning display means or warning sound generation means for issuing a warning when the microcomputer determines that the terminal symptom is present in the relay based on the calculation result processed by the microcomputer.
【請求項3】 継電器を強制停止させた状態を記憶させ
る強制停止記憶手段を設けた請求項1または2記載の継
電器の制御方法。
3. The relay control method according to claim 1, further comprising a forced stop storage means for storing a state where the relay is forcibly stopped.
JP10506296A 1996-04-25 1996-04-25 Relay control method Pending JPH09293440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10506296A JPH09293440A (en) 1996-04-25 1996-04-25 Relay control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10506296A JPH09293440A (en) 1996-04-25 1996-04-25 Relay control method

Publications (1)

Publication Number Publication Date
JPH09293440A true JPH09293440A (en) 1997-11-11

Family

ID=14397487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10506296A Pending JPH09293440A (en) 1996-04-25 1996-04-25 Relay control method

Country Status (1)

Country Link
JP (1) JPH09293440A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027306A1 (en) * 1997-11-25 1999-06-03 Matsushita Electric Industrial Co., Ltd. Electric cooker
US7522400B2 (en) * 2004-11-30 2009-04-21 Robertshaw Controls Company Method of detecting and correcting relay tack weld failures
JP2016143563A (en) * 2015-02-02 2016-08-08 オムロン株式会社 Relay unit, and method of controlling the same
CN105845502A (en) * 2015-02-02 2016-08-10 欧姆龙株式会社 Relay unit and method for controlling relay circuit
US9939491B2 (en) 2015-02-02 2018-04-10 Omron Corporation Relay unit, control method for relay unit
CN113496849A (en) * 2020-04-02 2021-10-12 日本电产三协株式会社 Relay device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027306A1 (en) * 1997-11-25 1999-06-03 Matsushita Electric Industrial Co., Ltd. Electric cooker
US6137091A (en) * 1997-11-25 2000-10-24 Matsushita Electric Industrial Co., Ltd. Electric cooker
CN100375864C (en) * 1997-11-25 2008-03-19 松下电器产业株式会社 Electric cooker
US7522400B2 (en) * 2004-11-30 2009-04-21 Robertshaw Controls Company Method of detecting and correcting relay tack weld failures
JP2016143563A (en) * 2015-02-02 2016-08-08 オムロン株式会社 Relay unit, and method of controlling the same
CN105845503A (en) * 2015-02-02 2016-08-10 欧姆龙株式会社 Relay unit, control method for relay unit
CN105845502A (en) * 2015-02-02 2016-08-10 欧姆龙株式会社 Relay unit and method for controlling relay circuit
US9939491B2 (en) 2015-02-02 2018-04-10 Omron Corporation Relay unit, control method for relay unit
US9997316B2 (en) 2015-02-02 2018-06-12 Omron Corporation Relay unit, control method for relay unit
US10049842B2 (en) 2015-02-02 2018-08-14 Omron Corporation Relay unit for performing insulation diagnosis and method for controlling same
CN113496849A (en) * 2020-04-02 2021-10-12 日本电产三协株式会社 Relay device

Similar Documents

Publication Publication Date Title
US6683778B2 (en) Device for use in electric vehicles for detecting adhesion in relay due to melting
US7368829B2 (en) Method and apparatus for detecting welding of a relay contact
US20160146901A1 (en) Contactor failure determining method and contactor failure determining device
JP2812066B2 (en) Power supply voltage switching device for vehicles
JP2000134707A (en) Power supply controller
EP1104073A2 (en) Automobile power source monitor
JP2013250060A (en) Voltage monitoring module and voltage monitoring system
JP4285550B2 (en) In-vehicle emergency call device
JPWO2018131462A1 (en) Management device and power storage system
JPH09293440A (en) Relay control method
KR20190072276A (en) Apparatus and method for diagnosing a watchdog timer
WO2018056190A1 (en) Power source device and vehicle equipped with power source device
JP2016103445A (en) Safety device
US11979095B2 (en) Discharge control circuit and power conversion device
JP2004289954A (en) Power control device for battery vehicle
US20150086815A1 (en) Method for checking a sleep mode of a cell supervision circuit and lithium-ion rechargeable battery
JPH0613353U (en) Uninterruptible power system
JP4176429B2 (en) Elevator voice notification device
JP2005224047A (en) Method of detecting service life and device of monitoring service life of auxiliary power supply of back-up power supply
JP3287027B2 (en) Automatic fuse switching device
JP3037171B2 (en) Method and apparatus for detecting abnormality in parallel operation power supply
EP0488426A2 (en) Battery charger with cell failure warning circuit
JP3794112B2 (en) Pulse power supply and abnormality detection method
CN116766938A (en) Vehicle collision safety protection system, method, vehicle and medium
JP2576896B2 (en) Primary battery monitoring circuit for memory backup

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Effective date: 20040726

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20050510

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A521 Written amendment

Effective date: 20050711

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060328

Free format text: JAPANESE INTERMEDIATE CODE: A02