JP3794112B2 - Pulse power supply and abnormality detection method - Google Patents

Pulse power supply and abnormality detection method Download PDF

Info

Publication number
JP3794112B2
JP3794112B2 JP18193797A JP18193797A JP3794112B2 JP 3794112 B2 JP3794112 B2 JP 3794112B2 JP 18193797 A JP18193797 A JP 18193797A JP 18193797 A JP18193797 A JP 18193797A JP 3794112 B2 JP3794112 B2 JP 3794112B2
Authority
JP
Japan
Prior art keywords
capacitor
pulse
charging
current
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18193797A
Other languages
Japanese (ja)
Other versions
JPH1127960A (en
Inventor
康夫 片岡
竹久 小金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP18193797A priority Critical patent/JP3794112B2/en
Publication of JPH1127960A publication Critical patent/JPH1127960A/en
Application granted granted Critical
Publication of JP3794112B2 publication Critical patent/JP3794112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力用半導体スイッチを用いたパルス発生回路と磁気圧縮回路を組み合わせて狭幅の大電流パルスを発生するパルス電源に係り、特にキックバックエネルギー回生方式における負荷短絡等の異常を検出する装置並びに方法に関する。
【0002】
【従来の技術】
図3にパルス電源の構成例を示す。パルス発生回路1は、電力用の初段コンデンサC0を設け、このコンデンサC0を充電器2により初期充電しておき、半導体スイッチSWのオン制御でコンデンサC0から磁気パルス圧縮回路3の入力段パルストランスPTにパルス電流を供給する。
【0003】
磁気パルス圧縮回路3は、パルストランスPTで昇圧したパルス電流I0でコンデンサC1を高圧充電し、このコンデンサC1の充電電圧で可飽和リアクトルSI1が磁気スイッチ動作することによりコンデンサC1からコンデンサC2への狭幅のパルス電流I1を発生させてコンデンサC2を高圧充電し、さらにコンデンサC2の充電電圧で可飽和リアクトルSI2が磁気スイッチ動作することによりコンデンサC2からエキシマレーザやグロー放電を利用した薄膜形成装置などの負荷装置4に数十ns〜数μsの狭幅・高電圧のパルス電流I2を供給する。この電流I2は、1秒間に数十〜数千ショットの繰り返しになる。
【0004】
このような構成のパルス電源において、負荷装置4になる放電負荷は、与えられたパルス電力を全て消費することなく、一部のエネルギーがパルス電源に戻ってくる。この戻ってくるエネルギーのことをキックバックエネルギーと称しているが、これを抵抗で消費させると、高出力(単位時問当たりのショット数が高い)装置では抵抗の損失が無視できないレベルになるほか、抵抗の冷却系も含めて電源装置が大型化する。
【0005】
このため,パルス発生回路1は、キックバックエネルギーを初段のコンデンサC0に回生しておき,次の充電サイクルに充電エネルギーの一部として利用する回生形に構成される。なお、キックバック電流の方向は、初段コンデンサから最初のパルスを発生するに必要な充電方向とは逆向きになる。したがって、回生するためにはキックバック電圧を反転させる必要がある。
【0006】
このため、パルス発生回路1は、半導体スイッチSW0のオンにより磁気アシスト用可飽和リアクトルSI0を通してコンデンサC0を初期充電し、この後に半導体スイッチSWのオンによりコンデンサC0からダイオードD2を通してコンデンサC0の放電をすることでパルストランスPTにパルスを供給する。
【0007】
この後、パルストランスPTからのキックバック電流が半導体スイッチSWを経てコンデンサC0を逆極性に充電する。この充電には、可飽和リアクトルSI0を通した振動電流でなされ、コンデンサC0が初期充電時とは逆極性に充電される。
【0008】
この逆極性に充電されたコンデンサC0から、ダイオードD0及び半導体スイッチSW0を通してコンデンサC0を初期充電時の極性に反転充電することでキックバックエネルギーの回生を得る。
【0009】
なお、キックバックエネルギーの回生方法は、図3の構成に限らず、種々の回路構成のものがある。また、磁気パルス圧縮回路3の回路構成も種々のものがある。
【0010】
【発明が解決しようとする課題】
従来のパルス電源において、エキシマレーザ装置等になる負荷装置4は、ピーキングコンデンサCPを有しているため、このコンデンサCPが故障した場合には充電器2やパルス発生回路1から見て負荷の短絡になる。また、コンデンサC0,C1,C2の故障では充電器2から見て負荷の短絡になる。
【0011】
こうした故障発生には、その検出により装置の運転を停止するのが回路保護等から要望される。しかしながら、負荷短絡の検出のために、例えば、各コンデンサに電圧や電流の検出器を設けることは、パルス電源の出力電圧が10数kV〜500kVと非常に高く、パルス幅も数μs以下の非常に狭幅になるため、検出器が大型化したり、コスト高になってしまう。
【0012】
そこで、従来では負荷装置4がエキシマレーザ装置など光を発生することを利用し、この光の発生の途切れで異常発生を検出している。
【0013】
しかしながら、負荷装置4の光出力は、レーザガス等の条件で変動することが多くなるため、光検出による異常検出では光の発生無しが一定時間継続するまでの検出時間を長く設定しておくことが多く、その間も負荷短絡状態で運転を継続することは装置の責務が厳しく、回路設計上余裕を持たせることになり、電源装置自体が大型化、コスト高になってしまう。
【0014】
本発明の目的は、負荷短絡検出のための高電圧・狭幅パルス電流の検出器を不要にしながら、負荷短絡も含めた異常検出を迅速・確実にしたパルス電源並びに異常検出方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明は、負荷短絡等の異常発生時にはキックバックエネルギーが大きくなり、これに伴いコンデンサC0へのエネルギー回生による充電電圧が高く、充電開始から充電終了までの充電時間が短くなることに着目し、この充電時間監視又は充電電圧監視により異常発生を検出するようにしたもので、以下の構成並びに方法を特徴とする。
【0016】
(第1の発明)
初期充電されるコンデンサから半導体スイッチのオン制御でパルス電流を発生するパルス発生回路と、前記パルス電流を磁気圧縮して負荷に供給する磁気パルス圧縮回路とを備え、前記パルス発生回路は負荷側からのキックバック電流を前記コンデンサの充電電流としてエネルギーを回生するパルス電源において、
前記エネルギー回生後の前記コンデンサの充電開始から充電終了までの計時をする計時手段と、
正常時の前記コンデンサの充電開始から充電終了までの充電時間が設定され、この充電時間に対して前記計時手段の計時時間が短いときに前記負荷及び磁気パルス圧縮回路の異常検出出力を得る比較回路とを備えたことを特徴とする。
【0017】
(第2の発明)
初期充電されるコンデンサから半導体スイッチのオン制御でパルス電流を発生するパルス発生回路と、前記パルス電流を磁気圧縮して負荷に供給する磁気パルス圧縮回路とを備え、前記パルス発生回路は負荷側からのキックバック電流を前記コンデンサの充電電流としてエネルギーを回生するパルス電源において、
前記エネルギー回生後の前記コンデンサの充電開始から充電終了までの充電時間が正常時の充電時間以下のときに前記負荷及び磁気パルス圧縮回路の異常と判定することを特徴とする。
【0018】
(第3の発明)
初期充電されるコンデンサから半導体スイッチのオン制御でパルス電流を発生するパルス発生回路と、前記パルス電流を磁気圧縮して負荷に供給する磁気パルス圧縮回路とを備え、前記パルス発生回路は負荷側からのキックバック電流を前記コンデンサの充電電流としてエネルギーを回生するパルス電源において、
前記エネルギー回生後の前記コンデンサの充電電圧レベルが正常時の充電電圧を越えるときに前記負荷及び磁気パルス圧縮回路の異常と判定することを特徴とする。
【0019】
【発明の実施の形態】
図1は、本発明の実施形態を示す異常検出装置であり、図3と同等の主回路部分は同じ符号で示す。
【0020】
制御回路5は、負荷装置4が要求するパルス電流の発生周期及び電流レベルに従ってパルス発生回路1の半導体スイッチSW,SW0をオン・オフ制御すると共に、充電器2の運転・停止制御を行う。なお、パルス発生回路1の制御にはキックバックエネルギーの回生制御も含まれる。
【0021】
計時手段になるカウンタ6は、制御回路5がキックバックエネルギーの回生制御を実行した後のコンデンサC0の充電開始制御をするタイミングでクロックの計数を開始し、コンデンサC0が所定電圧まで充電されたときの充電終了で計数を停止し、この計数によりコンデンサC0の充電開始から終了までの充電時間に対応する計数値を得る。
【0022】
充電検出回路7は、抵抗分圧回路等の電圧検出器により検出されるコンデンサC0の充電電圧と設定電圧の比較により、コンデンサC0が所定レベルまで充電されたことを検出し、コンデンサC0の充電終了の検出信号を得る。
【0023】
比較回路8は、コンデンサC0の充電終了時にカウンタ6の値と設定値を比較し、カウンタ6の値が設定値以下になるとき、すなわちコンデンサC0の充電が一定時間以下で終了するときに負荷側の短絡等の異常検出出力を得る。この異常検出出力では警報器(図示省略)での警報発生と共に、制御回路5に保護指令として与えることで制御回路5が回路保護(例えばスイッチSW,SW0のオフ)制御を行う。
【0024】
本実施形態による異常検出動作を図2を参照して説明する。同図の(a)は正常動作時のコンデンサC0の電圧波形を示し、(b)は負荷短絡等の異常発生時のコンデンサC0の電圧波形を示す。
【0025】
正常時は、時刻t1でコンデンサC0の放電を行い、負荷にパルス電流を供給して時刻t2で負荷側からのキックバック電流でコンデンサC0が逆極性に充電される。そして、時刻t3でコンデンサC0を初期充電方向に反転充電し、時刻t4でコンデンサC0の充電を開始し、この充電電圧が所定値に達した時刻t5で充電終了とする。
【0026】
これに対して、異常時は、時刻t2には負荷側からのキックバック電流が大きくなる。これは、コンデンサC0から負荷側に与えたエネルギーが正常時には負荷で消費されるのに対して、短絡発生時は負荷で消費されることなく大きなキックバック電流が発生することによる。
【0027】
このため、大きなキックバック電流でコンデンサC0の充電電圧が大きくなり、時刻t3での反転充電電圧も大きくなる。このため、異常時は、時刻t4からの充電開始時の電圧が高くなり、この電圧からの充電開始では充電終了時刻t5までの充電時間Tが正常時に比べて短くなる。
【0028】
これら現象から、図1のカウンタ6が充電開始から終了までの計時を行い、この時間が比較回路8に設定する正常な充電時間以下の時は異常として検出できる。また、異常発生時には時刻t2〜t3又は時刻t3〜t4でのコンデンサC0の充電電圧レベルが正常時に比べて高くなることから、この充電電圧レベル検出と正常値との比較で異常検出することができる。
【0029】
なお、異常検出は、負荷装置4の短絡に限らず、磁気パルス圧縮回路3のコンデンサC1,C2の短絡故障など、パルス発生回路1の後段での短絡故障を検出できる。
【0030】
また、パルス発生回路1のコンデンサC0の短絡故障などの異常は、充電開始から充電終了までの充電時間Tが比較回路8の設定時間よりも長くなることの検出で可能となるし、充電器2の出力電流が過大になることから検出することもできる。
【0031】
【発明の効果】
以上のとおり、本発明によれば、コンデンサC0へのエネルギー回生による充電時間監視又は充電電圧レベル監視により負荷短絡等の異常発生を検出するようにしたため、以下の効果がある。
【0032】
(1)異常検出装置としては、特別な高電圧やパルス幅の狭い大電流を計測するための大型で高価な検出器を不要にし、少しの電子回路の付加で済む。
【0033】
(2)異常検出は、コンデンサの充電時に得ることができ、従来の光による検出に比べて遅れを少なくした検出ができる。これに伴い、主回路の短絡耐量を軽減し、その大型化やコスト高を招くこともなくなる。
【図面の簡単な説明】
【図1】本発明の実施形態を示すパルス電源の異常検出装置。
【図2】実施形態における正常時と異常時のコンデンサC0の電圧波形。
【図3】パルス電源回路例。
【符号の説明】
1…パルス発生回路
2…充電器
3…磁気パルス圧縮回路
4…負荷装置
SW、SW0…半導体スイッチ
SI0〜SI3…可飽和リアクトル
0、C1、C2、CP…コンデンサ
5…制御回路
6…カウンタ
7…充電検出回路
8…比較回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulse power source that generates a narrow current pulse by combining a pulse generation circuit using a power semiconductor switch and a magnetic compression circuit, and particularly detects an abnormality such as a load short circuit in a kickback energy regeneration system. The present invention relates to an apparatus and a method.
[0002]
[Prior art]
FIG. 3 shows a configuration example of the pulse power supply. The pulse generation circuit 1 is provided with a first-stage capacitor C 0 for power, and this capacitor C 0 is initially charged by the charger 2, and the input stage of the magnetic pulse compression circuit 3 from the capacitor C 0 is controlled by turning on the semiconductor switch SW. A pulse current is supplied to the pulse transformer PT.
[0003]
Magnetic pulse compression circuit 3, the capacitor C 1 by the capacitor C 1 and the high pressure charged with pulse current I 0 that is pressurized by the pulse transformer PT, saturable reactors SI 1 at the charging voltage of the capacitor C 1 is operated magnetic switch excimer laser from the capacitor C 2 by by generating a pulse current I 1 of the narrow width of the capacitor C 2 of the capacitor C 2 and the high pressure charge, further saturable reactor SI 2 at the charging voltage of the capacitor C 2 is operated magnetic switch And a pulse current I 2 having a narrow width and a high voltage of several tens to several μs is supplied to a load device 4 such as a thin film forming device using glow discharge. This current I 2 is repeated several tens to several thousand shots per second.
[0004]
In the pulse power supply having such a configuration, the discharge load that becomes the load device 4 does not consume all the applied pulse power, and a part of the energy returns to the pulse power supply. This returning energy is called kickback energy, but if this is consumed by resistance, the loss of resistance will be at a level that cannot be ignored with high output devices (high shots per unit time). In addition, the power supply device including the resistance cooling system is enlarged.
[0005]
Therefore, the pulse generation circuit 1 is configured in a regenerative form in which kickback energy is regenerated in the first-stage capacitor C 0 and used as part of the charging energy in the next charging cycle. Note that the direction of the kickback current is opposite to the charging direction necessary to generate the first pulse from the first stage capacitor. Therefore, in order to regenerate, it is necessary to reverse the kickback voltage.
[0006]
Therefore, the pulse generating circuit 1, the capacitor C 0 and the initial charged through the magnetic assist saturable reactor SI 0 by turning on the semiconductor switches SW 0, the capacitor through the capacitor C 0 diode D 2 by turning on the semiconductor switch SW after this supplying pulses to the pulse transformer PT by the discharge of C 0.
[0007]
Thereafter, the kickback current from the pulse transformer PT charges the capacitor C 0 with the reverse polarity via the semiconductor switch SW. This charging is performed with an oscillating current through the saturable reactor SI 0 , and the capacitor C 0 is charged with a polarity opposite to that at the initial charging.
[0008]
A capacitor C 0 which is charged to the opposite polarity to obtain a regeneration of kickback energy through the diode D 0 and a semiconductor switch SW 0 of the capacitor C 0 by inverting charged polarity during initial charge.
[0009]
The kickback energy regeneration method is not limited to the configuration shown in FIG. There are also various circuit configurations of the magnetic pulse compression circuit 3.
[0010]
[Problems to be solved by the invention]
In conventional pulse power supply, a load device 4 becomes excimer laser device or the like, since it has a peaking capacitor C P, if this capacitor C P has failed when viewed from the charger 2 and the pulse generating circuit 1 load It becomes a short circuit. Further, when the capacitors C 0 , C 1 , and C 2 fail, the load is short-circuited when viewed from the charger 2.
[0011]
When such a failure occurs, it is desired from the viewpoint of circuit protection or the like that the operation of the apparatus is stopped upon detection thereof. However, in order to detect a load short circuit, for example, providing a voltage or current detector in each capacitor makes the output voltage of the pulse power supply as very high as several tens kV to 500 kV and the pulse width is also several μs or less. Therefore, the detector becomes large and the cost becomes high.
[0012]
Therefore, conventionally, the load device 4 utilizes the fact that the excimer laser device or the like generates light, and the occurrence of abnormality is detected by the interruption of the light generation.
[0013]
However, since the light output of the load device 4 often fluctuates under conditions such as laser gas, it is possible to set a long detection time until the absence of light continues for a certain period of time in the detection of anomaly by light detection. In many cases, it is difficult to continue the operation in a load short-circuit state during this period, and the duty of the device is strict, so that there is a margin in circuit design, and the power supply device itself is increased in size and cost.
[0014]
An object of the present invention is to provide a pulse power supply and an abnormality detection method that can quickly and reliably detect an abnormality including a load short circuit while eliminating the need for a high voltage / narrow pulse current detector for detecting a load short circuit. It is in.
[0015]
[Means for Solving the Problems]
The present invention pays attention to the fact that the kickback energy increases when an abnormality such as a load short circuit occurs, and accordingly, the charging voltage due to energy regeneration to the capacitor C 0 is high, and the charging time from the start of charging to the end of charging is shortened. The occurrence of abnormality is detected by this charging time monitoring or charging voltage monitoring, and is characterized by the following configuration and method.
[0016]
(First invention)
A pulse generation circuit that generates a pulse current from a capacitor that is initially charged by on-control of a semiconductor switch; and a magnetic pulse compression circuit that magnetically compresses the pulse current and supplies the pulse current to a load. In the pulse power source that regenerates energy using the kickback current of the capacitor as the charging current of the capacitor,
Time measuring means for measuring time from the start of charging of the capacitor after the energy regeneration to the end of charging;
Comparing circuit for obtaining an abnormality detection output of the load and the magnetic pulse compression circuit when the charging time from the start of charging of the capacitor to the end of charging is set in a normal time and the time measuring time of the time measuring means is short with respect to the charging time It is characterized by comprising.
[0017]
(Second invention)
A pulse generation circuit that generates a pulse current from a capacitor that is initially charged by on-control of a semiconductor switch; and a magnetic pulse compression circuit that magnetically compresses the pulse current and supplies the pulse current to a load. In the pulse power source that regenerates energy using the kickback current of the capacitor as the charging current of the capacitor,
It is determined that the load and the magnetic pulse compression circuit are abnormal when the charging time from the start of charging of the capacitor after the energy regeneration to the end of charging is equal to or less than a normal charging time.
[0018]
(Third invention)
A pulse generation circuit that generates a pulse current from a capacitor that is initially charged by on-control of a semiconductor switch; and a magnetic pulse compression circuit that magnetically compresses the pulse current and supplies the pulse current to a load. In the pulse power source that regenerates energy using the kickback current of the capacitor as the charging current of the capacitor,
When the charge voltage level of the capacitor after the energy regeneration exceeds a normal charge voltage, it is determined that the load and the magnetic pulse compression circuit are abnormal.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an abnormality detection apparatus according to an embodiment of the present invention. Main circuit parts equivalent to those in FIG. 3 are denoted by the same reference numerals.
[0020]
The control circuit 5 performs on / off control of the semiconductor switches SW and SW 0 of the pulse generation circuit 1 according to the generation period and current level of the pulse current required by the load device 4 and also performs operation / stop control of the charger 2. The control of the pulse generation circuit 1 includes kickback energy regeneration control.
[0021]
The counter 6 serving as a time measuring means starts counting the clock at the timing when the control circuit 5 performs the charge start control of the capacitor C 0 after executing the regeneration control of the kickback energy, and the capacitor C 0 is charged to a predetermined voltage. The count is stopped at the end of charging at this time, and a count value corresponding to the charging time from the start to the end of charging of the capacitor C 0 is obtained by this count.
[0022]
The charge detection circuit 7 detects that the capacitor C 0 has been charged to a predetermined level by comparing the set voltage with the charge voltage of the capacitor C 0 detected by a voltage detector such as a resistance voltage divider circuit, and the capacitor C 0. The end-of-charge detection signal is obtained.
[0023]
The comparison circuit 8 compares the value of the counter 6 with the set value at the end of charging of the capacitor C 0 , and when the value of the counter 6 becomes less than the set value, that is, when the charging of the capacitor C 0 ends in a certain time or less. An abnormality detection output such as a short circuit on the load side is obtained. Alarm the occurrence of this abnormality detection alarm is output (not shown), the control circuit 5 by giving a protection command to the control circuit 5, the circuit protection (for example, a switch SW, off SW 0) control.
[0024]
An abnormality detection operation according to the present embodiment will be described with reference to FIG. (A) of the figure shows the voltage waveform of the capacitor C 0 during normal operation, and (b) shows the voltage waveform of the capacitor C 0 when an abnormality such as a load short circuit occurs.
[0025]
When normal, the capacitor C 0 is discharged at time t 1 , a pulse current is supplied to the load, and the capacitor C 0 is charged with a reverse polarity by a kickback current from the load side at time t 2 . Then, the capacitor C 0 is reversely charged in the initial charging direction at time t 3 , charging of the capacitor C 0 is started at time t 4 , and charging ends at time t 5 when this charging voltage reaches a predetermined value.
[0026]
In contrast, abnormal is kickback current from the load side is increased at time t 2. This is because the energy applied from the capacitor C 0 to the load side is consumed by the load when it is normal, but a large kickback current is generated without being consumed by the load when a short circuit occurs.
[0027]
For this reason, the charging voltage of the capacitor C 0 increases with a large kickback current, and the inverted charging voltage at time t 3 also increases. Therefore, abnormality is higher the voltage at the charge start from the time t 4, the charging time T until the charging end time t 5 in the start of charging from the voltage is shorter than the normal.
[0028]
From these phenomena, the counter 6 of FIG. 1 measures the time from the start to the end of charging, and when this time is less than the normal charging time set in the comparison circuit 8, it can be detected as abnormal. In addition, when an abnormality occurs, the charging voltage level of the capacitor C 0 at time t 2 to t 3 or time t 3 to t 4 becomes higher than that at normal time. Therefore, an abnormality is detected by comparing the charging voltage level detection with a normal value. Can be detected.
[0029]
The abnormality detection is not limited to the short circuit of the load device 4 but can detect a short circuit failure in the subsequent stage of the pulse generation circuit 1 such as a short circuit failure of the capacitors C 1 and C 2 of the magnetic pulse compression circuit 3.
[0030]
An abnormality such as a short circuit failure of the capacitor C 0 of the pulse generation circuit 1 can be detected by detecting that the charging time T from the start of charging to the end of charging is longer than the set time of the comparison circuit 8, and the charger It can also be detected because the output current of 2 becomes excessive.
[0031]
【The invention's effect】
As described above, according to the present invention, the occurrence of an abnormality such as a load short-circuit is detected by monitoring the charging time by energy regeneration to the capacitor C 0 or by monitoring the charging voltage level.
[0032]
(1) As an abnormality detection device, a large and expensive detector for measuring a special high voltage or a large current with a narrow pulse width is not required, and only a few electronic circuits are added.
[0033]
(2) Abnormality detection can be obtained when the capacitor is charged, and detection can be performed with less delay than conventional light detection. Along with this, the short circuit withstand capability of the main circuit is reduced, and there is no increase in size and cost.
[Brief description of the drawings]
FIG. 1 shows an abnormality detection apparatus for a pulse power supply according to an embodiment of the present invention.
FIG. 2 is a voltage waveform of a capacitor C 0 when normal and abnormal in the embodiment.
FIG. 3 shows an example of a pulse power supply circuit.
[Explanation of symbols]
1 ... pulse generating circuit 2 ... Charger 3 ... magnetic pulse compression circuit 4 ... load device SW, SW 0 ... semiconductor switch SI 0 ~SI 3 ... saturable reactor C 0, C 1, C 2 , C P ... capacitor 5 ... Control circuit 6 ... Counter 7 ... Charge detection circuit 8 ... Comparison circuit

Claims (3)

初期充電されるコンデンサから半導体スイッチのオン制御でパルス電流を発生するパルス発生回路と、前記パルス電流を磁気圧縮して負荷に供給する磁気パルス圧縮回路とを備え、前記パルス発生回路は負荷側からのキックバック電流を前記コンデンサの充電電流としてエネルギーを回生するパルス電源において、
前記エネルギー回生後の前記コンデンサの充電開始から充電終了までの計時をする計時手段と、
正常時の前記コンデンサの充電開始から充電終了までの充電時間が設定され、この充電時間に対して前記計時手段の計時時間が短いときに前記負荷及び磁気パルス圧縮回路の異常検出出力を得る比較回路とを備えたことを特徴とするパルス電源。
A pulse generation circuit that generates a pulse current from a capacitor that is initially charged by on-control of a semiconductor switch; and a magnetic pulse compression circuit that magnetically compresses the pulse current and supplies the pulse current to a load. In the pulse power source that regenerates energy using the kickback current of the capacitor as the charging current of the capacitor,
Time measuring means for measuring time from the start of charging of the capacitor after the energy regeneration to the end of charging;
Comparing circuit for obtaining an abnormality detection output of the load and the magnetic pulse compression circuit when the charging time from the start of charging of the capacitor to the end of charging is set in a normal time and the time measuring time of the time measuring means is short with respect to the charging time And a pulse power supply.
初期充電されるコンデンサから半導体スイッチのオン制御でパルス電流を発生するパルス発生回路と、前記パルス電流を磁気圧縮して負荷に供給する磁気パルス圧縮回路とを備え、前記パルス発生回路は負荷側からのキックバック電流を前記コンデンサの充電電流としてエネルギーを回生するパルス電源において、
前記エネルギー回生後の前記コンデンサの充電開始から充電終了までの充電時間が正常時の充電時間以下のときに前記負荷及び磁気パルス圧縮回路の異常と判定することを特徴とする異常検出方法。
A pulse generation circuit that generates a pulse current from a capacitor that is initially charged by on-control of a semiconductor switch; and a magnetic pulse compression circuit that magnetically compresses the pulse current and supplies the pulse current to a load. In the pulse power source that regenerates energy using the kickback current of the capacitor as the charging current of the capacitor,
An abnormality detection method comprising: determining that the load and the magnetic pulse compression circuit are abnormal when a charging time from the start of charging to the end of charging after the energy regeneration is equal to or less than a normal charging time.
初期充電されるコンデンサから半導体スイッチのオン制御でパルス電流を発生するパルス発生回路と、前記パルス電流を磁気圧縮して負荷に供給する磁気パルス圧縮回路とを備え、前記パルス発生回路は負荷側からのキックバック電流を前記コンデンサの充電電流としてエネルギーを回生するパルス電源において、
前記エネルギー回生後の前記コンデンサの充電電圧レベルが正常時の充電電圧を越えるときに前記負荷及び磁気パルス圧縮回路の異常と判定することを特徴とする異常検出方法。
A pulse generation circuit that generates a pulse current from a capacitor that is initially charged by on-control of a semiconductor switch; and a magnetic pulse compression circuit that magnetically compresses the pulse current and supplies the pulse current to a load. In the pulse power source that regenerates energy using the kickback current of the capacitor as the charging current of the capacitor,
An abnormality detection method comprising: determining that the load and the magnetic pulse compression circuit are abnormal when a charge voltage level of the capacitor after the energy regeneration exceeds a normal charge voltage.
JP18193797A 1997-07-08 1997-07-08 Pulse power supply and abnormality detection method Expired - Fee Related JP3794112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18193797A JP3794112B2 (en) 1997-07-08 1997-07-08 Pulse power supply and abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18193797A JP3794112B2 (en) 1997-07-08 1997-07-08 Pulse power supply and abnormality detection method

Publications (2)

Publication Number Publication Date
JPH1127960A JPH1127960A (en) 1999-01-29
JP3794112B2 true JP3794112B2 (en) 2006-07-05

Family

ID=16109511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18193797A Expired - Fee Related JP3794112B2 (en) 1997-07-08 1997-07-08 Pulse power supply and abnormality detection method

Country Status (1)

Country Link
JP (1) JP3794112B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832844A (en) * 2012-09-21 2012-12-19 西南交通大学 Pulse power source utilizing double capacitors to discharge convertibly
CN109687260B (en) * 2018-12-28 2020-05-29 苏州创鑫激光科技有限公司 Laser protection method and device

Also Published As

Publication number Publication date
JPH1127960A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
JPH04190675A (en) Protecting device for power semiconductor
JP3794112B2 (en) Pulse power supply and abnormality detection method
JP3251616B2 (en) Inverter control device
JP3603531B2 (en) Pulse power supply
JPH11145793A (en) Pulsating power source
JPH11283764A (en) Protection circuit of high pressure discharge lamp
JP3221367B2 (en) Uninterruptible power system
KR100931182B1 (en) Overvoltage control device in PPM converter
JP2894783B2 (en) AC high voltage power supply
JP3173955B2 (en) Fuse blow detection circuit of power supply unit for discharge
JPH0731135A (en) Auxiliary power supply
JP3965608B2 (en) Low pressure fluorescent lamp control device
JP2797495B2 (en) Switching power supply abnormality detection circuit
JP3328758B2 (en) Method and apparatus for controlling commutation of current source inverter
JP7158319B2 (en) power supply
JP2005073339A (en) Backup power supply
JP2002354832A (en) Power inverter
JPH08250289A (en) Electric power source apparatus
JP2599403Y2 (en) DC power supply
JPS6126463A (en) Defect detector circuit of gate turn-off thyristor
JPH1076181A (en) Pulse power source device for electric dust collecter and its operation
JP2602415Y2 (en) Failure detection device for semiconductor switch device
JP2000036396A (en) Discharge lamp lighting device
JPH0590678A (en) High-voltage pulse generator
JPH08298734A (en) Electricity storage circuit for small-sized apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees