JPH09289019A - Host material and nonaqueous electrolyte secondary battery having it - Google Patents

Host material and nonaqueous electrolyte secondary battery having it

Info

Publication number
JPH09289019A
JPH09289019A JP8127871A JP12787196A JPH09289019A JP H09289019 A JPH09289019 A JP H09289019A JP 8127871 A JP8127871 A JP 8127871A JP 12787196 A JP12787196 A JP 12787196A JP H09289019 A JPH09289019 A JP H09289019A
Authority
JP
Japan
Prior art keywords
host material
fluorine
secondary battery
graphite
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8127871A
Other languages
Japanese (ja)
Inventor
Hisashi Tsukamoto
寿 塚本
Tomohito Okamoto
朋仁 岡本
Jo Sasaki
丈 佐々木
Masakado Yamaji
山地  正矩
Takeshi Nakajima
中島  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP8127871A priority Critical patent/JPH09289019A/en
Publication of JPH09289019A publication Critical patent/JPH09289019A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To make the surface state of a carbon material suitable to charging/ discharging, reduce the overvoltage of a host material, and increase the capacity by bonding the surface of the host material with a 7a group element of the periodic table. SOLUTION: Without forming an intercalation complex of a host material, for example, carbon material with fluorine, the surface of the host material is fluorinated to make the surface state of the host material suitable to charging/discharging. The surface of the host material is bonded with a 7a group element of the periodic table, and the element bonded with the surface of the host material is replaced to fluorine or graphite. When the peak position of C15 spectrum of graphite is made 284.3eV in XPS analysis, hetropolar binding fluorine of 685.0eV and covalent bonding fluorine of 687.7eV are obtained. The surface state of the host material is made suitable to charge/discharge, overcharge of the host material is reduced, and the capacity is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】電子機器の急激な小形軽量化に伴い、そ
の電源である電池に対して小形で軽量かつ高エネルギー
密度、更に繰り返し充放電が可能な二次電池開発への要
求が高まっている。また、大気汚染や二酸化炭素の増加
等の環境問題により、電気自動車の早期実用化が望まれ
ており、高効率、高出力、高エネルギー密度、軽量等の
特徴を有する優れた二次電池の開発が要望されている。
これら要求を満たす二次電池として、非水電解質を使用
した二次電池は、従来の水溶液電解液を使用した電池の
数倍のエネルギー密度を有することから、その実用化が
待たれている。
2. Description of the Related Art As electronic devices have rapidly become smaller and lighter, there has been an increasing demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged. . In addition, due to environmental problems such as air pollution and an increase in carbon dioxide, the early commercialization of electric vehicles is desired, and the development of an excellent secondary battery having features such as high efficiency, high output, high energy density, and light weight. Is required.
As a secondary battery that satisfies these requirements, a secondary battery using a non-aqueous electrolyte has several times the energy density of a battery using a conventional aqueous electrolyte solution, and therefore its commercialization is expected.

【0003】非水電解質二次電池の正極活物質には、二
硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。
Various positive electrode active materials for non-aqueous electrolyte secondary batteries such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been investigated. ing.

【0004】非水電解質二次電池の負極活物質として
は、金属リチウムをはじめとしてリチウムの吸蔵・放出
が可能なLi−Al合金など種々のものが実用化されて
いるがサイクル寿命が短いという欠点を有している。こ
れを解決すべく、リチウムイオンを吸蔵放出できるホス
ト物質(例えば、炭素材料、特にグラファイト等)を負
極の構成要素としたサイクル寿命の長い非水電解質二次
電池が主流になっている。
As the negative electrode active material of the non-aqueous electrolyte secondary battery, various materials such as metallic lithium and Li-Al alloys capable of absorbing and desorbing lithium have been put into practical use, but they have a short cycle life. have. In order to solve this, a non-aqueous electrolyte secondary battery having a long cycle life, in which a host material capable of inserting and extracting lithium ions (for example, a carbon material, especially graphite) is used as a constituent element of the negative electrode has become the mainstream.

【0005】[0005]

【発明が解決しようとする課題】この炭素材料等を負極
に用いた電池の性能向上を行うため、電池各構成要素の
種々の最適化が図られてきている。中でも負極の構成要
素である炭素材料等の特性、すなわち容量、クーロン効
率及びサイクル寿命等を向上させるため、炭素材料の結
晶性、炭素構造へのホウ素、窒素の導入による電子構造
もしくは表面積等の改善に開発の重点が置かれている。
In order to improve the performance of a battery using this carbon material or the like as a negative electrode, various optimizations have been made to each constituent element of the battery. Above all, in order to improve the characteristics of the carbon material, which is a constituent of the negative electrode, such as capacity, Coulombic efficiency and cycle life, the crystallinity of the carbon material and the improvement of the electronic structure or surface area by introducing boron and nitrogen into the carbon structure The emphasis is on development.

【0006】しかしながら、本発明者らは、上記開発に
よっていかに特性の向上した炭素材料等が開発されたと
しても、リチウムイオンの吸蔵放出に関与する炭素材料
等の表面状態が充放電反応を阻害してしまっては炭素材
料等が有する能力を最大限利用できず、実際に電池の性
能向上は望めないと考えた。すなわち、炭素材料等の表
面状態が充放電反応を良好に進めることができるものと
なれば、結果として電池のさらなる性能向上が期待でき
うると考えた。
However, the inventors of the present invention, no matter how a carbon material or the like having improved characteristics has been developed by the above development, the surface state of the carbon material or the like involved in the storage and release of lithium ions inhibits the charge / discharge reaction. Therefore, we thought that we could not make the best use of the capacity of carbon materials and so on, so we could not really expect the improvement of battery performance. That is, it was thought that if the surface condition of the carbon material or the like would allow the charge / discharge reaction to proceed favorably, further improvement in the performance of the battery could be expected as a result.

【0007】そこで、本発明の目的とするところは、負
極のホスト物質である炭素材料等のの表面状態を充放電
に適したものとし、ホスト物質の過電圧を減少させ、も
って高容量な非水電解質二次電池を提供することにあ
る。
Therefore, an object of the present invention is to make the surface state of a carbon material or the like, which is the host material of the negative electrode, suitable for charging and discharging, to reduce the overvoltage of the host material, and to have a high capacity of non-aqueous liquid. An object is to provide an electrolyte secondary battery.

【0008】[0008]

【課題を解決するための手段】本発明は、非水電解質二
次電池用負極の構成要素であって、リチウムイオンを吸
蔵放出可能なホスト物質において、ホスト物質の表面が
周期表第7A族の元素と結合してなることを特徴とし、
ホスト物質の表面に結合された元素がフッ素であること
を特徴とし、ホスト物質がグラファイトであって、その
表面に結合された元素が、XPS分析において、グラフ
ァイトのC1Sスペクトルのピーク位置を284.3eV
としたとき、685.0eVのイオン結合性フッ素と、
687.7eVの共有結合性フッ素とであることを特徴
とする。また、本発明になる非水電解質二次電池は、前
記ホスト物質を構成要素とする負極を備えたことを特徴
とする。
The present invention is a constituent element of a negative electrode for a non-aqueous electrolyte secondary battery, and in a host material capable of inserting and extracting lithium ions, the surface of the host material is a group 7A periodic table. Characterized by combining with an element,
The element bonded to the surface of the host material is fluorine, the host material is graphite, and the element bonded to the surface has a peak position of the C 1S spectrum of graphite in XPS analysis of 284. 3 eV
And the ion-bonding fluorine of 685.0 eV,
687.7 eV of covalently bonded fluorine. The non-aqueous electrolyte secondary battery according to the present invention is characterized by including a negative electrode containing the host material as a constituent element.

【0009】[0009]

【発明の実施の形態】本発明は、非水電解質二次電池用
負極の構成要素であって、リチウムイオンを吸蔵放出可
能なホスト物質において、ホスト物質の表面が周期表第
7A族の元素と結合してなることを特徴とし、ホスト物
質の表面に結合された元素がフッ素であることを特徴と
し、ホスト物質がグラファイトであって、その表面に結
合された元素が、XPS分析において、グラファイトの
1Sスペクトルのピーク位置を284.3eVとしたと
き、685.0eVのイオン結合性フッ素と、687.
7eVの共有結合性フッ素とであることを特徴とする。
また、本発明になる非水電解質二次電池は、前記ホスト
物質を構成要素とする負極と、正極と、有機電解質とを
備えてなることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a component of a negative electrode for a non-aqueous electrolyte secondary battery, and in a host material capable of inserting and extracting lithium ions, the surface of the host material is an element of Group 7A of the periodic table. Characterized in that the element bonded to the surface of the host material is fluorine, the host material is graphite, and the element bonded to the surface is graphite in the XPS analysis. When the peak position of the C 1S spectrum is set to 284.3 eV, 685.0 eV of ionically-bonded fluorine and 687.
It is characterized in that it is a covalent bond fluorine of 7 eV.
Further, the non-aqueous electrolyte secondary battery according to the present invention is characterized by including a negative electrode having the host material as a constituent element, a positive electrode, and an organic electrolyte.

【0010】本発明者らは、いかに特性の向上した炭素
材料等が開発されたとしても、リチウムイオンの吸蔵放
出に関与する炭素材料等の表面状態が充放電反応を阻害
してしまっては電池のさらなる性能向上は望めないと考
え、この表面状態について着目した。そして、充放電反
応を阻害せずに、むしろそれを良好に進めるような表面
状態を作り出すべく、ホスト物質の表面処理について鋭
意研究を行った。
The inventors of the present invention, no matter how a carbon material or the like having improved characteristics is developed, if the surface state of the carbon material or the like involved in the storage and release of lithium ions inhibits the charge / discharge reaction, the battery Since we cannot expect further improvement in performance, we focused on this surface condition. Then, in order to create a surface state that does not hinder the charge / discharge reaction but rather promotes the charge / discharge reaction satisfactorily, intensive research was conducted on the surface treatment of the host material.

【0011】その結果、ホスト物質、例えば炭素材料と
フッ素との層間化合物を形成させずに、ホスト物質の表
面をフッ素化することにより、ホスト物質の表面状態を
充放電に適したものとし、ホスト物質の過電圧を減少さ
せ得ることができた。
As a result, the surface state of the host material is made suitable for charging and discharging by fluorinating the surface of the host material without forming an intercalation compound of the host material, for example, a carbon material and fluorine. It was possible to reduce the overvoltage of the material.

【0012】なぜ表面かと言えば、上記の層間化合物で
は構造自体が変化しているため、XRD分析によりフッ
素と炭素材料との層間化合物を示すピークが観察される
が、本発明になるホスト物質では、XRD分析からその
ピークが観察されなかった。そのかわりに、炭素材料の
表面をXPS分析したところ、フッ素の結合を示すピー
ク(682〜695eVの位置のピーク)が観察された
からである。すなわち、本発明におけるホスト物質の表
面とはホスト物質のバルク表面を意味する。
Speaking of the surface, the structure of the above-mentioned intercalation compound itself has changed, so a peak showing an intercalation compound of fluorine and a carbon material is observed by XRD analysis. , XRD analysis did not show the peak. Instead, when the surface of the carbon material was subjected to XPS analysis, a peak indicating a bond of fluorine (a peak at a position of 682 to 695 eV) was observed. That is, the surface of the host material in the present invention means the bulk surface of the host material.

【0013】それゆえに、本発明になるホスト物質を負
極の構成要素に用いた場合には、寿命性能に優れた非水
電解質二次電池を提供することが可能となった。
Therefore, when the host material according to the present invention is used as a constituent element of the negative electrode, it is possible to provide a non-aqueous electrolyte secondary battery having excellent life performance.

【0014】尚、本発明になる非水電解質リチウム二次
電池においては、その構成として正極、負極及びセパレ
ータと非水電解液との組み合わせ、あるいは正極、負極
及び有機又は無機固体電解質と非水電解液との組み合わ
せであっても構わない。
In the non-aqueous electrolyte lithium secondary battery according to the present invention, the constitution is a combination of a positive electrode, a negative electrode and a separator and a non-aqueous electrolyte, or a positive electrode, a negative electrode and an organic or inorganic solid electrolyte and a non-aqueous electrolyte. It may be a combination with a liquid.

【0015】さらに、本発明において、ホスト物質は炭
素材料に限られるものではなく、炭素−窒素層状化合物
等種々のものが適用可能である。また、ホスト物質が炭
素材料の場合、例えば、全てグラファイトであってもよ
いし、グラファイトと異種同形状のもの、もしくは異種
異形状のものなどの混合物であってもよいし、多種の混
合物であってもよい。言うまでもないがグラファイト
は、天然(鱗状、鱗片状等)、人造(土状、鱗状、球
状、繊維状、かい状、鱗片状等)を問わない。
Further, in the present invention, the host material is not limited to the carbon material, and various materials such as a carbon-nitrogen layered compound can be applied. When the host substance is a carbon material, for example, it may be all graphite, a mixture of graphite with different shapes and different shapes, or a mixture of different shapes with different shapes, or a mixture of various kinds. May be. Needless to say, graphite may be natural (scale-like, scale-like, etc.) or artificial (soil-like, scale-like, spherical, fibrous, paddle-like, scale-like, etc.).

【0016】加えて、本実施例では、ホスト物質の粒子
の表面にフッ素処理してから負極板に成型したが、極板
に仕上げた後、極板をフッ素処理し、実質ホスト物質表
面にフッ素処理したものとしてもよい。
In addition, in the present embodiment, the surface of the particles of the host material was treated with fluorine and then molded into the negative electrode plate. However, after finishing the electrode plate, the electrode plate was subjected to fluorine treatment and the surface of the host material was substantially treated with fluorine. It may be processed.

【0017】[0017]

【実施例】以下に、好適な実施例を用いて本発明を詳述
するが、本発明の趣旨を越えない限り、以下の実施例に
限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below using preferred embodiments, but the present invention is not limited to the following embodiments without departing from the spirit of the present invention.

【0018】[表面フッ素化処理]ホスト物質として、
熱処理カーボンナノチューブ(黒鉛棒の直流アーク放電
によって作製したものであって、直径15〜30mm、
粒径30〜90mmの炭素微粒子を含む)を用いた。こ
の炭素材料を、ニッケル製反応管で0.2×105Pa
のフッ素ガスを用いて、120℃、2分間フッ素化し
た。
[Surface fluorination treatment] As a host substance,
Heat-treated carbon nanotubes (prepared by direct-current arc discharge of graphite rod, having a diameter of 15 to 30 mm,
(Including carbon fine particles having a particle diameter of 30 to 90 mm) was used. This carbon material is put into a nickel reaction tube at 0.2 × 10 5 Pa
Was fluorinated for 2 minutes at 120 ° C.

【0019】このフッ素化した炭素材料の表面をXPS
分析したところ、図1に示すようにグラファイトのC1S
スペクトルのピーク位置を284.3eVとしたとき、
1Sスペクトルには、685.0eVのイオン結合性フ
ッ素と、687.7eVの共有結合性フッ素との存在を
示すピーク(682〜695eVに現れるピーク)が観
察された。グラフには示していないが、O1Sスペクトル
のピークが532.0eVの位置に見られた。このスペ
クトルが観測された理由としては、吸着酸素種やフッ素
化後、一部加水分解して酸素種(OHなど)に変わった
等が考えられる。
The surface of the fluorinated carbon material is XPS
Analysis, C 1S graphite as shown in FIG. 1
When the peak position of the spectrum is 284.3 eV,
In the F 1S spectrum, a peak (peak appearing at 682 to 695 eV) indicating the presence of the ion-bonding fluorine of 685.0 eV and the covalently bonding fluorine of 687.7 eV was observed. Although not shown in the graph, a peak of O 1S spectrum was found at a position of 532.0 eV. The reason why this spectrum was observed is considered to be that the oxygen species adsorbed and that after fluorination were partially hydrolyzed into oxygen species (such as OH).

【0020】尚、フッ素化処理していないものでも、O
1Sスペクトルのピークが532.3eVの位置に観測さ
れている。ただし、量的にはフッ素化したもののほうが
若干多い。
It should be noted that even if it is not fluorinated, O
The peak of the 1S spectrum is observed at the position of 532.3 eV. However, in terms of quantity, the amount of fluorinated one is slightly higher.

【0021】また、この炭素材料をXRD分析したとこ
ろ、フッ素と炭素材料との層間化合物を示すピークは観
察されなかった。
When this carbon material was subjected to XRD analysis, no peak indicating an intercalation compound of fluorine and the carbon material was observed.

【0022】上記より、炭素材料とフッ素とが反応し、
フッ素グラファイト層間化合物が形成されずに、炭素材
料の表面をフッ素化させた。
From the above, the carbon material and fluorine react,
The surface of the carbon material was fluorinated without forming a fluorine-graphite intercalation compound.

【0023】[電極の作製とその電位走査法による評
価]電位走査法による電極特性の評価は、3電極式セル
を用い、下記溶液中20℃で電位走査法(0.2mV/
s)及び電流密度0.1mA/cm2 での充放電によっ
て評価した。
[Production of Electrodes and Evaluation by Potential Scanning Method] The electrode characteristics were evaluated by the potential scanning method using a three-electrode cell in the following solution at 20 ° C. by the potential scanning method (0.2 mV /
s) and charge / discharge at a current density of 0.1 mA / cm 2 .

【0024】評価する電極(作用極)は、炭素材料4.
5mgに8wt%のポリフッ化ビニリデンを混合し、直
径9mmの濾紙とともに200Kg/cm2 で加圧して
厚さ0.2mmのペレットをつくり、これをステンレス
メッシュに挟み、300Kg/cm2 で加圧して作製し
た。そして、参照極及び対極としてリチウム金属を用い
た。
The electrode (working electrode) to be evaluated is carbon material 4.
5mg was mixed with polyvinylidene fluoride 8 wt%, making the thickness of 0.2mm pellet pressurized at 200 Kg / cm 2 with a filter paper having a diameter of 9 mm, which was sandwiched in stainless steel mesh, pressurized with 300 Kg / cm 2 It was made. Then, lithium metal was used as the reference electrode and the counter electrode.

【0025】また、電解液としては、エチレンカーボネ
ートとジエチレンカーボネートとの混合溶媒(体積比
1:1)に電解質としての1MのLiCl4 を添加した
ものを用いた。また、比較用として、フッ素化していな
い熱処理カーボンナノチューブを用いて上記同様に電極
を作製し、同様の評価を行った。
As the electrolytic solution, a mixed solvent of ethylene carbonate and diethylene carbonate (volume ratio 1: 1) to which 1M LiCl 4 as an electrolyte was added was used. For comparison, an electrode was prepared in the same manner as above using heat-treated carbon nanotubes that were not fluorinated, and the same evaluation was performed.

【0026】[結果]図2は、電位走査法による電極の
評価結果を示した図である。
[Results] FIG. 2 is a diagram showing the evaluation results of the electrodes by the potential scanning method.

【0027】図より、フッ素処理をしていないもの(以
下、従来品;A)は、酸化方向の走査において0.27
Vにピークが観察され、一方フッ素化処理したもの(以
下、本発明品;B)では、酸化方向の走査において0.
25Vにピークが観察された。
As can be seen from the figure, the one not subjected to the fluorine treatment (hereinafter, the conventional product; A) is 0.27 in the scanning in the oxidizing direction.
A peak was observed at V. On the other hand, the fluorinated product (hereinafter referred to as the product of the present invention; B) had a peak of 0.
A peak was observed at 25V.

【0028】このことは、本発明品(B)が従来品
(A)に比べ、フッ素表面処理によって過電圧を小さく
していることが示された。
This indicates that the product (B) of the present invention has a smaller overvoltage than the conventional product (A) by the fluorine surface treatment.

【0029】また、本発明品では、従来品に比べて酸化
電流及び還元電流がともに増加しており、炭素材料の表
面状態がフッ素表面処理によって充放電に極めて適した
状態になっていることが明らかとなった。
Further, in the product of the present invention, both the oxidation current and the reduction current are increased as compared with the conventional product, and the surface condition of the carbon material is extremely suitable for charging and discharging by the fluorine surface treatment. It became clear.

【0030】図3は、本発明になる負極(B)と、従来
の負極(A)との放電容量比を示す図である。ただし、
従来品(A)を100%としたものである。
FIG. 3 is a graph showing the discharge capacity ratio of the negative electrode (B) according to the present invention and the conventional negative electrode (A). However,
The conventional product (A) is 100%.

【0031】図より、本発明品(B)は、従来品(A)
に比べて放電容量が増加していることがわかった。
From the figure, the product of the present invention (B) is the conventional product (A).
It was found that the discharge capacity was increased compared to.

【0032】さらに、本発明品の電極(B)について、
サイクル試験を行ったところ、サイクル数の増加ととと
もにクーロン効率の増加が見られた。
Furthermore, regarding the electrode (B) of the present invention,
When a cycle test was conducted, the coulombic efficiency increased with the increase in the number of cycles.

【0033】尚、本発明において、正極活物質として
は、リチウムコバルト複合酸化物、リチウムニッケル複
合酸化物( LiNiO2 ) 、二硫化チタン、二酸化マン
ガン、スピネル型リチウムマンガン酸化物 (LiMn2
4 ) 、五酸化バナジウムおよび三酸化モリブデンなど
の種々のものを用いることができる。加えて、ここでは
表面処理にフッ素を用いているが、フッ素に限らず、周
期表の第7A族の塩素、臭素等又はこれらの一種又は2
種以上を用いてもよい。また、負極に黒鉛を用いる場合
を説明したが、低結晶性の炭素材料においても同様な効
果が得られる。
In the present invention, as the positive electrode active material, lithium cobalt composite oxide, lithium nickel composite oxide (LiNiO 2 ), titanium disulfide, manganese dioxide, spinel type lithium manganese oxide (LiMn 2).
Various substances such as O 4 ), vanadium pentoxide and molybdenum trioxide can be used. In addition, although fluorine is used for the surface treatment here, it is not limited to fluorine, and chlorine, bromine, etc. of Group 7A of the periodic table, or one or two of these.
More than one species may be used. Further, although the case where graphite is used for the negative electrode has been described, the same effect can be obtained with a low crystalline carbon material.

【0034】なお、電池の形状は角形、円筒形、コイン
形またはペーパー形等形状等どんなものであってもよ
い。
The battery may have any shape such as a prismatic shape, a cylindrical shape, a coin shape or a paper shape.

【0035】[0035]

【発明の効果】本発明は、非水電解質二次電池用負極の
構成要素であって、リチウムイオンを吸蔵放出可能なホ
スト物質において、ホスト物質の表面が周期表第7A族
の元素と結合してなることを特徴とし、ホスト物質の表
面に結合された元素がフッ素であることを特徴とし、ホ
スト物質がグラファイトであって、その表面に結合され
た元素が、XPS分析において、グラファイトのC1S
ペクトルのピーク位置を284.3eVとしたとき、6
85.0eVのイオン結合性フッ素と、687.7eV
の共有結合性フッ素とであることを特徴とする。また、
本発明になる非水電解質二次電池は、前記ホスト物質を
構成要素とする負極を備えたことを特徴とする。
INDUSTRIAL APPLICABILITY The present invention is a component of a negative electrode for a non-aqueous electrolyte secondary battery, and in a host material capable of inserting and extracting lithium ions, the surface of the host material is bound to an element of Group 7A of the periodic table. The element bound to the surface of the host substance is fluorine, the host substance is graphite, and the element bound to the surface is C 1S of graphite in XPS analysis. When the peak position of the spectrum is 284.3 eV, 6
Ion-bonding fluorine of 85.0 eV and 687.7 eV
Is a covalent bond with fluorine. Also,
The non-aqueous electrolyte secondary battery according to the present invention is characterized by including a negative electrode containing the host material as a constituent element.

【0036】これにより、ホスト物質の表面状態が充放
電に適したものとなり、ホスト物質の過電圧を減少させ
得ることができ、もって本発明になるホスト物質を負極
の構成要素に用いた場合には、高容量な非水電解質二次
電池をも提供することができる。それゆえに、本発明の
工業的価値は極めて大である。
As a result, the surface state of the host material becomes suitable for charging and discharging, and the overvoltage of the host material can be reduced. Therefore, when the host material according to the present invention is used as a constituent element of the negative electrode. It is also possible to provide a high-capacity non-aqueous electrolyte secondary battery. Therefore, the industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、F1SXPSスペクトルを示す図であ
る。
FIG. 1 is a diagram showing an F 1S XPS spectrum.

【図2】図2は、本発明品になる電極(B)と従来品
(A)との評価結果を示した図である。
FIG. 2 is a diagram showing evaluation results of an electrode (B) of the present invention and a conventional product (A).

【図3】図3は、本発明になる負極(B)と、従来の負
極(A)との放電容量比を示す図である。
FIG. 3 is a diagram showing a discharge capacity ratio between a negative electrode (B) according to the present invention and a conventional negative electrode (A).

【符号の説明】[Explanation of symbols]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 丈 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 (72)発明者 山地 正矩 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 (72)発明者 中島 剛 大阪府枚方市楠葉美咲3丁目10−17 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Sasaki No. 1 Nishinosho Ino no Babacho, Kichijoin, Minami-ku, Kyoto, Japan Battery Co., Ltd. Nobabacho 1 Japan Battery Co., Ltd. (72) Inventor Go Nakajima 3-10-17 Misaki Kusuha, Hirakata City, Osaka Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非水電解質二次電池用負極の構成要素で
あって、リチウムイオンを吸蔵放出可能なホスト物質に
おいて、 そのホスト物質の表面が周期表第7A族の元素と結合し
てなることを特徴とするホスト物質。
1. A host material which is a constituent of a negative electrode for a non-aqueous electrolyte secondary battery and is capable of inserting and extracting lithium ions, wherein the surface of the host material is bound to an element of Group 7A of the periodic table. Host material characterized by.
【請求項2】 ホスト物質の表面に結合された元素がフ
ッ素であることを特徴とする請求項1記載のホスト物
質。
2. The host material according to claim 1, wherein the element bonded to the surface of the host material is fluorine.
【請求項3】 ホスト物質がグラファイトであって、そ
の表面に結合された元素は、XPS分析において、グラ
ファイトのC1Sスペクトルのピーク位置を284.3e
Vとしたとき、685.0eVのイオン結合性フッ素
と、687.7eVの共有結合性フッ素とであることを
特徴とする請求項2記載のホスト物質。
3. The host material is graphite, and the element bonded to the surface thereof has a peak position of 284.3e in the C 1S spectrum of graphite in XPS analysis.
The host material according to claim 2, wherein when it is V, it is 685.0 eV of ionic bond fluorine and 687.7 eV of covalent bond fluorine.
【請求項4】 請求項1、2又は3記載のホスト物質を
構成要素とする負極を備えたことを特徴とする非水電解
質二次電池。
4. A non-aqueous electrolyte secondary battery comprising a negative electrode containing the host material according to claim 1, 2 or 3 as a constituent element.
JP8127871A 1996-04-24 1996-04-24 Host material and nonaqueous electrolyte secondary battery having it Pending JPH09289019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8127871A JPH09289019A (en) 1996-04-24 1996-04-24 Host material and nonaqueous electrolyte secondary battery having it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8127871A JPH09289019A (en) 1996-04-24 1996-04-24 Host material and nonaqueous electrolyte secondary battery having it

Publications (1)

Publication Number Publication Date
JPH09289019A true JPH09289019A (en) 1997-11-04

Family

ID=14970714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8127871A Pending JPH09289019A (en) 1996-04-24 1996-04-24 Host material and nonaqueous electrolyte secondary battery having it

Country Status (1)

Country Link
JP (1) JPH09289019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509008A (en) * 1996-04-26 2000-07-18 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク Novel fluorine-containing carbon, its preparation and its use as electrode material
JP2002526360A (en) * 1998-09-18 2002-08-20 ウィリアム・マーシュ・ライス・ユニバーシティ Chemical derivatization of single-walled carbon nanotubes and use of derivatized nanotubes to facilitate solvation
JP2019057431A (en) * 2017-09-21 2019-04-11 トヨタ自動車株式会社 Manufacturing method of negative electrode sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000509008A (en) * 1996-04-26 2000-07-18 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク Novel fluorine-containing carbon, its preparation and its use as electrode material
JP2002526360A (en) * 1998-09-18 2002-08-20 ウィリアム・マーシュ・ライス・ユニバーシティ Chemical derivatization of single-walled carbon nanotubes and use of derivatized nanotubes to facilitate solvation
JP4746183B2 (en) * 1998-09-18 2011-08-10 ウィリアム・マーシュ・ライス・ユニバーシティ Chemical derivatization of single-walled carbon nanotubes and the use of derivatized nanotubes to facilitate solvation
JP2011168483A (en) * 1998-09-18 2011-09-01 William Marsh Rice Univ Chemical derivatization of single-wall carbon nanotube to facilitate solvation thereof; and use of derivatized nanotube
JP2019057431A (en) * 2017-09-21 2019-04-11 トヨタ自動車株式会社 Manufacturing method of negative electrode sheet

Similar Documents

Publication Publication Date Title
JP4231411B2 (en) Electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP5889859B2 (en) Secondary battery with improved cathode active material, electrode and lithium ion mobility and battery capacity
KR101520508B1 (en) 2 positive electrode-forming member material for the same method for producing the same and lithium ion secondary battery
JP7062199B2 (en) Lithium secondary battery and its manufacturing method
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
JPH02288068A (en) Nonaqueous electrolyte secondary battery
JPH11214005A (en) Powder material, electrode structure, manufacture thereof and lithium secondary battery
JP6598247B2 (en) Hollow body, manufacturing method thereof, anode electrode material using the same, and lithium ion secondary battery using the same
CN110891900A (en) Conductive carbon mixture and method for producing same, electrode using same and method for producing same, and electricity storage device provided with same
CN114868281A (en) Positive electrode active material, method of preparing the same, and lithium secondary battery comprising the same
EP4235857A1 (en) Anode active material comprising graphene-silicon composite, manufacturing method therefor, and lithium secondary battery comprising same
JP4456448B2 (en) Battery positive electrode material containing sulfur and / or sulfur compound having S—S bond and method for producing the same
JP2003217583A (en) Composite electrode and electrochemical element using the same
JPH04162357A (en) Nonaqueous secondary battery
JP2020035682A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
US11777099B2 (en) Electrode, method for producing said electrode, and electricity storage device provided with said electrode
JPH10284079A (en) Manufacture of host material and nonaqueous electrolyte secondary battery
WO2020034875A1 (en) Sulfur-based positive electrode active material for use in solid-state battery, preparation for material, and applications thereof
JP3367060B2 (en) Negative electrode for lithium secondary battery
JP4452595B2 (en) Composite material containing sulfur and / or sulfur compound and method for producing the same
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
JPH09289019A (en) Host material and nonaqueous electrolyte secondary battery having it
JP2024502893A (en) Method for regenerating cathode active material and cathode active material recycled from this
JP2003115327A (en) Nonaqueous electrolyte secondary battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell