JPH09285843A - Assembled mold for continuous casting, and casting method - Google Patents

Assembled mold for continuous casting, and casting method

Info

Publication number
JPH09285843A
JPH09285843A JP10250096A JP10250096A JPH09285843A JP H09285843 A JPH09285843 A JP H09285843A JP 10250096 A JP10250096 A JP 10250096A JP 10250096 A JP10250096 A JP 10250096A JP H09285843 A JPH09285843 A JP H09285843A
Authority
JP
Japan
Prior art keywords
mold
slab
cooling
vertical
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10250096A
Other languages
Japanese (ja)
Inventor
Takashi Kanazawa
敬 金沢
Tadashi Hirashiro
正 平城
Seiji Kumakura
誠治 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10250096A priority Critical patent/JPH09285843A/en
Publication of JPH09285843A publication Critical patent/JPH09285843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To cast a steel slab at high speed in the vertical or vertically bending continuous casting by splitting a mold in the vertical direction to separate the functions, i.e., with an upper part as an oscillation region and with a lower part as a direct cooling region. SOLUTION: A mold 1 comprises an upstream part 2 and a downstream part 3. A wall 2' of the upstream part 2 is of internal cooling type to indirectly cool a slab. An oscillation means 4 of direct moving type having a buffer means such as a spring 5 connected to an actuator through the wall 2' is provided on the upstream part 2, and only the most upstream part of a mold is oscillated to indirectly cool the slab in the most upstream part with water. A plurality of cooling water guide plates 6 provided in the vertical direction are provided in the slab width direction of a downstream part 3, and a plurality of slits water passages 7 are provided between the guide plates 6. Cooling water is fed from the slid water passages so as to be directly hit on the surface of the slab in the downstream part 3, and the slab is directly and forcibly cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造用鋳型、
特にその構造およびこの鋳型を用いる連続鋳造方法に関
する。
TECHNICAL FIELD The present invention relates to a continuous casting mold,
In particular, it relates to its structure and a continuous casting method using this mold.

【0002】[0002]

【従来の技術】溶鋼の連続鋳造用鋳型は通常、 600〜12
00mmの長さを有し、鋳型内壁は高い熱伝導率を有する銅
または銅合金などにより構成された「一体もの」であ
る。
Molds for continuous casting of molten steel are usually 600 to 12
It has a length of 00 mm, and the inner wall of the mold is a "one-piece" made of copper or a copper alloy having a high thermal conductivity.

【0003】このような鋳型を用いて鋳造を行う場合、
溶鋼は鋳型壁内部に供給される冷却媒体(たとえば、
水)により間接的に冷却され、溶鋼の鋳型壁に接する部
分から漸次凝固が進行する。凝固シェルの厚みが溶鋼静
圧に耐える程度まで成長するに伴い、凝固シェルは収縮
し、鋳型壁と凝固シェルとの間に空隙が生じることにな
る。この空隙の発生は、鋳片から鋳型壁への熱伝導効率
を著しく低下させ、鋳片の凝固シェル成長を大きく阻害
し、凝固シェル厚みの不均一による表面縦割れなどの表
面品質欠陥の誘因となる。さらには凝固シェルの破断に
よるブレークアウトの大きな要因になる場合が多く、高
速鋳造化の大きな障害となっている。
When casting is performed using such a mold,
Molten steel is a cooling medium (for example,
It is indirectly cooled by water and gradually solidifies from the portion of the molten steel in contact with the mold wall. As the thickness of the solidified shell grows to such an extent that it can withstand the static pressure of molten steel, the solidified shell shrinks, resulting in a gap between the mold wall and the solidified shell. The generation of these voids significantly reduces the heat transfer efficiency from the slab to the mold wall, greatly inhibits the solidification shell growth of the slab, and causes surface quality defects such as surface vertical cracks due to uneven solidification shell thickness. Become. Furthermore, it often becomes a major factor in breakout due to breakage of the solidified shell, which is a major obstacle to high-speed casting.

【0004】鋳型壁と鋳片との空隙の発生を防止する方
法として、次のようなものがある。
There are the following methods for preventing the formation of voids between the mold wall and the slab.

【0005】(1)鋳型内部の水平断面形状を太鼓状に
し、鋳型内での鋳片の凝固収縮に対応してこの水平断面
形状を漸次縮小変形させ、鋳型の出側で鋳片を矩形状に
形成する方法(特開昭62-220249 号公報参照)。
(1) The horizontal cross-sectional shape inside the mold is drum-shaped, and the horizontal cross-sectional shape is gradually reduced and deformed in accordance with the solidification shrinkage of the slab in the mold, and the slab is rectangular on the outlet side of the mold. Method (see JP-A-62-220249).

【0006】(2)鋳型の内壁に鋳造方向に向かって水平
断面形状が小さくなるテーパを設け、凝固収縮を補償す
る方法(特開昭53-125932 号公報参照)。
(2) A method of compensating solidification shrinkage by providing a taper on the inner wall of the mold so that the horizontal cross-sectional shape decreases in the casting direction (see Japanese Patent Laid-Open No. 53-125932).

【0007】しかし、上記方法のように鋳型内部の水平
断面形状が鋳片の出側に向かって3次元的もしくは直線
的なテーパ状で変化する場合に、鋳造速度、鋼種および
溶鋼温度などによって変動する凝固収縮量に順応して、
鋳型と鋳片との間の適切な面圧を保ちながら両者を接触
させることは極めて困難である。鋳型上部での接触が良
すぎる場合には、鋳型下部で空隙が生じることになり、
凝固シェルとの断続的な接触による鋳型表面のめっき層
の剥離などの問題も顕在化する。また、鋳型自身の冷却
も均一化することが非常に困難であるため、鋳型自身に
も表面疵が多発し、鋳型寿命が短くなるという問題も顕
在化する。
However, when the horizontal cross-sectional shape inside the mold changes in a three-dimensional or linear taper shape toward the exit side of the slab as in the above method, it changes depending on the casting speed, steel type and molten steel temperature. Adapting to the amount of coagulation shrinkage
It is extremely difficult to bring them into contact with each other while maintaining an appropriate surface pressure between the mold and the slab. If the contact at the top of the mold is too good, there will be voids at the bottom of the mold,
Problems such as peeling of the plating layer on the mold surface due to intermittent contact with the solidified shell also become apparent. Further, since it is very difficult to evenly cool the mold itself, surface defects frequently occur in the mold itself, and the problem that the life of the mold is shortened becomes apparent.

【0008】[0008]

【発明が解決しようとする課題】鋳片の収縮により鋳型
壁と鋳片との間に空隙が発生するため、鋳型からの抜熱
能が低下し、これが鋳型内の凝固シェル成長を阻害する
要因となっている。鋳型上部では生成した凝固シェルも
薄く脆弱なため、溶鋼静圧により凝固シェルは鋳型壁に
押し戻され凝固が進行する。しかし、鋳型下部において
は凝固シェルが成長し、かつその表面温度も低下して凝
固シェルが十分な強度を有する状態で、凝固収縮により
鋳型壁と鋳片とがいったん離反する。この状態では、凝
固シェルが強度を有するため、もはや溶鋼静圧による凝
固シェルの鋳型壁への戻りはなく、凝固シェルと鋳型壁
との接触は発生せず、鋳型下部での凝固シェルの成長は
望めない。したがって、従来のような鋳型では鋳型長さ
を単純に長くしても鋳型下部での冷却能は上がらず、鋳
型本来の機能は発揮されなくなる。
The shrinkage of the slab creates a gap between the mold wall and the slab, which lowers the heat removal capability from the mold, which is a factor that inhibits the growth of the solidified shell in the mold. Has become. Since the formed solidified shell is thin and fragile in the upper part of the mold, the solidified shell is pushed back to the mold wall by the static pressure of molten steel and solidification proceeds. However, in the lower part of the mold, the solidified shell grows, the surface temperature of the solidified shell also decreases, and in the state where the solidified shell has sufficient strength, solidification shrinkage causes the mold wall and the slab to temporarily separate. In this state, since the solidified shell has strength, the solidified shell does not return to the mold wall due to the static pressure of molten steel, contact between the solidified shell and the mold wall does not occur, and the solidified shell grows in the lower part of the mold. I can't hope. Therefore, in the conventional mold, even if the length of the mold is simply lengthened, the cooling ability in the lower part of the mold does not increase, and the original function of the mold cannot be exhibited.

【0009】本発明者らは特開平2-217138号公報におい
て、一体もの鋳型の冷却構造を鋳造方向に2つ以上に分
割して鋳型の最上部を除く部分で高速水膜による強制冷
却を可能とし、鋳型下部での冷却能不足を補う方法を提
案した。ただしこの方法では、鋳型全長にわたって従来
どおりオシレーションさせることを前提としている。
The inventors of the present invention, in Japanese Patent Laid-Open No. 2-217138, divide the cooling structure of an integral mold into two or more parts in the casting direction and enable forced cooling with a high-speed water film in the part except the uppermost part of the mold. And proposed a method of compensating for the lack of cooling capacity at the bottom of the mold. However, in this method, it is premised that the entire length of the mold is oscillated as usual.

【0010】一体もの鋳型のままで、鋳型全長にわたっ
てオシレーションさせながら高速鋳造を行う場合には、
次のような問題がある。
When performing high-speed casting while oscillating over the entire length of the mold with the one-piece mold,
There are the following problems.

【0011】高速鋳造では、一般的に鋳型出側での凝固
シェル厚みが減少して出側での鋳片支持が困難となり、
ブレークアウトが発生する危険性が増大する。このた
め、鋳型長さを増加させることにより、上記凝固シェル
厚みを増加させる必要性にせまられる。一方、高速鋳造
では、鋳片の円滑な引き抜きを達成するために、高サイ
クルオシレーションが不可欠である。長い鋳型を高サイ
クルでオシレーションさせると、オシレーション装置が
巨大化し、設備コストや必要スペースの増加を招く。
In high-speed casting, generally, the thickness of the solidified shell on the outlet side of the mold is reduced and it becomes difficult to support the cast piece on the outlet side.
The risk of breakouts increases. Therefore, it is necessary to increase the thickness of the solidified shell by increasing the mold length. On the other hand, in high speed casting, high cycle oscillation is indispensable in order to achieve smooth drawing of the slab. When a long mold is oscillated at a high cycle, the oscillating device becomes huge, resulting in an increase in equipment cost and required space.

【0012】本発明は上記の課題を解決するためになさ
れたものである。本発明の目的は、鋳型の構造を上下方
向に複数に分離分割して鋳型として必要な機能を分離
し、かつ、それぞれが十分機能するように構成すること
により、鋼鋳片の高速鋳造を達成するのに好適な構造と
した連続鋳造用鋳型およびこれを用いる溶鋼の連続鋳造
方法を提供することにある。
The present invention has been made to solve the above problems. The object of the present invention is to achieve high-speed casting of steel slabs by separating the structure of the mold into a plurality of parts in the vertical direction and separating the functions required as a mold, and by configuring each to function sufficiently. It is an object of the present invention to provide a continuous casting mold having a structure suitable for that and a method for continuously casting molten steel using the same.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、次の
(1) の溶鋼の垂直または垂直曲げ型連続鋳造用の組立鋳
型および(2) のこれを用いる溶鋼の鋳造方法にある。
The gist of the present invention is as follows.
It is in (1) an assembly mold for vertical or vertical bending continuous casting of molten steel and (2) a method for casting molten steel using this.

【0014】(1)溶鋼の垂直または垂直曲げ型連続鋳造
用の矩形状の水平断面を有する組立鋳型であって、鋳型
は鋳造方向に2段以上の複数に分離分割されてなり、鋳
造方向における鋳型の最上流部は内部冷却の銅または銅
合金からなり、この最上流部のみはオシレーション手段
を有し、最上流部を除く下流部は、鋳片幅方向に設けた
複数の冷却水ガイド板およびこの冷却水ガイド板間で形
成され、かつ冷却水ガイド板の厚み方向に鋳片表面まで
解放された複数のスリット水路を備えているものである
ことを特徴とする溶鋼の垂直または垂直曲げ型連続鋳造
用の組立鋳型。
(1) An assembling mold having a rectangular horizontal section for continuous casting of molten steel in a vertical or vertical bending type, wherein the mold is divided into two or more stages in the casting direction, and The most upstream part of the mold is made of internally cooled copper or copper alloy, only this most upstream part has oscillation means, the downstream part except the most upstream part is a plurality of cooling water guides provided in the width direction of the slab. Vertical or vertical bending of molten steel, characterized in that the plate and a plurality of slit water channels formed between the cooling water guide plates and opened to the surface of the slab in the thickness direction of the cooling water guide plate are provided. Assembly mold for continuous die casting.

【0015】(2)上記(1) の組立鋳型を用いる溶鋼の垂
直または垂直曲げ型連続鋳造方法であって、鋳型の最上
流部のみをオシレーションさせ、冷却媒体として水を用
い、鋳型の最上流部内の鋳片は銅または銅合金の内部に
水を供給して間接冷却し、鋳型の最上流部を除く下流部
内の鋳片は、複数の冷却水ガイド板間で形成され、か
つ、冷却水ガイド板の厚み方向に鋳片表面まで解放され
た複数のスリット水路に水を供給して直接冷却すること
を特徴とする溶鋼の垂直または垂直曲げ型連続鋳造方
法。
(2) A vertical or vertical bending type continuous casting method for molten steel using the assembling mold of the above (1), in which only the most upstream part of the mold is oscillated, water is used as a cooling medium, The slab in the upstream part supplies water to the inside of the copper or copper alloy for indirect cooling, and the slab in the downstream part except the most upstream part of the mold is formed between a plurality of cooling water guide plates, and cooled. A vertical or vertical bending type continuous casting method for molten steel, characterized in that water is supplied to a plurality of slit channels opened to the surface of the slab in the thickness direction of the water guide plate to directly cool the molten steel.

【0016】本発明者らはさらに研究開発を進め、下記
〜の新知見を得た。
The inventors further proceeded with research and development and obtained the following new findings.

【0017】鋳型と鋳片との間で潤滑を必要とする範
囲は、メニスカスから300mm 下流程度までで十分である
こと。
The range in which lubrication is required between the mold and the slab is sufficient to be about 300 mm downstream from the meniscus.

【0018】上記範囲においては、凝固シェルの厚み
は5.0m/minの高速鋳造時においても5mm程度あり、鋳型
壁と凝固シェルとの間に10mm程度の空隙が存在しても、
ブレークアウトなどの操業不調を引き起こさないこと。
In the above range, the thickness of the solidified shell is about 5 mm even at the time of high speed casting of 5.0 m / min, and even if there is a gap of about 10 mm between the mold wall and the solidified shell,
Do not cause operational problems such as breakouts.

【0019】前記の範囲以下の鋳型下部においては、
たとえオシレーション運動がなくても、高速水膜による
強制冷却によって冷却強化および潤滑強化が図れるこ
と。
In the lower part of the mold below the above range,
Even if there is no oscillation motion, enhanced cooling and lubrication can be achieved by forced cooling with a high-speed water film.

【0020】よって、少なくともメニスカスから300m
m 程度下流の位置を境界として、鋳型を上流部と下流部
とに2分割しても、それぞれの部分で鋳型としての機能
を維持させることが可能であること。
Therefore, at least 300 m from the meniscus
Even if the template is divided into an upstream part and a downstream part, with the position at the downstream of about m as the boundary, the function as the template can be maintained in each part.

【0021】したがって、さらなる高速鋳造化におい
て鋳型長さを長くする際に、鋳型の下流部をオシレーシ
ョンさせることなく固定化できるので、オシレーション
装置の不必要な巨大化を抑制し得ること。
Therefore, when increasing the length of the mold in further high-speed casting, the downstream part of the mold can be fixed without oscillating, so that unnecessary enlargement of the oscillation device can be suppressed.

【0022】[0022]

【発明の実施の形態】図1に基づいて本発明の鋳型を説
明する。図1は、本発明の鋳型の構成例を示す、鋳片の
幅方向から見た一部縦断面図および正面図である。図1
に示す鋳型1では、上流部2と下流部3とから構成され
るように鋳型1の全長が鋳造方向に2段に分離分割され
ている。
BEST MODE FOR CARRYING OUT THE INVENTION The mold of the present invention will be described with reference to FIG. FIG. 1 is a partial vertical cross-sectional view and a front view showing a configuration example of a mold of the present invention as seen from the width direction of a slab. FIG.
In the mold 1 shown in (1), the entire length of the mold 1 is divided into two stages in the casting direction so as to be composed of the upstream portion 2 and the downstream portion 3.

【0023】上流部2の壁2′(図では短辺壁)は、通
常の内部冷却方式の銅または銅合金製であり、鋳片(図
示せず)を間接冷却する構造となっている。この上流部
2には、壁2′を介してアクチュエータ(図示せず)に
連結された、例えばスプリング5のような緩衝手段を有
する直動方式のオシレーション手段4が備えられてい
る。
The wall 2 '(short side wall in the figure) of the upstream portion 2 is made of a normal internal cooling type copper or copper alloy and has a structure for indirectly cooling a cast piece (not shown). The upstream portion 2 is provided with a direct-acting type oscillation means 4 having a cushioning means such as a spring 5, which is connected to an actuator (not shown) through a wall 2 '.

【0024】下流部3の鋳片幅方向は、上下方向に設け
た複数の冷却水ガイド板6およびこの冷却水ガイド板6
間の複数のスリット水路7を備えている。このスリット
水路7は、図示のように複数の冷却水ガイド板6間で形
成され、かつ冷却水ガイド板6の厚み方向に鋳片(図示
せず)表面まで解放されているものである。下流部3の
鋳片厚み方向には、同様に複数の冷却水ガイド板8およ
びスリット水路(図示せず)が備えられている。複数の
冷却水ガイド板6,8は、それぞれ図示しないバックフ
レームに固定されている。
The slab width direction of the downstream portion 3 is a plurality of cooling water guide plates 6 provided in the vertical direction and the cooling water guide plates 6
A plurality of slit water channels 7 are provided therebetween. The slit water channel 7 is formed between a plurality of cooling water guide plates 6 as shown in the drawing, and is open to the surface of a cast piece (not shown) in the thickness direction of the cooling water guide plate 6. Similarly, a plurality of cooling water guide plates 8 and slit water channels (not shown) are provided in the slab thickness direction of the downstream portion 3. The plurality of cooling water guide plates 6 and 8 are fixed to a back frame (not shown).

【0025】下流部3の冷却水は、スリット水路7から
下流部3内の鋳片表面に直接当たるように供給する。こ
のための手段や方法は図示しないが、たとえば次のよう
な構成や方法にするのが望ましい。
The cooling water in the downstream portion 3 is supplied from the slit water channel 7 so as to directly hit the surface of the slab in the downstream portion 3. Although means and method for this are not shown, it is desirable to have the following configurations and methods, for example.

【0026】冷却水ガイド板6に給水口列と排水口列と
を上下方向で交互に設け、水圧を検知しながら、このガ
イド板6と鋳片表面との間に高速の水膜が流れるように
配慮する。ただし、このとき上流部2の方向へ水膜が吹
き上げるのを防止するため、このガイド板6の最上段の
列の構成は排水口とするのが望ましい。
A row of water inlets and a row of drains are alternately provided in the cooling water guide plate 6 in the vertical direction so that a high-speed water film flows between the guide plate 6 and the surface of the slab while detecting the water pressure. Consider. However, at this time, in order to prevent the water film from being blown up in the direction of the upstream portion 2, it is desirable that the configuration of the uppermost row of the guide plate 6 is a drainage port.

【0027】このような下流部3の構成により、本発明
者らが特開平2-217138号公報で開示したとおり、冷却水
ガイド板6間のスリット水路7から水を供給して冷却水
ガイド板6と鋳片表面との間に高速の水膜を流通させ、
この高速水膜により鋳片を直接強制冷却することで、鋳
片の冷却を強化することができる。
With the construction of the downstream portion 3 as described above, as disclosed by the present inventors in Japanese Patent Laid-Open No. 2-217138, water is supplied from the slit water channels 7 between the cooling water guide plates 6 to guide the cooling water guide plates. A high speed water film is passed between 6 and the surface of the slab,
By directly forcibly cooling the slab with this high-speed water film, the cooling of the slab can be enhanced.

【0028】そして、冷却水ガイド板6とこのガイド板
6の保持用ガイド9とは、たとえばスプリング10のよう
な緩衝手段を介在させて冷却水ガイド板6のスラスト板
11と連結されている。このスラスト板11は、回動可能な
リンク機構で連結リンク12に、さらにこの連結リンク12
は回動可能に保持用ガイド9に、連結リンク12はまたシ
リンダー13に、それぞれ連結されている。
The cooling water guide plate 6 and the holding guide 9 for holding the guide plate 6 are thrust plates of the cooling water guide plate 6 with a buffer means such as a spring 10 interposed therebetween.
Connected to 11. This thrust plate 11 is connected to the connecting link 12 by a rotatable link mechanism, and further, the connecting link 12
Is rotatably connected to the holding guide 9 and the connecting link 12 is also connected to the cylinder 13.

【0029】このシリンダー13の作用は、鋳片の幅変え
時に鋳片の幅に追随して冷却水ガイド板6間の幅を変更
することにより、スリット水路7内の水圧を一定に維持
させることにある。なお、鋳片の厚み方向は、幅変え時
に幅方向の変化に対応して変えることができる構造とす
ればよい。
The function of the cylinder 13 is to keep the water pressure in the slit water channel 7 constant by changing the width between the cooling water guide plates 6 in accordance with the width of the slab when the width of the slab is changed. It is in. It should be noted that the thickness direction of the slab may be changed so as to correspond to the change in the width direction when changing the width.

【0030】鋳型1の上流部2と下流部3との間には間
隙dを設け、上流部2のオシレーションが下流部3に及
ばない構造とする。
A gap d is provided between the upstream portion 2 and the downstream portion 3 of the mold 1 so that the oscillation of the upstream portion 2 does not reach the downstream portion 3.

【0031】図1のように鋳型1を2段に分離分割する
場合、上流部2の望ましい長さはメニスカス下の300mm
を含む400mm 程度、下流部3の望ましい長さは600mm 程
度である。
When the mold 1 is divided into two stages as shown in FIG. 1, the desired length of the upstream portion 2 is 300 mm below the meniscus.
Approximately 400 mm including the above, and the desired length of the downstream portion 3 is approximately 600 mm.

【0032】このような分離分割構造の鋳型1とすれ
ば、上流部2のみをオシレーションさせることができ
る。望ましいオシレーションストロークは4〜6mmであ
る。したがって、上流部2がオシレーションの最下端に
位置したときに、上流部2の下端と冷却水ガイド板6の
上端とが略々接する位置になるようにすれば、前記の間
隙dは上記ストロークの2倍となる。よって、dの最大
間隙は約12mmとなる。この程度の間隙が存在しても、凝
固シェルのバルジングなどによる操業不良は発生しな
い。
With the mold 1 having such a separation and division structure, only the upstream portion 2 can be oscillated. The preferred oscillation stroke is 4-6 mm. Therefore, if the lower end of the upstream portion 2 and the upper end of the cooling water guide plate 6 are substantially in contact with each other when the upstream portion 2 is located at the lowermost end of the oscillation, the above-mentioned gap d becomes the stroke. It is twice as much. Therefore, the maximum gap of d is about 12 mm. Even if such a gap exists, a defective operation due to bulging of the solidified shell does not occur.

【0033】このような本発明鋳型における直動方式の
オシレーション手段の規模では、従来のアクチュエータ
方式に比べて、半分以下の小型化が可能となる。
In the scale of the direct-acting type oscillation means in the mold of the present invention, the size can be reduced to less than half that of the conventional actuator type.

【0034】鋳型を3段以上に分離分割する場合には、
上流部2の長さはそのままとし、下流部3のみを対象と
してさらに二つ以上に分離分割する。この場合の構造
は、いずれも図1に示す下流部3と同じである。これら
の間に間隙は、下流部をオシレーションさせないため制
限されず、その範囲は0〜12mm程度とすればよい。
When the mold is divided into three or more stages,
The length of the upstream portion 2 is left unchanged, and only the downstream portion 3 is further divided into two or more parts. The structure in this case is the same as that of the downstream portion 3 shown in FIG. The gap between them is not limited because it does not oscillate the downstream portion, and its range may be about 0 to 12 mm.

【0035】下流部3の分離分割数は、所期の鋳造速
度、そのために必要な鋳型の全長および下流部の冷却水
量などによって決定され、その望ましい上限は3〜4分
割程度である。すなわち、鋳型全体としての分離分割の
段数の望ましい上限は4〜5段程度である。
The number of separation divisions in the downstream portion 3 is determined by the desired casting speed, the total length of the mold required for that purpose, the amount of cooling water in the downstream portion, and the like, and the desirable upper limit is about 3 to 4 divisions. That is, the desirable upper limit of the number of stages of separation and division of the entire mold is about 4 to 5.

【0036】望ましい冷却水ガイド板の数の範囲は15〜
20程度、その幅の範囲は80〜120mm程度、スリット水路
の幅の範囲は0.10〜2.0mm 程度である。望ましい冷却水
ガイド板の材質はステンレス鋼、銅および銅合金などで
ある。
The range of the number of desirable cooling water guide plates is 15 to
The width of the slit canal is about 20 to 80 mm and the width of the slit canal is 0.10 to 2.0 mm. Preferred cooling water guide plate materials include stainless steel, copper and copper alloys.

【0037】本発明方法は、上記のような分離分割鋳型
を垂直または垂直曲げ型の連続鋳造装置に組み込み、最
上流部のみをオシレーションさせ、冷却媒体として水を
用い、鋳片の冷却は最上流部では間接冷却方法、最上流
部を除く下流部では、前述の高速水膜による直接強制冷
却方法とするものである。
In the method of the present invention, the above-mentioned separation and division mold is incorporated into a vertical or vertical bending type continuous casting apparatus, only the most upstream portion is oscillated, water is used as a cooling medium, and the slab is cooled at the maximum. The indirect cooling method is used in the upstream part, and the direct forced cooling method using the high-speed water film is used in the downstream parts except the most upstream part.

【0038】下流部3の冷却媒体を水に限定したのは、
高速水膜による鋳片の冷却強度向上には水が最適であ
り、スプレーなどに用いられるミストなどはかえって冷
却能を低下させるからである。
The reason why the cooling medium in the downstream portion 3 is limited to water is that
This is because water is most suitable for improving the cooling strength of the slab by the high-speed water film, and mist used for spraying or the like rather reduces the cooling capacity.

【0039】冷却水流速の望ましい範囲は、最上流部お
よび高速水膜による直接強制冷却を用いる下流部のいず
れにおいても6〜40m/s である。ただし、鋳造速度が後
述の範囲で比較例遅い場合、最上流部の冷却水流速は通
常の内部冷却型の鋳型の場合と同等とすることもでき
る。
The desirable range of the cooling water flow velocity is 6 to 40 m / s both in the most upstream part and in the downstream part using direct forced cooling by a high speed water film. However, when the casting speed is slow in the comparative example within the range described below, the cooling water flow velocity in the most upstream part can be made equal to that in the case of a normal internal cooling type mold.

【0040】最上流部のオシレーションサイクルの望ま
しい範囲は、 100〜400cpm程度である。鋳片サイズの望
ましい幅は 800〜2500mm程度、同じく厚みは50〜200mm
程度である。鋳造速度の望ましい範囲は 1.5〜6.0m/min
程度である。
A desirable range of the most upstream oscillation cycle is about 100 to 400 cpm. The desired width of the slab is about 800 to 2500 mm, and the thickness is 50 to 200 mm.
It is a degree. The desired range of casting speed is 1.5 to 6.0 m / min
It is a degree.

【0041】鋳型の上流部における鋳型壁と鋳片との間
の潤滑は、従来適用されているパウダーによればよい。
Lubrication between the mold wall and the slab in the upstream part of the mold may be carried out by a conventionally applied powder.

【0042】[0042]

【実施例】【Example】

(試験1)垂直部の長さが3m 、湾曲半径が10m の2ス
トランド垂直曲げ型連続鋳造装置に下記条件の鋳型を適
用し、表1に示す組成の低炭素アルミキルド鋼の鋳片
(厚みは150mm 、幅は1500mm)を鋳造速度5.2m/minで鋳
造した。
(Test 1) A mold of the following conditions was applied to a two-strand vertical bending type continuous casting machine having a vertical portion length of 3 m and a bending radius of 10 m, and a slab of low carbon aluminized steel having the composition shown in Table 1 (thickness: 150 mm in width and 1500 mm in width) was cast at a casting speed of 5.2 m / min.

【0043】No.1ストランド(本発明例): 鋳型構成は図1に示す二つに分離分割した鋳型 上流部長さは400mm 下流部長さは600mm メニスカス下の有効長さは900mm 間隙dは12mm 上流部の冷却水の流速は9m/s 下流部の冷却水ガイド板の幅は100mm スリット水路の幅は0.5mm 下流部の冷却水の流速は20m/s No.2ストランド(比較例): 鋳型は全長1000mm、内部水冷方式の従来の鋳型 メニスカス下の有効長さは900mm 冷却水の流速は9m/s オシレーションは、No.1ストランドでは直動方式、No.2
ストランドでは従来のショートレバー方式により、いず
れもそのストロークは6mmとした。
No. 1 strand (example of the present invention): The mold configuration is the mold shown in FIG. 1, which is divided into two parts. The upstream length is 400 mm, the downstream length is 600 mm, the effective length under the meniscus is 900 mm, and the gap d is 12 mm upstream. The cooling water flow rate in the downstream part is 9 m / s, the width of the cooling water guide plate in the downstream part is 100 mm, the width of the slit channel is 0.5 mm, the cooling water flow rate in the downstream part is 20 m / s No.2 strand (comparative example): The mold is The total length is 1000 mm, the effective length under the conventional water-cooled mold meniscus is 900 mm, the cooling water flow rate is 9 m / s, and the oscillation is the No. 1 strand, the direct-acting method, No. 2
Strand has a stroke of 6 mm in each case by the conventional short lever system.

【0044】[0044]

【表1】 [Table 1]

【0045】鋳造中に鋳型内にFeS を添加し、得られた
鋳片のサルファープリントから鋳型内の凝固シェルの厚
みを調査した。図2に結果を示す。
FeS was added into the mold during casting, and the thickness of the solidified shell in the mold was investigated from the sulfur print of the obtained slab. FIG. 2 shows the results.

【0046】図2は、鋳型内の凝固シェルの厚みとメニ
スカスからの距離との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the thickness of the solidified shell in the mold and the distance from the meniscus.

【0047】図2に示すように、本発明例では、特に鋳
型の下流部、すなわち出口側で凝固シェルの成長が認め
られた。一方、比較例では鋳型の下流部における凝固シ
ェルの成長が抑制され、かつ不均一であった。
As shown in FIG. 2, in the example of the present invention, growth of the solidified shell was observed especially at the downstream portion of the mold, that is, at the outlet side. On the other hand, in the comparative example, the growth of the solidified shell in the downstream portion of the mold was suppressed and was non-uniform.

【0048】(試験2)さらに、鋳造速度を変化させ、
鋳造中のオシレーション駆動のための油圧モータのトル
クを測定した。図3に結果を示す。
(Test 2) Further, the casting speed was changed,
The torque of the hydraulic motor for driving the oscillation during casting was measured. FIG. 3 shows the results.

【0049】図3は、鋳造中のオシレーション駆動のた
めの油圧モータのトルクと鋳造速度との関係を示す図で
ある。図示するように、両者の間で油圧トルクに差はな
く、すなわち鋳型と鋳片との間の摩擦力に差はなかっ
た。これは、両者の鋳型潤滑に差がないことを示してい
る。したがって、鋳型と鋳片との潤滑に必要な鋳型部分
は高々メニスカスから下流側の300mm 程度までであり、
その部分の鋳型をオシレーションさせればよいことが裏
付けられた。
FIG. 3 is a diagram showing the relationship between the torque of the hydraulic motor for driving the oscillation during casting and the casting speed. As shown, there was no difference in hydraulic torque between the two, that is, there was no difference in frictional force between the mold and the slab. This indicates that there is no difference in the mold lubrication between the two. Therefore, the mold required for lubrication between the mold and the slab is no more than about 300 mm downstream from the meniscus,
It was confirmed that the mold in that portion should be oscillated.

【0050】(試験3)表1に示す組成の溶鋼を対象と
し、No.1ストランド側の二つに分離分割した鋳型を用
い、上流部の長さを200mm 、300mm および400mm と変化
させ、メニスカス下の有効長さを900mm の一定として鋳
造を実施した。
(Test 3) A molten steel having the composition shown in Table 1 was used as a target, and a mold separated into two on the No. 1 strand side was used, and the length of the upstream part was changed to 200 mm, 300 mm and 400 mm, and the meniscus was changed. Casting was performed with the lower effective length kept constant at 900 mm.

【0051】その結果、200mm の場合では上流部と下流
部との間で凝固シェルが薄く、間隙dの部分に溶鋼が差
し込み、ブレークアウトが発生した。300mm および400m
m の場合では安定した鋳造が継続され、上流部の必要長
さを判断することができた。
As a result, in the case of 200 mm, the solidified shell was thin between the upstream part and the downstream part, the molten steel was inserted into the gap d, and a breakout occurred. 300mm and 400m
In the case of m, stable casting was continued and the required length of the upstream part could be judged.

【0052】さらに、オシレーション手段をショートレ
バー方式から直動方式に変更したところ、直動方式でも
オシレーション機能が十分発揮されることを確認した。
直動方式の採用により、オシレーション手段に要するコ
ストを従来の約半分に節減することができた。
Furthermore, when the oscillation means was changed from the short lever type to the direct acting type, it was confirmed that the oscillation function was sufficiently exhibited even in the direct acting type.
By adopting the direct drive system, the cost required for the oscillation means could be reduced to about half that of the conventional method.

【0053】[0053]

【発明の効果】本発明によれば、鋳型の機能を分離させ
ることで、潤滑を要する上流部のみをオシレーションさ
せることができ、その手段が簡便なものとなる。さら
に、下流部をスリット水路を用いる直接冷却構造とし
て、高速水膜による高い強制冷却効果を付与することに
より、5.0m/min以上の高速鋳造が可能である。
According to the present invention, by separating the functions of the mold, it is possible to oscillate only the upstream portion that requires lubrication, and the means is simple. Furthermore, by providing a direct cooling structure using a slit water channel in the downstream part and imparting a high forced cooling effect by a high speed water film, high speed casting of 5.0 m / min or more is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の鋳型の構成例を示す、鋳片の幅方向か
ら見た一部縦断面図および正面図である。
FIG. 1 is a partial vertical cross-sectional view and a front view showing a configuration example of a mold of the present invention as seen from the width direction of a cast slab.

【図2】鋳型内の凝固シェルの厚みとメニスカスからの
距離との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a thickness of a solidified shell in a mold and a distance from a meniscus.

【図3】鋳造中のオシレーション駆動のための油圧モー
タのトルクと鋳造速度との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a torque of a hydraulic motor for driving an oscillation during casting and a casting speed.

【符号の説明】[Explanation of symbols]

1:鋳型、 2:上流部、2′:(短辺)
壁、 3:下流部、4:オシレーション手段、5:
スプリング、 6:冷却水ガイド板、7:スリッ
ト水路、 8:冷却水ガイド板、9:冷却水ガイド
板の保持用ガイド、10:スプリング、11:冷却水ガイド
板のスラスト板、12:連結リンク、 13:シリン
ダー
1: mold, 2: upstream part, 2 ': (short side)
Wall, 3: Downstream part, 4: Oscillation means, 5:
Spring, 6: Cooling water guide plate, 7: Slit channel, 8: Cooling water guide plate, 9: Guide for holding cooling water guide plate, 10: Spring, 11: Thrust plate of cooling water guide plate, 12: Connection link , 13: Cylinder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】溶鋼の垂直または垂直曲げ型連続鋳造用の
矩形状の水平断面を有する組立鋳型であって、鋳型は鋳
造方向に2段以上の複数に分離分割されてなり、鋳造方
向における鋳型の最上流部は内部冷却の銅または銅合金
からなり、この最上流部のみはオシレーション手段を有
し、最上流部を除く下流部は、鋳片幅方向に設けた複数
の冷却水ガイド板およびこの冷却水ガイド板間で形成さ
れ、かつ冷却水ガイド板の厚み方向に鋳片表面まで解放
された複数のスリット水路を備えているものであること
を特徴とする溶鋼の垂直または垂直曲げ型連続鋳造用の
組立鋳型。
1. An assembly mold having a rectangular horizontal section for continuous casting of molten steel in a vertical or vertical bending mold, wherein the mold is divided and divided into a plurality of two or more stages in the casting direction. The uppermost stream part is made of internally-cooled copper or copper alloy, and only this uppermost stream part has an oscillation means, and the downstream part except the uppermost stream part has a plurality of cooling water guide plates provided in the width direction of the slab. And a vertical or vertical bending mold for molten steel, characterized in that it is provided with a plurality of slit water channels formed between the cooling water guide plates and opened to the surface of the slab in the thickness direction of the cooling water guide plates. Assembly mold for continuous casting.
【請求項2】請求項1に記載の組立鋳型を用いる溶鋼の
垂直または垂直曲げ型連続鋳造方法であって、鋳型の最
上流部のみをオシレーションさせ、冷却媒体として水を
用い、鋳型の最上流部内の鋳片は銅または銅合金の内部
に水を供給して間接冷却し、鋳型の最上流部を除く下流
部内の鋳片は、複数の冷却水ガイド板間で形成され、か
つ、冷却水ガイド板の厚み方向に鋳片表面まで解放され
た複数のスリット水路に水を供給して直接冷却すること
を特徴とする溶鋼の垂直または垂直曲げ型連続鋳造方
法。
2. A vertical or vertical bending type continuous casting method for molten steel using the assembled mold according to claim 1, wherein only the most upstream part of the mold is oscillated and water is used as a cooling medium. The slab in the upstream part supplies water to the inside of the copper or copper alloy for indirect cooling, and the slab in the downstream part except the most upstream part of the mold is formed between a plurality of cooling water guide plates, and cooled. A vertical or vertical bending type continuous casting method for molten steel, characterized in that water is supplied to a plurality of slit channels opened to the surface of the slab in the thickness direction of the water guide plate to directly cool the molten steel.
JP10250096A 1996-04-24 1996-04-24 Assembled mold for continuous casting, and casting method Pending JPH09285843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10250096A JPH09285843A (en) 1996-04-24 1996-04-24 Assembled mold for continuous casting, and casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10250096A JPH09285843A (en) 1996-04-24 1996-04-24 Assembled mold for continuous casting, and casting method

Publications (1)

Publication Number Publication Date
JPH09285843A true JPH09285843A (en) 1997-11-04

Family

ID=14329137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10250096A Pending JPH09285843A (en) 1996-04-24 1996-04-24 Assembled mold for continuous casting, and casting method

Country Status (1)

Country Link
JP (1) JPH09285843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229702A (en) * 2007-03-23 2008-10-02 Kobe Steel Ltd Method for revealing solidified shell thickness in s print

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229702A (en) * 2007-03-23 2008-10-02 Kobe Steel Ltd Method for revealing solidified shell thickness in s print

Similar Documents

Publication Publication Date Title
US5564491A (en) Method and apparatus for twin belt casting of strip
JP5168591B2 (en) Water-cooled mold for continuous casting and ingot manufacturing method
JP2006320945A (en) Graphite mold for vertical type continuous casting
CN1086966C (en) Strip casting apparatus
EP1140392B1 (en) High speed continuous casting device and relative method
US4911226A (en) Method and apparatus for continuously casting strip steel
EP0191586B1 (en) Electromagnetic levitation casting
JPH09285843A (en) Assembled mold for continuous casting, and casting method
KR101400044B1 (en) Method for controlling casting speed in continuous casting
JP2015155117A (en) Continuous casting apparatus for casting strip of variable width
KR100192692B1 (en) Process and apparatus for producing molded shapes
US5103892A (en) Continuous casting of discrete shapes
KR102179558B1 (en) Mold, apparatus and method for casting
KR200169961Y1 (en) Twin roll type sheet casting apparatus
JPH0994635A (en) Method for continuously casting steel
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
JP2808633B2 (en) Continuous casting mold and control method thereof
JPH02220736A (en) Continuous casting method and mold for continuous casting
JPH0464775B2 (en)
JPH07116783A (en) Mold for continuous casting and cooling method of cast slab using it
WO2002085555A3 (en) Method and device for continuously casting metal
JPS61245949A (en) Continuous casting method
JPS62148060A (en) Thin slab continuous casting equipment
JPH0924444A (en) Method for supplying molten metal at the time of continuously casting wide and thin cast slab
JPS6227904B2 (en)