JPH09279260A - Method for agglomerating iron ore - Google Patents

Method for agglomerating iron ore

Info

Publication number
JPH09279260A
JPH09279260A JP11717996A JP11717996A JPH09279260A JP H09279260 A JPH09279260 A JP H09279260A JP 11717996 A JP11717996 A JP 11717996A JP 11717996 A JP11717996 A JP 11717996A JP H09279260 A JPH09279260 A JP H09279260A
Authority
JP
Japan
Prior art keywords
ore
slag
iron ore
water
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11717996A
Other languages
Japanese (ja)
Inventor
Hideo Ide
秀夫 井出
Masanori Nakano
正則 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11717996A priority Critical patent/JPH09279260A/en
Publication of JPH09279260A publication Critical patent/JPH09279260A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the thermal efficiency required for agglomeration and to decrease the amt. of blast furnace raw materials by mixing high-water-of- crystallization powdery iron are with converter slag in a molten state and forming easily disintegratable slag bond lumps by utilizing the dehydration behavior of the iron ore. SOLUTION: The iron ore 4 contg. >=5% water of crystallization is charged form mid-way of a downflow through 3 to a slug pit 2 of the converter slag 1 in the molten state and is agglomerated. The cooled agglomerate ore 7 is delivered by a shovel car 5, etc., and is used as a part of the blast furnace raw materials. At this time, the mixing ratio of the powdery iron ore and the slag is so set as to satisfy the conditions of the equation. The powdery high- water-of-crystallization iron ore includes pellet feeds of a diameter of <=10mm a diameter of <=1mm to be used for a sintering method. More preferably, the ore includes ore, such as Robe river ore and yandi ore, contg. a large amt. of goethite, and in addition thereto, a mixture which is compounded with the ore below 5% and the Robe river and yondi ores so as to contain >=5% of the water of crystallization. The slag having basicit of about 2 to 4 is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、製鉄業における高
炉工程等の原料となる粉状の鉄鉱石の塊成化方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for agglomerating powdery iron ore, which is a raw material for a blast furnace process or the like in the iron manufacturing industry.

【0002】[0002]

【従来の技術】直径10mm以上の塊状の鉄鉱石はその
まま高炉用原料として使用されるが、直径10mm以下
の粉状ないし直径1mm以下の微粉状の鉄鉱石は、焼結
法ないしペレット法で5〜50mm程度の粒度まで塊成
化したのち、高炉で使用されている。そして、たとえ
ば、焼結法の場合は粉コークスを50kg/t必要とす
るように、従来の焼結法ないしペレット法による塊成化
には多大のエネルギーを要している。
2. Description of the Related Art A massive iron ore with a diameter of 10 mm or more is used as it is as a raw material for a blast furnace, but a powdery iron ore with a diameter of 10 mm or less or a fine powdery iron with a diameter of 1 mm or less can be obtained by a sintering method or a pellet method. It is used in a blast furnace after being agglomerated to a particle size of about 50 mm. And, for example, in the case of the sintering method, 50 kg / t of coke powder is required, so much energy is required for agglomeration by the conventional sintering method or pellet method.

【0003】一方、製鋼スラグはスラグピットに放流し
て冷却固化し、自然エージングないし蒸気エージングで
遊離石灰を安定化処理したのち路盤用砕石として利用さ
れているが、製鋼スラグの1500℃程度の溶融顕熱は
有効に利用されていなかった。
On the other hand, steelmaking slag is discharged into a slag pit, cooled and solidified, and free lime is stabilized by natural aging or steam aging and then used as crushed stone for roadbed. Melting of steelmaking slag at about 1500 ° C. Sensible heat was not used effectively.

【0004】これに対し、5mm以下の細粒焼結鉱を溶
滓で結合させて塊成化することにより、製鋼スラグの顕
熱を利用しつつ粉焼結鉱を塊成化するスラグボンド塊成
法が特開昭59−232239号公報に開示されてい
る。これは、溶融スラグを流す溶樋に細粒焼結鉱を添加
したのち、スラグピットで冷却する方法である。この方
法で製造した塊成鉱は大塊となり、高炉で使用する際に
は、約50mm以下までクラッシャーにより破砕する必
要があると考えられる。
On the other hand, a slag-bonded lump that agglomerates powdered ore while utilizing the sensible heat of the steelmaking slag by binding agglomerated fine-grained ore of 5 mm or less with a slag A method for producing the same is disclosed in JP-A-59-232239. This is a method in which a fine-grained sinter is added to a molten slag flowing molten slag and then cooled in a slag pit. The agglomerated ore produced by this method becomes a large lump, and when used in a blast furnace, it is considered necessary to crush it with a crusher to about 50 mm or less.

【0005】また、高炉使用に適した粒度が直接得られ
ると考えられる塊成化方法として、特開昭62−170
54号公報には、溶融転炉スラグに石灰石等のガス発生
冷却剤を投じたのち容器を揺動させることにより溶融ス
ラグを粒状化し、引き続いて、さらに容器を揺動させな
がら粉状鉄鉱石を投じて粒状半溶融スラグと粒状鉄鉱石
を付着させて塊成化する方法が開示されている。
Further, as an agglomeration method which is considered to directly obtain a particle size suitable for use in a blast furnace, Japanese Patent Laid-Open Publication No. 62-170
In Japanese Patent Publication No. 54-54, the molten slag is granulated by pouring a gas generating coolant such as limestone into the molten converter slag and then rocking the container, and subsequently, pulverizing the iron ore powder while rocking the container further. A method of casting and agglomerating the granular semi-molten slag and the granular iron ore is disclosed.

【0006】[0006]

【発明が解決しようとする課題】特開昭59−2322
39号公報記載の方法では、成品の高炉使用に先立ち上
述のように破砕処理が必要である。また、特開昭62−
17054号公報記載の方法では、特別な揺動する容器
が必要であるとともに、複雑な処理作業を要する。
[Problems to be Solved by the Invention] Japanese Patent Laid-Open No. 59-2322
The method described in Japanese Patent No. 39 requires the crushing process as described above before using the blast furnace of the product. In addition, JP-A-62-1
The method described in Japanese Patent No. 17054 requires a special oscillating container and complicated processing work.

【0007】本発明は、溶融スラグ顕熱を有効に利用し
て安価に塊成化するスラグボンド塊成法の利点を踏まえ
つつ、さらに、特別な装置を使用することなしに簡易
に、直接高炉使用可能な塊成鉱を得る方法を提供するこ
とを目的とする。
The present invention is based on the advantages of the slag bond agglomeration method in which the sensible heat of molten slag is effectively used to agglomerate at low cost, and further, it is simple and direct blast furnace without using a special device. The object is to provide a method for obtaining a usable agglomerated ore.

【0008】[0008]

【課題を解決するための手段】本発明は、結晶水を5%
以上含有する粉状の鉄鉱石(以下、高結晶水鉱石とい
う)と溶融状態の製鋼スラグを混合することを特徴とす
る鉄鉱石の塊成化方法である。ここで粉状とは、焼結法
に供されるところの直径10mm以下のもの、ペレット
フィードと称される直径1mm以下の微粉状のものを含
む。また、製鋼スラグとは、塩基度2〜4程度のもので
あり、かつリン含有量が低いことが好ましい。また、結
晶水を5%以上含有するとは、具体的には、ローブリバ
ー鉱やヤンディ鉱のようにゲーサイトを多量に含む鉄鉱
石の他、5%に満たない結晶水を有する鉱石とローブリ
バー鉱やヤンディ鉱を配合して5%以上の結晶水とした
混合物も含む。
The present invention uses 5% of water of crystallization.
A method for agglomerating iron ore, which comprises mixing the above-described powdery iron ore (hereinafter referred to as high crystal water ore) and steelmaking slag in a molten state. The term "powder" as used herein includes a material having a diameter of 10 mm or less as used in the sintering method, and a fine powder having a diameter of 1 mm or less, which is called a pellet feed. Further, it is preferable that the steelmaking slag has a basicity of about 2 to 4 and a low phosphorus content. Also, containing 5% or more of water of crystallization specifically means iron ores containing a large amount of goethite, such as lobe river or yandi ore, and ores having less than 5% of water of crystallization and lobe rivers. It also includes a mixture of ore and Yandi ore to make 5% or more of water of crystallization.

【0009】得られる塊成鉱の結晶水含有量を安定化さ
せる場合は、高結晶水鉱石と製鋼スラグの量比を式
(1)数2により規定する。
When stabilizing the crystal water content of the obtained agglomerated ore, the quantity ratio of the high crystal water ore and the steelmaking slag is defined by the equation (2).

【0010】[0010]

【数2】 ここで、Wslag:製鋼スラグの量 (kg) Wore :鉄鉱石の量 (kg) cslag:製鋼スラグの比熱 (J/kg/K) core :鉄鉱石の比熱 (J/kg/K) Tslag:製鋼スラグの混合前温度 (K) Tore :鉄鉱石の混合前温度 (K) TW :結晶水の分解温度 (K) Hcw :結晶水の分解熱 (J/kg) Hm :水の蒸発熱 (J/kg) acw :鉄鉱石中の結晶水の割合 (kg/kg) am :鉄鉱石中の鉱石水分の割合(kg/kg) A :1.1〜1.2の係数[Equation 2] Here, W slag : Amount of steelmaking slag (kg) Wore : Amount of iron ore (kg) c slag : Specific heat of steelmaking slag (J / kg / K) core : Specific heat of iron ore (J / kg / K) ) T slag : Temperature before mixing of steelmaking slag (K) Tore : Temperature before mixing of iron ore (K) T W : Decomposition temperature of crystal water (K) H cw : Decomposition heat of crystal water (J / kg) H m : heat of evaporation of water (J / kg) a cw : ratio of crystal water in iron ore (kg / kg) a m : ratio of ore water content in iron ore (kg / kg) A: 1.1 to 1 Coefficient of 2

【0011】[0011]

【発明の実施の形態】本発明は、高結晶水鉱石の脱水挙
動を利用して、塊砕容易なスラグボンド塊成鉱を製造す
る方法である。すなわち、鉱石中の結晶水は、溶融スラ
グの顕熱により加熱脱水する。その時、脱水後の高結晶
水鉱石が多孔質なものとなり、塊成鉱がそこを起点とし
て破壊しやすい構造となること、および発生した水蒸気
の内圧が破壊を促進すること、さらに冷却時に熱歪みが
生じることにより、冷却後の塊成鉱は原料高結晶水鉱石
中の結晶水含有量が高いほど粒度が小さくなる。図2は
この関係を、横軸を粉鉱石の結晶水含有率、縦軸を塊成
鉱の90%篩下粒度で示す。高炉用塊成鉱の上限粒度は
現在50mm程度であり、結晶水含有率が5%以上であ
ればこれを満足する塊成鉱が破砕処理なしに得られるこ
とが図2よりわかる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a method for producing a slag bond agglomerated ore that is easy to agglomerate by utilizing the dehydration behavior of a highly crystallized water ore. That is, the water of crystallization in the ore is heated and dehydrated by the sensible heat of the molten slag. At that time, the highly crystalline water ore after dehydration becomes porous, and the agglomerated ore has a structure that easily breaks from there, and the internal pressure of the generated steam promotes the destruction, and further the thermal strain during cooling. As a result, the particle size of the agglomerated ore after cooling becomes smaller as the content of crystal water in the raw material high crystal water ore is higher. FIG. 2 shows this relationship, with the horizontal axis being the water content of crystallization of powdered ore and the vertical axis being the 90% under-sieve particle size of agglomerated ores. It can be seen from FIG. 2 that the upper limit particle size of agglomerated ore for blast furnace is about 50 mm at present and that if the water content of crystallization is 5% or more, agglomerated ore satisfying this can be obtained without crushing treatment.

【0012】一般的に、高炉原料中の結晶水の増加は、
その分解熱消費による高炉燃料比の増加を招くのみなら
ず、炉頂部の温度低下、炉内での粉化促進による通気の
悪化を招くとされる。従って、本発明法により製造する
塊成鉱も結晶水が完全に除去されていることが品質上好
ましい。式(1)の右辺第2項の分母はスラグ顕熱を表
し、分子は結晶水の分解に要する熱量を表す。従って、
その比以上に製鋼スラグと高結晶水鉱石との量比を保て
ば結晶水を完全に除去できることは、熱バランスより容
易に理解される。そこで、高結晶水鉱石中の結晶水を完
全に脱水する場合は、完全に結晶水を除去できる熱効率
に関する係数Aが1.1〜1.2となるようにする。
Generally, the increase in crystal water in the blast furnace raw material is
It is said that not only the blast furnace fuel ratio is increased due to the consumption of the decomposition heat, but also the temperature is lowered at the furnace top and the ventilation is deteriorated due to the promotion of pulverization in the furnace. Therefore, it is preferable in terms of quality that the water of crystallization is completely removed from the agglomerated ore produced by the method of the present invention. The denominator of the second term on the right side of the equation (1) represents slag sensible heat, and the numerator represents the amount of heat required for the decomposition of crystal water. Therefore,
It is easily understood from the heat balance that the crystal water can be completely removed by keeping the ratio of the amount of the steelmaking slag and the high crystal water ore higher than that ratio. Therefore, when the crystal water in the high crystal water ore is completely dehydrated, the coefficient A relating to the thermal efficiency for completely removing the crystal water is set to 1.1 to 1.2.

【0013】[0013]

【実施例】図1により、実施例を説明する。EXAMPLE An example will be described with reference to FIG.

【0014】ローブリバー鉱の場合の具体的な量比(W
slag/Wore )は、ローブリバー鉱の結晶水含有率acw
を7.9%、水分am を6%、Tslagを1773K、T
oreを293K、比熱等の物性値を表1に示す数値とし
て、0.62〜0.68以上となる。
Specific amount ratio (W in the case of lobe river ore)
slag / Wore ) is the crystal water content of lobe river ore a cw
7.9% moisture a m 6% 1773K and T slag, T
The ore is 293K, and the physical properties such as specific heat are 0.62 to 0.68 or more as the numerical values shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】そこで、溶融状態の転炉スラグ1(CaO
=43%、SiO2 =13%、T.Fe=15%)をス
ラグピット2へ流下させる樋3の途中より、ローブリバ
ー鉱石4(T.Fe=57%、SiO2 =5.7%、a
cw=7.9%、am =6%)を転炉スラグと1:1の割
合で投入した。冷却した塊成鉱7はシャベルカー5で払
出し、トラック6で高炉に直接輸送し、高炉原料の一部
として使用した。
Therefore, the molten converter slag 1 (CaO
= 43%, SiO 2 = 13%, T.I. From the middle of the gutter 3 that causes Fe = 15%) to flow down into the slag pit 2, lobe river ore 4 (T.Fe = 57%, SiO 2 = 5.7%, a
He was charged at a rate of 1: cw = 7.9%, a m = 6%) and a converter slag 1. The cooled agglomerated ore 7 was discharged by the shovel car 5, directly transported to the blast furnace by the truck 6 and used as a part of the blast furnace raw material.

【0017】得られた塊成鉱7の粒度は、算術平均粒度
で19mm、90%篩下粒度で45mmであり、分析の
結果、結晶水は0.1%とほとんど完全に脱水されてい
ることを確認した。また、高炉では、本塊成鉱使用にと
もなう炉頂温度変化、通気変化等の影響は認められなか
った。
The particle size of the obtained agglomerated ore 7 is 19 mm in arithmetic average particle size and 45 mm in 90% under-sieving particle size, and as a result of analysis, the crystal water is almost completely dehydrated to 0.1%. It was confirmed. In addition, in the blast furnace, the effects of changes in furnace top temperature and changes in aeration due to the use of this agglomerated ore were not observed.

【0018】また、本発明法により得られた塊成鉱は、
高炉原料として使用する以外に、溶銑予備処理における
脱燐・脱珪剤としても使用可能である。
The agglomerated ore obtained by the method of the present invention is
Besides being used as a blast furnace raw material, it can also be used as a dephosphorization / desiliconization agent in hot metal pretreatment.

【0019】[0019]

【発明の効果】本発明により、製鋼スラグの高温の顕熱
を有効に回収するとともに、製鋼スラグの製鉄所内での
リサイクルを促進できる。また、ドワイトロイド焼結機
を用いた焼結法に比較して、高炉用原料を格段に安価に
製造できる。さらに、ドワイトロイド焼結法からの高結
晶水鉱石の使用量の低減は、その生産性やエネルギーコ
ストをも改善する。
According to the present invention, the high temperature sensible heat of the steelmaking slag can be effectively recovered, and the recycling of the steelmaking slag in the steel mill can be promoted. Further, compared with the sintering method using a Dwightroid sintering machine, the raw material for the blast furnace can be manufactured at a significantly lower cost. In addition, the reduction of high crystal water ore usage from the Dwightroid sintering process also improves its productivity and energy costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法の工程を示す図である。FIG. 1 is a diagram showing steps of the method of the present invention.

【図2】粉鉱石の結晶水含有率と塊成鉱の粒度の関係を
示す図である。
FIG. 2 is a diagram showing the relationship between the water content of crystallization of powdered ore and the particle size of agglomerated ores.

【符号の説明】[Explanation of symbols]

1 転炉スラグ 2 スラグピット 3 樋 4 ローブリバー鉱石 5 シャベルカー 6 トラック 7 塊成鉱 8 スラグ鍋 1 Converter slag 2 Slag pit 3 Gutter 4 Lover river ore 5 Shovel car 6 Truck 7 Agglomerated ore 8 Slag pot

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結晶水を5%以上含有する粉状の鉄鉱石
と溶融状態の製鋼スラグを混合することを特徴とする鉄
鉱石の塊成化方法。
1. A method for agglomerating iron ore, which comprises mixing powdery iron ore containing 5% or more of crystal water with molten steelmaking slag.
【請求項2】 結晶水を5%以上含有する粉状の鉄鉱石
と溶融状態の製鋼スラグを式(1)数1で規定する量比
で混合することを特徴とする鉄鉱石の塊成化方法。 【数1】 ここで、Wslag:製鋼スラグの量 (kg) Wore :鉄鉱石の量 (kg) cslag:製鋼スラグの比熱 (J/kg/K) core :鉄鉱石の比熱 (J/kg/K) Tslag:製鋼スラグの混合前温度 (K) Tore :鉄鉱石の混合前温度 (K) TW :結晶水の分解温度 (K) Hcw :結晶水の分解熱 (J/kg) Hm :水の蒸発熱 (J/kg) acw :鉄鉱石中の結晶水の割合 (kg/kg) am :鉄鉱石中の鉱石水分の割合(kg/kg) A :1.1〜1.2の係数
2. Agglomeration of iron ore, characterized in that powdery iron ore containing 5% or more of water of crystallization and molten steelmaking slag are mixed in a quantity ratio defined by the formula (1) number 1. Method. [Equation 1] Here, W slag : Amount of steelmaking slag (kg) Wore : Amount of iron ore (kg) c slag : Specific heat of steelmaking slag (J / kg / K) core : Specific heat of iron ore (J / kg / K) ) T slag : Temperature before mixing of steelmaking slag (K) Tore : Temperature before mixing of iron ore (K) T W : Decomposition temperature of crystal water (K) H cw : Decomposition heat of crystal water (J / kg) H m : heat of evaporation of water (J / kg) a cw : ratio of crystal water in iron ore (kg / kg) a m : ratio of ore water content in iron ore (kg / kg) A: 1.1 to 1 Coefficient of 2
JP11717996A 1996-04-16 1996-04-16 Method for agglomerating iron ore Withdrawn JPH09279260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11717996A JPH09279260A (en) 1996-04-16 1996-04-16 Method for agglomerating iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11717996A JPH09279260A (en) 1996-04-16 1996-04-16 Method for agglomerating iron ore

Publications (1)

Publication Number Publication Date
JPH09279260A true JPH09279260A (en) 1997-10-28

Family

ID=14705383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11717996A Withdrawn JPH09279260A (en) 1996-04-16 1996-04-16 Method for agglomerating iron ore

Country Status (1)

Country Link
JP (1) JPH09279260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518320B1 (en) * 2001-12-21 2005-10-04 주식회사 포스코 A method of weighing the Slag coating method of the basic oxyzen converter by using the retained slag weighing system
CN107385203A (en) * 2017-08-25 2017-11-24 鞍钢股份有限公司 A kind of method for preparing sintering deposit using hot vessel slag for Binder Phase
CN110629017A (en) * 2019-10-16 2019-12-31 广东韶钢松山股份有限公司 Sintered iron-containing material, sintered composition, sintered ore and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518320B1 (en) * 2001-12-21 2005-10-04 주식회사 포스코 A method of weighing the Slag coating method of the basic oxyzen converter by using the retained slag weighing system
CN107385203A (en) * 2017-08-25 2017-11-24 鞍钢股份有限公司 A kind of method for preparing sintering deposit using hot vessel slag for Binder Phase
CN110629017A (en) * 2019-10-16 2019-12-31 广东韶钢松山股份有限公司 Sintered iron-containing material, sintered composition, sintered ore and method for producing same

Similar Documents

Publication Publication Date Title
JP4330257B2 (en) Metal iron manufacturing method
CN104498668B (en) The molten steel scavenger of a kind of composite sphere form and production method
JP2010229525A (en) Method for producing ferronickel and ferrovanadium
CN1042651C (en) Manufacture method of vanadic titanium type ultra-high basicity agglomerate
US20200024145A1 (en) Method for resource recovery from silicon slag and deoxidizing agent for iron and steelmaking
KR100560236B1 (en) Method of producing stainless steel by re-using waste material of stainless steel producing process
JPH06145836A (en) Production of alloy utilizing aluminum slag
JPH09279260A (en) Method for agglomerating iron ore
US5002733A (en) Silicon alloys containing calcium and method of making same
JP3736500B2 (en) Method for producing sintered ore
JP4427370B2 (en) Method for reforming slag of chromium ore smelting reduction furnace
JP2019172547A (en) Manufacturing method of phosphoric acid fertilizer, and phosphoric acid fertilizer
KR100226897B1 (en) Agglomerate method of pre-reduction fine ore for molten pig iron
JP2003301205A (en) Method for charging blast furnace material
SU1269739A3 (en) Method of producing desulfurizer for cast iron and steel
JPH11106821A (en) Production of agglomerated raw material for steelmaking
JP2001348610A (en) Slag formation promoter
JPH0483745A (en) Production of alumina cement using electric furnace slag as raw material
JPH0375615B2 (en)
JPS5927753A (en) Production of base material for additive for casting of steel
JPH01247513A (en) Method for charging ore into smelting reduction furnace
JPH03111521A (en) Production of sintered ore
JP4415690B2 (en) Method for producing sintered ore
JPS62167809A (en) Production of molten chromium iron
JP2001164325A (en) Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701