JPH09278534A - Production of ceramic granule - Google Patents

Production of ceramic granule

Info

Publication number
JPH09278534A
JPH09278534A JP8083676A JP8367696A JPH09278534A JP H09278534 A JPH09278534 A JP H09278534A JP 8083676 A JP8083676 A JP 8083676A JP 8367696 A JP8367696 A JP 8367696A JP H09278534 A JPH09278534 A JP H09278534A
Authority
JP
Japan
Prior art keywords
kneading
solvent
vessel
ceramic granules
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8083676A
Other languages
Japanese (ja)
Inventor
Yuji Mido
勇治 御堂
Michihisa Ooba
美智央 大庭
Shinya Matsutani
伸哉 松谷
Shinji Harada
真二 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8083676A priority Critical patent/JPH09278534A/en
Publication of JPH09278534A publication Critical patent/JPH09278534A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain uniform ceramic granules excellent in fluidity by charging a closed type kneading vessel with raw materials comprising ceramic powder and a binder followed by adding a solvent to the materials and conducting a kneading and then by reducing the pressure in the vessel followed by agitation while evacuating the vessel of the solvent. SOLUTION: A kneading vessel designed to be equipped with plural agitating blades 4 in a closed vessel 1 is charged with raw materials comprising ceramic powder (e.g. alumina) and a binder (e.g. polyvinyl alcohol) as the main components and also, according as necessary, containing a plasticizer (e.g. phthalic ester) and/or dispersant followed by conducting a mixing. After ending the mixing process, a solvent (e.g. acetone) is put, via a charging port 5, into the mixture in the vessel; and in such a state that the kneaded product becomes a large mass and its viscosity comes to 1000Pa.s or higher, a kneading operation is conducted for a specified time. After ending the kneading process, a deaeration is carried out via a deaerating port 6 to reduce the pressure in the vessel, and an agitation is continued while evacuating the vessel of the solvent. Thereafter, the kneaded product is ground into granules, thus obtaining the objective ceramic granules 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はセラミック顆粒の製
造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing ceramic granules.

【0002】[0002]

【従来の技術】乾式加圧成形に用いることのできる顆粒
の条件としては組成が均一で、流動性がよく、加圧によ
って潰れやすく成形後の密度が高くなることが必要であ
る。
2. Description of the Related Art Granules that can be used in dry pressure molding are required to have a uniform composition, have good flowability, and be easily crushed by pressure so that the density after molding becomes high.

【0003】セラミック顆粒の製造方法としては転動、
押出し、圧縮、撹拌、流動層、噴霧乾燥、溶解凝固など
の方法が知られている。このような条件に対応するセラ
ミック顆粒の製造方法としては、上記各方法のうち噴霧
乾燥が最も適しているといわれている。
Rolling is one of the methods for producing ceramic granules.
Methods such as extrusion, compression, agitation, fluidized bed, spray drying, and melt solidification are known. Of the above methods, spray drying is said to be the most suitable method for producing ceramic granules that meets such conditions.

【0004】噴霧乾燥法による顆粒化法は、セラミック
粉末に結合剤、その他の有機物および溶媒を加えてスラ
リーを作製し、そのスラリーを噴霧し液滴が落下する前
に乾燥と造粒を行うものであり、大量生産によく用いら
れ、球状で流動性のよい顆粒が得られやすいという利点
があるとされている。
The granulation method by the spray drying method is one in which a binder, other organic substances and a solvent are added to a ceramic powder to prepare a slurry, and the slurry is sprayed and dried and granulated before the droplets drop. It is said that it is often used for mass production and has an advantage that it is easy to obtain granules having a spherical shape and good fluidity.

【0005】[0005]

【発明が解決しようとする課題】上記噴霧乾燥法による
セラミック顆粒の製造においても(1)瞬間乾燥に近
く、中空状の顆粒となり、嵩比重の高いものを得にく
い、(2)乾燥中の溶媒移動に伴い、セラミック顆粒成
分中の微粒子も溶媒蒸発面へ移行し、粒子内に偏析が発
生する、(3)スラリー中の溶媒の比率が高く乾燥に大
きな熱エネルギーを必要とする、(4)噴霧乾燥装置に
スラリーを供給するまでにスラリーを撹拌していてもセ
ラミック粉末の沈降が発生しやすく経時変化を起こしや
すい、(5)溶媒に可燃性有機溶剤を使用するには噴霧
乾燥装置系内の酸素濃度、溶剤濃度を高度に管理する必
要があるなどの問題があった。
Also in the production of ceramic granules by the above spray drying method, (1) hollow granules that are close to instant drying and are difficult to obtain with a high bulk specific gravity, (2) solvent during drying As the particles move, the fine particles in the ceramic granule component also move to the solvent evaporation surface, and segregation occurs in the particles. (3) The ratio of the solvent in the slurry is high, and a large amount of heat energy is required for drying (4) Even if the slurry is agitated before the slurry is supplied to the spray dryer, the ceramic powder easily precipitates and easily changes over time. (5) To use a flammable organic solvent as the solvent There was a problem that it was necessary to control the oxygen concentration and solvent concentration of the product at a high level.

【0006】本発明では上記従来の欠点を除去し、高密
度で顆粒組成が均一で流動性の良好なセラミック顆粒の
製造方法を提供することを目的とするものである。
An object of the present invention is to eliminate the above-mentioned conventional drawbacks and to provide a method for producing ceramic granules having a high density, a uniform granule composition, and good fluidity.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明のセラミック顆粒の製造方法は、セラミック粉
体と結合剤を主体とするセラミック顆粒の形成材料を密
閉容器内に撹拌部を有する混練槽に投入して混合を行う
混合工程と、前記混合工程終了後溶媒を添加し混練物が
大きな塊になり混練物の粘度が1000Pa・s以上の
状態で一定時間混練する混練工程と、前記混練工程終了
後混練槽内を減圧し溶媒の脱気を行いながら撹拌を続け
混練物を粉砕する顆粒化工程を有するものである。
In order to solve the above-mentioned problems, a method for producing ceramic granules according to the present invention has a stirring unit in which a ceramic granule-forming material mainly composed of ceramic powder and a binder is provided in a closed container. And a kneading step of adding a solvent after the mixing step and kneading the kneaded material into a large mass to knead the kneaded material for a certain period of time in a state where the viscosity of the kneaded material is 1000 Pa · s or more, After the kneading step, the step of depressurizing the inside of the kneading tank to degas the solvent and to continue stirring while pulverizing the kneaded product has a granulating step.

【0008】この本発明によれば、高密度で顆粒組成が
均一で流動性の良好なセラミック顆粒が得られる。
According to the present invention, it is possible to obtain high-density ceramic granules having a uniform granule composition and good flowability.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の発明
は、セラミック粉体と結合剤を主体とするセラミック顆
粒の形成材料を密閉容器内に撹拌部を有する混練槽に投
入して混合を行う混合工程と、前記混合工程終了後溶媒
を添加し混練物が大きな塊になり混練物の粘度が100
0Pa・s以上の状態で一定時間混練する混練工程と、
前記混練工程終了後混練槽内を減圧し溶媒の脱気を行い
ながら撹拌を続け混練物を粉砕する顆粒化工程を有する
セラミック顆粒の製造方法であり、セラミック粉末を均
一に分散することができるとともに高密度で流動性の良
好なセラミック顆粒を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is to mix ceramic powder and a material for forming ceramic granules mainly composed of a binder into a kneading tank having an agitating section in a closed container for mixing. And a solvent is added after the completion of the mixing step so that the kneaded product becomes a large lump and the kneaded product has a viscosity of 100.
A kneading step of kneading for a certain time in a state of 0 Pa · s or more,
A method for producing ceramic granules, which comprises a granulation step of crushing the kneaded product while continuing stirring while depressurizing the kneading tank after completion of the kneading step to deaerate the solvent, and capable of uniformly dispersing the ceramic powder. It is possible to obtain a ceramic granule having high density and good fluidity.

【0010】請求項2に記載の発明は、セラミック粉体
と金属粉末および結合剤を主体とするセラミック顆粒の
形成材料を密閉容器内に撹拌部を有する混練槽に投入し
て混合を行う混合工程と、前記混合工程終了後溶媒を添
加し混練物が大きな塊になり混練物の粘度が1000P
a・s以上の状態で一定時間混練する混練工程と、前記
混練工程終了後混練槽内を減圧し溶媒の脱気を行いなが
ら撹拌を続け混練物を粉砕する顆粒化工程を有するセラ
ミック顆粒の製造方法であり、金属粉末の酸化を抑制し
ながらセラミック粉末および金属粉末を均一に分散する
ことができ、高密度で流動性の良好なセラミック顆粒を
得ることができる。
According to a second aspect of the present invention, a mixing step in which the ceramic powder, the metal powder, and the material for forming the ceramic granules containing a binder as a main component are charged into a kneading tank having a stirring section in a closed container and mixing is performed. When the mixing step is completed, the solvent is added to the kneaded product to form a large lump, and the kneaded product has a viscosity of 1000 P.
Manufacture of ceramic granules having a kneading step of kneading for a certain time in a state of a / s or more, and a granulating step of crushing the kneaded product while continuing stirring while depressurizing the inside of the kneading tank to degas the solvent This is a method, in which the ceramic powder and the metal powder can be uniformly dispersed while suppressing the oxidation of the metal powder, and it is possible to obtain ceramic granules with high density and good fluidity.

【0011】請求項3に記載の発明は、混練工程時に混
練槽の内部が50000Pa以下の減圧雰囲気下で混練
を行う請求項1または請求項2記載のセラミック顆粒の
製造方法であり、混練効果を高め短時間で粉末を均一に
分散できる。
The invention according to claim 3 is the method for producing ceramic granules according to claim 1 or 2, wherein kneading is performed in a kneading step in a kneading tank under a reduced pressure atmosphere of 50000 Pa or less. The powder can be evenly dispersed in a short time.

【0012】請求項4に記載の発明は、顆粒化工程時に
混練槽を40〜70℃とする請求項1または請求項2記
載のセラミック顆粒の製造方法であり、溶媒の脱気を容
易にし顆粒化工程を短時間で終了することができる。
The invention according to claim 4 is the method for producing ceramic granules according to claim 1 or 2 in which the kneading tank is set to 40 to 70 ° C. during the granulating step, and the degassing of the solvent is facilitated. The conversion process can be completed in a short time.

【0013】請求項5に記載の発明は、溶媒に沸点が1
30℃以下の非水系溶媒を用いる請求項1または請求項
2記載のセラミック顆粒の製造方法であり、顆粒化工程
を短時間で終了することができセラミック顆粒の中に残
留する溶媒量を低下できるとともに水分により影響を受
けやすい金属粉末を安定に顆粒化できる。
According to a fifth aspect of the invention, the solvent has a boiling point of 1
The method for producing ceramic granules according to claim 1 or 2, which uses a non-aqueous solvent at 30 ° C or lower, wherein the granulation step can be completed in a short time, and the amount of solvent remaining in the ceramic granules can be reduced. At the same time, the metal powder that is easily affected by moisture can be stably granulated.

【0014】以下、本発明の実施の形態について図面を
用いて説明する。まず、図1は本発明のセラミック顆粒
の製造方法を実施する密閉容器内に撹拌部を有する混練
装置の側断面図を示している。本発明において使用され
る混練装置は、密閉容器内に撹拌ブレードを2本以上有
するもので、ブレード間のクリアランスが小さな図1に
示すような縦型の撹拌ブレードを有する装置である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 shows a side sectional view of a kneading device having a stirring section in a closed container for carrying out the method for producing ceramic granules of the present invention. The kneading device used in the present invention has two or more stirring blades in a closed container, and is a device having a vertical stirring blade as shown in FIG. 1 with a small clearance between the blades.

【0015】例えば、プラネタリーミキサー、スパイラ
ルミキサー、シンプソンミル、あるいは種々の万能混合
機が望ましい。図1において1は容器上部、2は容器下
部、3は温度調整ジャケット、4は撹拌ブレード、5は
溶剤などの液状物の投入口、6は脱気口を示す。
For example, a planetary mixer, a spiral mixer, a Simpson mill, or various universal mixers are desirable. In FIG. 1, 1 is an upper part of the container, 2 is a lower part of the container, 3 is a temperature adjusting jacket, 4 is a stirring blade, 5 is an inlet for a liquid such as a solvent, and 6 is a degassing port.

【0016】ここに示すように、密閉容器内で顆粒化を
行うために混練槽内の雰囲気を容易にコントロールする
ことができ、水分や酸素の影響を受けやすい金属粉末な
どを安全、安定な状態で使用することが可能である。ま
た、装置を設置した場所の温度、湿度などの影響を受け
ることも少ない。
As shown here, since the granulation is carried out in a closed container, the atmosphere in the kneading tank can be easily controlled, and the metal powder, which is easily affected by moisture and oxygen, can be kept in a safe and stable state. Can be used in. Also, it is less affected by the temperature and humidity of the place where the device is installed.

【0017】本発明のセラミック顆粒の製造方法は、大
きくは混合工程、混練工程および顆粒化工程からなる。
図2に混練工程の模式図、図3に顆粒化工程の模式図を
示している。混練工程では、セラミック顆粒の形成材料
に溶媒を粘土状の塊になるまで添加し、粉体濃度の高
い、高粘度な状態で強力にせん断力を加えることができ
る。本発明では混練物7の粘度は1000Pa・s以上
の状態であればよいが高い状態であるほど高いせん断力
を加えることができ粉体の分散に有効である。このせん
断力で粉体に結合剤が吸着し粉体の分散が促進され、高
分散化、高密度化や組成の均一化が実現できる。さらに
減圧雰囲気下で混練を行うことでセラミック粉末や金属
粉末表面の空気の溶媒置換を容易にし、その結果結合剤
樹脂の吸着を促進でき粉体の高分散化が短時間で達成で
きる。特に本発明の50000Pa以下の減圧雰囲気中
での混練は有効である。
The method for producing ceramic granules of the present invention mainly comprises a mixing step, a kneading step and a granulating step.
FIG. 2 shows a schematic diagram of the kneading step, and FIG. 3 shows a schematic diagram of the granulating step. In the kneading step, the solvent can be added to the material for forming the ceramic granules until it becomes a clay-like mass, and the shearing force can be strongly applied in a high-viscosity state with a high powder concentration. In the present invention, the viscosity of the kneaded material 7 may be 1000 Pa · s or more, but the higher the viscosity, the higher the shearing force can be applied, and the more effective the dispersion of the powder. The binder is adsorbed to the powder by this shearing force and the dispersion of the powder is promoted, so that high dispersion, high density and uniform composition can be realized. Further, kneading under a reduced pressure atmosphere facilitates solvent replacement of air on the surface of ceramic powder or metal powder, and as a result, adsorption of binder resin can be promoted and high dispersion of powder can be achieved in a short time. Particularly, kneading in a reduced pressure atmosphere of 50,000 Pa or less according to the present invention is effective.

【0018】また、混練工程終了後の顆粒化工程では混
練槽内を減圧し大きな粘土状の混練物中の溶媒の脱気を
行いながらさらに撹拌を続けることで粉砕および顆粒の
球状化を行う工程で、撹拌ブレード4の撹拌速度と撹拌
時間でセラミック顆粒8の顆粒径をコントロールでき
る。ここで温度調整ジャケット3で混練槽を40〜70
℃にすることで溶媒の揮発を促進でき、脱気時間を短縮
できることで顆粒化工程を短時間で終了することができ
る。この効果は40℃より低い温度では少なく、70℃
より高い温度では結合剤として用いるバインダー樹脂や
可塑剤や分散剤として用いる有機物が軟化するなどの影
響があり顆粒化が困難になる。また、溶媒としては非水
系溶媒を用いることで水分により影響を受けやすい金属
粉末などを安定に顆粒化できるとともに溶媒の沸点を1
30℃以下にすることで溶媒の脱気を短時間で終了する
ことができるとともにセラミック顆粒8の中に残留する
溶媒量を低下できる。沸点が130℃より高くなると脱
気に長い時間がかかるとともに、セラミック顆粒8の中
に残留する溶媒量がその乾燥状態により変化し顆粒物性
の不安定さにつながる。
In the granulating step after the completion of the kneading step, the inside of the kneading tank is depressurized and the solvent in the large clay-like kneaded material is degassed, and further stirring is continued to pulverize and granulate the granules. Thus, the granule diameter of the ceramic granules 8 can be controlled by the stirring speed of the stirring blade 4 and the stirring time. Here, the temperature adjustment jacket 3 is used to adjust the kneading tank to 40 to 70.
When the temperature is set to 0 ° C, the solvent can be volatilized and the deaeration time can be shortened, so that the granulation step can be completed in a short time. This effect is less at temperatures below 40 ° C, 70 ° C
At higher temperatures, the binder resin used as a binder, the plasticizer, and the organic material used as a dispersant are affected by softening, and granulation becomes difficult. In addition, by using a non-aqueous solvent as the solvent, it is possible to stably granulate metal powder and the like, which are easily affected by moisture, and the boiling point of the solvent is 1
By setting the temperature to 30 ° C. or less, degassing of the solvent can be completed in a short time, and the amount of solvent remaining in the ceramic granules 8 can be reduced. If the boiling point is higher than 130 ° C., it takes a long time for deaeration, and the amount of solvent remaining in the ceramic granules 8 changes depending on the dry state thereof, leading to instability of the physical properties of the granules.

【0019】このセラミック顆粒8に用いるセラミック
粉体は、アルミナ、ジルコニア、チタン酸バリウム、フ
ェライトなどであり、その他添加剤としてガラス、カル
シア、マグネシア、金属粒子として鉄、アルミニウム、
チタンなどが挙げられる。また、それらの混合物であっ
ても良い。結合剤としては、ポリビニルブチラール、ポ
リビニルアルコール、アクリル酸エステル、メタクリル
酸エステル、エチルセルロース、ポリウレタン、ワック
スなどが用いられる。また、可塑剤としてはフタル酸エ
ステル、脂肪酸エステル、ポリエチレングリコールなど
が挙げられ、分散剤、潤滑剤も適宜用いることができ
る。非水系溶媒としては、アセトン、メチルエチルケト
ンなどのケトン類、トルエンなどの芳香族類、酢酸エチ
ル、酢酸ブチルなどのエステル類、メタノール、エタノ
ールなどのアルコール類などが挙げられる。これらの溶
媒の中で沸点が130℃以下のものを用いることができ
る。
The ceramic powder used for the ceramic granules 8 is alumina, zirconia, barium titanate, ferrite, etc., and other additives such as glass, calcia, magnesia, metal particles as iron, aluminum,
Examples include titanium. Moreover, it may be a mixture thereof. As the binder, polyvinyl butyral, polyvinyl alcohol, acrylic acid ester, methacrylic acid ester, ethyl cellulose, polyurethane, wax and the like are used. Further, examples of the plasticizer include phthalic acid ester, fatty acid ester, polyethylene glycol, and the like, and a dispersant and a lubricant can be appropriately used. Examples of the non-aqueous solvent include ketones such as acetone and methyl ethyl ketone, aromatics such as toluene, esters such as ethyl acetate and butyl acetate, and alcohols such as methanol and ethanol. Among these solvents, those having a boiling point of 130 ° C. or lower can be used.

【0020】[0020]

【実施例】次に、本発明の具体的な実施例を説明する。
セラミック粉体としてフェライト系材料(平均粒子径1
μm)、金属粉末として鉄粉(平均粒子径5μm)、結
合剤としてポリビニルブチラール(PVB)、可塑剤と
してフタル酸ジオクチル(DOP)、潤滑剤としてステ
アリン酸、溶媒としてエタノールなどを用いた。
EXAMPLES Next, specific examples of the present invention will be described.
Ferrite material as ceramic powder (average particle size 1
μm), iron powder (average particle size 5 μm) as a metal powder, polyvinyl butyral (PVB) as a binder, dioctyl phthalate (DOP) as a plasticizer, stearic acid as a lubricant, and ethanol as a solvent.

【0021】(実施例1)混練装置としてプラネタリー
ミキサーを用い、混練装置の混練槽にセラミック粉体1
00重量部、結合剤1重量部、ステアリン酸1重量部を
投入し10分間混合を行う。次に、混練槽内圧を真空ポ
ンプにより到達真空度を50000Paとした後、液状
物の投入口から可塑剤1重量部と溶剤8重量部を徐々に
プラネタリーミキサーに投入する。混練物が大きな塊と
なった(この混練物の粘度は1000Pa・s以上)こ
とを確認した後、さらに15分間混練を行う。
Example 1 A planetary mixer was used as a kneading device, and a ceramic powder 1 was placed in a kneading tank of the kneading device.
00 parts by weight, 1 part by weight of binder and 1 part by weight of stearic acid are added and mixed for 10 minutes. Next, the internal pressure of the kneading tank is set to 50000 Pa by a vacuum pump, and then 1 part by weight of the plasticizer and 8 parts by weight of the solvent are gradually introduced into the planetary mixer from the inlet of the liquid material. After confirming that the kneaded material becomes a large mass (the viscosity of the kneaded material is 1000 Pa · s or more), kneading is further performed for 15 minutes.

【0022】次に、温度調整ジャケットの温度を50℃
とした後、排気ダクトにより溶媒の脱気を行いながらさ
らに撹拌を10分間続け顆粒径500μm以下のセラミ
ック顆粒を得た。このセラミック顆粒をふるいを用いて
顆粒径100〜300μmとした。このセラミック顆粒
をφ30mmの金型に充填し500kg/cm2の圧力
で厚さ2mmの成形体を作製した。またこの成形体を9
00℃2時間保持の条件で焼成を行い焼成体を作製し
た。
Next, the temperature of the temperature adjusting jacket is set to 50.degree.
After that, stirring was continued for 10 minutes while degassing the solvent through the exhaust duct to obtain ceramic granules having a granule diameter of 500 μm or less. This ceramic granule was made to have a granule diameter of 100 to 300 μm using a sieve. The ceramic granules were filled in a die having a diameter of 30 mm and a molded body having a thickness of 2 mm was produced at a pressure of 500 kg / cm 2 . In addition, this molded body
Firing was performed under the conditions of holding at 00 ° C. for 2 hours to produce a fired body.

【0023】(実施例2)混練装置としてプラネタリー
ミキサーを用い、混練装置の混練槽にセラミック粉体7
0重量部、金属粉末30重量部、結合剤1重量部、ステ
アリン酸1重量部を窒素雰囲気下で投入し10分間混合
を行う。以下、実施例1と同様にセラミック顆粒を得
た。このセラミック顆粒から実施例1と同様に成形体と
焼成体を得た。
Example 2 A planetary mixer was used as the kneading device, and the ceramic powder 7 was placed in the kneading tank of the kneading device.
0 parts by weight, 30 parts by weight of metal powder, 1 part by weight of binder, and 1 part by weight of stearic acid are added in a nitrogen atmosphere and mixed for 10 minutes. Hereinafter, ceramic granules were obtained in the same manner as in Example 1. A molded body and a fired body were obtained from the ceramic granules in the same manner as in Example 1.

【0024】(比較例1)セラミック粉体100重量
部、金属粉末30重量部、結合剤1重量部、ステアリン
酸1重量部、可塑剤1重量部、溶剤40重量部、φ15
mmジルコニアボール100重量部をボールミルに配合
し24時間混合を行いスラリーを作製した。このスラリ
ーを系内に窒素を導入し系内酸素濃度を2%未満にした
スプレードライヤーに供給し、運転条件入口温度120
℃、出口温度90℃、ディスク回転数15000r/m
inにてセラミック顆粒を作製した。このセラミック顆
粒の顆粒径は100〜200μmであった。このセラミ
ック顆粒を実施例1と同様に成形体と焼成体を作製し
た。
Comparative Example 1 100 parts by weight of ceramic powder, 30 parts by weight of metal powder, 1 part by weight of binder, 1 part by weight of stearic acid, 1 part by weight of plasticizer, 40 parts by weight of solvent, φ15
100 parts by weight of mm zirconia balls were mixed in a ball mill and mixed for 24 hours to prepare a slurry. This slurry was supplied to a spray dryer in which nitrogen was introduced into the system so that the oxygen concentration in the system was less than 2%, and the operating condition inlet temperature 120
℃, outlet temperature 90 ℃, disk rotation speed 15000r / m
Ceramic granules were produced in. The granule diameter of this ceramic granule was 100 to 200 μm. A molded body and a fired body were produced from this ceramic granule in the same manner as in Example 1.

【0025】(比較例2)セラミック粉体70重量部、
金属粉末30重量部とし、以下比較例1と同様にセラミ
ック顆粒を作製した。このセラミック顆粒の顆粒径は1
00〜200μmであった。このセラミック顆粒を実施
例1と同様に成形体と焼成体を作製した。
(Comparative Example 2) 70 parts by weight of ceramic powder,
Using 30 parts by weight of metal powder, ceramic granules were prepared in the same manner as in Comparative Example 1 below. The diameter of this ceramic granule is 1
It was from 00 to 200 μm. A molded body and a fired body were produced from this ceramic granule in the same manner as in Example 1.

【0026】(比較例3)混練装置としてプラネタリー
ミキサーを用い、混練装置の混練槽にセラミック粉体1
00重量部、結合剤1重量部、ステアリン酸1重量部を
投入し10分間混合を行う。次に、液状物の投入口から
可塑剤1重量部と溶剤を徐々にプラネタリーミキサーに
投入し、セラミック粉体が顆粒状になった時点で溶剤の
添加を終了し、排気ダクトにより溶媒の脱気を行いなが
らさらに撹拌を10分間続け顆粒径500μm以下のセ
ラミック顆粒を得た。以下、実施例1と同様にセラミッ
ク顆粒を得た。このセラミック顆粒から実施例1と同様
に成形体と焼成体を得た。
(Comparative Example 3) A planetary mixer was used as the kneading device, and the ceramic powder 1 was placed in the kneading tank of the kneading device.
00 parts by weight, 1 part by weight of binder and 1 part by weight of stearic acid are added and mixed for 10 minutes. Next, 1 part by weight of the plasticizer and the solvent were gradually charged into the planetary mixer from the liquid inlet, and when the ceramic powder became granular, the addition of the solvent was terminated, and the solvent was removed through the exhaust duct. Stirring was continued for 10 minutes while stirring, to obtain ceramic granules having a granule diameter of 500 μm or less. Hereinafter, ceramic granules were obtained in the same manner as in Example 1. A molded body and a fired body were obtained from the ceramic granules in the same manner as in Example 1.

【0027】(比較例4)実施例1の温度調整ジャケッ
トの温度を80℃とした以外は、実施例1と同様にセラ
ミック顆粒と成形体および焼成体を得た。
(Comparative Example 4) Ceramic granules, molded bodies and fired bodies were obtained in the same manner as in Example 1 except that the temperature of the temperature adjusting jacket in Example 1 was changed to 80 ° C.

【0028】上記のように作製したセラミック顆粒に対
して流動性、嵩密度、成形体に対して密度、焼成体に対
して成形体からの寸法変化率のバラツキを測定した結果
を(表1)に示した。流動性は金型への給粉状態から良
好を○、不良を×で評価した。嵩密度を流動率・見掛密
度測定器(ミネルバ機器(株)社製)を用いて測定した
(サンプル10個の平均)。成形体の密度はサンプルの
重量、表面積、厚みの測定から算出した(サンプル10
個の平均)。また、焼成体の成形体からの寸法変化率の
バラツキは焼成体の表面積と成形体の表面積から算出し
た寸法変化率のサンプル100個の最大値と最小値の差
をとって評価した。
The results obtained by measuring the fluidity, the bulk density, the density of the molded body, and the variation of the dimensional change rate from the molded body to the fired body of the ceramic granules produced as described above are shown (Table 1). It was shown to. The fluidity was evaluated as “good” and “poor” as “poor” from the state of powder feeding to the mold. The bulk density was measured using a fluidity / apparent density measuring device (manufactured by Minerva Instruments Co., Ltd.) (average of 10 samples). The density of the molded body was calculated by measuring the weight, surface area and thickness of the sample (Sample 10
Average of the pieces). The variation in the dimensional change rate of the fired body from the molded body was evaluated by taking the difference between the maximum value and the minimum value of 100 samples of the dimensional change rate calculated from the surface area of the fired body and the surface area of the molded body.

【0029】[0029]

【表1】 [Table 1]

【0030】(表1)より実施例1と比較例1を比較す
ると本発明の実施例1によるセラミック顆粒は嵩密度が
高く、成形体密度も大きいことがわかる。またセラミッ
ク顆粒の流動性は良好であり、成形体を焼成した時の焼
成体の寸法バラツキも小さくセラミック顆粒中で粉体が
均一組成に分散されていることがわかる。また、実施例
1と比較例3を比較すると本発明の製造方法の混練工程
で混練を行うことで、嵩密度が高く、成形体密度も大き
く焼成体のバラツキも小さいセラミック顆粒が得られ、
混練による均一高分散の効果が確認できる。
From Table 1, comparing Example 1 with Comparative Example 1, it can be seen that the ceramic granules according to Example 1 of the present invention have a high bulk density and a high compact density. Further, it is understood that the fluidity of the ceramic granules is good, the dimensional variation of the fired body when firing the molded body is small, and the powder is dispersed in the ceramic granules in a uniform composition. Further, comparing Example 1 and Comparative Example 3, by carrying out kneading in the kneading step of the production method of the present invention, ceramic granules having a high bulk density, a high compact density and a small variation in the fired body can be obtained.
The effect of uniform and high dispersion by kneading can be confirmed.

【0031】実施例2と比較例2を比較するとこのセラ
ミック顆粒用粉体はセラミック粉体と金属粒子の混合粉
であり、比較例2においてはスラリー状態で比重の違い
により比重の重い金属粒子の沈降によるスラリー中で組
成変化が起こっているとともに噴霧乾燥時にも顆粒内で
組成変化が起こり嵩密度、成形体密度、焼成体寸法変化
率のバラツキが大きくなっている。実施例2では嵩密度
が高く、成形体密度も大きい均一なセラミック顆粒が得
られた。
Comparing Example 2 and Comparative Example 2, this powder for ceramic granules is a mixed powder of ceramic powder and metal particles. In Comparative Example 2, in the slurry state, metal particles having a large specific gravity due to the difference in specific gravity. The composition changes in the slurry due to sedimentation, and the composition changes in the granules even during spray drying, resulting in large variations in the bulk density, compact density, and dimensional change rate of the sintered body. In Example 2, uniform ceramic granules having a high bulk density and a high compact density were obtained.

【0032】また、比較例4のように顆粒化時の温度調
整ジャケットを80℃にすると、結合剤樹脂が軟化し球
状で粒子径のそろった顆粒が作製できなかった。
When the temperature adjusting jacket at the time of granulation was set to 80 ° C. as in Comparative Example 4, the binder resin was softened and spherical granules having a uniform particle size could not be produced.

【0033】[0033]

【発明の効果】以上のように本発明によれば、密閉容器
内に撹拌部を有する混練装置を用いて混合工程、混練工
程、顆粒化工程をへてセラミック顆粒を作製すること
で、高密度で顆粒組成が均一で流動性の良好なセラミッ
ク顆粒が得られる。
As described above, according to the present invention, high density can be obtained by producing ceramic granules through a mixing step, a kneading step, and a granulating step using a kneading device having a stirring section in a closed container. The ceramic granules having a uniform granule composition and good fluidity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における密閉容器内に撹拌
部を有する混練装置の側断面図
FIG. 1 is a side sectional view of a kneading device having a stirring unit in a closed container according to an embodiment of the present invention.

【図2】本発明の実施の形態における混練工程の模式図FIG. 2 is a schematic diagram of a kneading process according to an embodiment of the present invention.

【図3】本発明の実施の形態における顆粒化工程の模式
FIG. 3 is a schematic diagram of a granulation step in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 容器上部 2 容器下部 3 温度調整ジャケット 4 撹拌ブレード 5 液状物の投入口 6 脱気口 7 混練物 8 セラミック顆粒 1 Upper container 2 Lower container 3 Temperature adjustment jacket 4 Stirring blade 5 Liquid material inlet 6 Degassing port 7 Kneaded material 8 Ceramic granules

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 真二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shinji Harada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セラミック粉体と結合剤を主体とするセ
ラミック顆粒の形成材料を密閉容器内に撹拌部を有する
混練槽に投入して混合を行う混合工程と、前記混合工程
終了後溶媒を添加し混練物が大きな塊になり混練物の粘
度が1000Pa・s以上の状態で一定時間混練する混
練工程と、前記混練工程終了後混練槽内を減圧し溶媒の
脱気を行いながら撹拌を続け混練物を粉砕する顆粒化工
程を有するセラミック顆粒の製造方法。
1. A mixing step in which a ceramic powder and a material for forming ceramic granules containing a binder as a main component are charged into a kneading tank having a stirring section in a closed container and mixed, and a solvent is added after the completion of the mixing step. Kneading step in which the kneaded material becomes a large mass and is kneaded for a certain period of time in a state where the viscosity of the kneaded material is 1000 Pa · s or more, and kneading is continued while degassing the solvent by depressurizing the kneading tank after completion of the kneading step. A method for producing ceramic granules, comprising a granulation step of pulverizing a product.
【請求項2】 セラミック粉体と金属粉末および結合剤
を主体とするセラミック顆粒の形成材料を密閉容器内に
撹拌部を有する混練槽に投入して混合を行う混合工程
と、前記混合工程終了後溶媒を添加し混練物が大きな塊
になり混練物の粘度が1000Pa・s以上の状態で一
定時間混練する混練工程と、前記混練工程終了後混練槽
内を減圧し溶媒の脱気を行いながら撹拌を続け混練物を
粉砕する顆粒化工程を有するセラミック顆粒の製造方
法。
2. A mixing step in which a ceramic powder, a metal powder, and a material for forming ceramic granules containing a binder as a main component are charged into a kneading tank having a stirring section in a closed container for mixing, and after the mixing step is completed. A kneading step in which a kneaded product becomes a large lump by adding a solvent and the kneaded product has a viscosity of 1000 Pa · s or more for a certain period of time, and after completion of the kneading process, the pressure in the kneading tank is reduced to stir while degassing the solvent. A method for producing ceramic granules, which comprises a granulation step of continuously crushing the kneaded product.
【請求項3】 混練工程時に混練槽の内部が50000
Pa以下の減圧雰囲気下で混練を行う請求項1または請
求項2記載のセラミック顆粒の製造方法。
3. The inside of the kneading tank is 50,000 during the kneading step.
The method for producing ceramic granules according to claim 1 or 2, wherein kneading is performed in a reduced pressure atmosphere of Pa or less.
【請求項4】 造粒工程時に混練槽を40〜70℃とす
る請求項1または請求項2記載のセラミック顆粒の製造
方法。
4. The method for producing ceramic granules according to claim 1 or 2, wherein the kneading tank is kept at 40 to 70 ° C. during the granulating step.
【請求項5】 溶媒に沸点が130℃以下の非水系溶媒
を用いる請求項1または請求項2記載のセラミック顆粒
の製造方法。
5. The method for producing ceramic granules according to claim 1, wherein a non-aqueous solvent having a boiling point of 130 ° C. or less is used as the solvent.
JP8083676A 1996-04-05 1996-04-05 Production of ceramic granule Pending JPH09278534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8083676A JPH09278534A (en) 1996-04-05 1996-04-05 Production of ceramic granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8083676A JPH09278534A (en) 1996-04-05 1996-04-05 Production of ceramic granule

Publications (1)

Publication Number Publication Date
JPH09278534A true JPH09278534A (en) 1997-10-28

Family

ID=13809094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8083676A Pending JPH09278534A (en) 1996-04-05 1996-04-05 Production of ceramic granule

Country Status (1)

Country Link
JP (1) JPH09278534A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202964A1 (en) * 2002-01-26 2003-08-07 Zschimmer & Schwarz Gmbh & Co Ceramic binder for production of formed ceramic products comprises a polymer-based binder component and an ester-based external plasticizer
WO2009028649A1 (en) * 2007-08-31 2009-03-05 Ajinomoto Co., Inc. Method for reduction in volume of solid preparation having high amino acid content
JP2012115755A (en) * 2010-11-30 2012-06-21 Kitagawa Iron Works Co Ltd Apparatus and method for producing granulated product
JP2012192384A (en) * 2011-03-18 2012-10-11 Inoue Mfg Inc Planetary mixer
CN105289378A (en) * 2015-11-13 2016-02-03 重庆卡美伦科技有限公司合川分公司 Dry powder mixer
WO2016063897A1 (en) * 2014-10-23 2016-04-28 古河産機システムズ株式会社 Evaluation device for granulator operating condition, and evaluation method
JP2017061394A (en) * 2015-09-24 2017-03-30 日本電気硝子株式会社 Granular powder for forming glass ceramic sintered body, glass ceramic temporarily sintered body and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202964A1 (en) * 2002-01-26 2003-08-07 Zschimmer & Schwarz Gmbh & Co Ceramic binder for production of formed ceramic products comprises a polymer-based binder component and an ester-based external plasticizer
WO2009028649A1 (en) * 2007-08-31 2009-03-05 Ajinomoto Co., Inc. Method for reduction in volume of solid preparation having high amino acid content
JP5454142B2 (en) * 2007-08-31 2014-03-26 味の素株式会社 Low-volume production method of solid preparation with high amino acid content
JP2012115755A (en) * 2010-11-30 2012-06-21 Kitagawa Iron Works Co Ltd Apparatus and method for producing granulated product
JP2012192384A (en) * 2011-03-18 2012-10-11 Inoue Mfg Inc Planetary mixer
WO2016063897A1 (en) * 2014-10-23 2016-04-28 古河産機システムズ株式会社 Evaluation device for granulator operating condition, and evaluation method
JPWO2016063897A1 (en) * 2014-10-23 2017-05-25 古河産機システムズ株式会社 Apparatus and method for evaluating operating conditions of granulator
US10899099B2 (en) 2014-10-23 2021-01-26 Furukawa Industrial Machinery Systems Co., Ltd. Device and method for evaluating operating conditions of briquetting machine, briquetting machine, method for manufacturing briquette, control device of briquetting machine, control method of briquetting machine, and program
JP2017061394A (en) * 2015-09-24 2017-03-30 日本電気硝子株式会社 Granular powder for forming glass ceramic sintered body, glass ceramic temporarily sintered body and method for producing the same
CN105289378A (en) * 2015-11-13 2016-02-03 重庆卡美伦科技有限公司合川分公司 Dry powder mixer

Similar Documents

Publication Publication Date Title
JP4044441B2 (en) Manufacturing method of hard metal grade powder
WO2021248813A1 (en) Alumina ceramic and preparation method therefor
US4485182A (en) Powder composition for producing sintered ceramic
KR101729054B1 (en) Alumina graula by spray-drying and manufacturing method thereof
JP4440475B2 (en) Preparation of moldable powder by spray drying of uranium dioxide obtained by dry process conversion of UF6
CN115368122B (en) Modified diatomite porous ceramic slurry and ceramic powder
US5643347A (en) Process for manufacture of silica granules
JPH09278534A (en) Production of ceramic granule
EP2589580A1 (en) A spherical alpha-type crystal silicon carbide, the method for manufacturing the same, and a sintered body as well as an organic resin-based composite made from the silicon carbide
JP5102306B2 (en) Method for producing molded product without addition of binder from pyrogenic SiO2
JP4187314B2 (en) Method for producing porous metal body
US3355393A (en) Small spherical nuclear fuel particles and processes of making same
US2933766A (en) Granulation method
JPS6341509B2 (en)
JP4047956B2 (en) Method for forming silicon carbide powder
KR102533253B1 (en) Method for manufacturing ceramic body
JPS6030248B2 (en) Granulation method of ceramic raw material powder
JP4007508B2 (en) Method for producing Gd2O3-added UO2 pellets using co-grinding and spheronization (SACAM) process
JPH0725593B2 (en) Method for producing composition for producing silicon carbide sintered body
JPH0565504A (en) Molding method
JP2002114572A (en) Graphite compound and method for manufacturing the same
JPH09249459A (en) Production of composite material of ceramic with resin and production of ceramic sintered compact
JP2002249382A (en) Method for manufacturing ito molded form
JP2004277249A (en) Microsphere of metal oxide and its manufacturing method
SU1688979A1 (en) Method of preparing powder material charge