JPH09276659A - Catalyst for removal of nitrogen oxide contained in exhaust gas by reduction and manufacture of catalyst - Google Patents

Catalyst for removal of nitrogen oxide contained in exhaust gas by reduction and manufacture of catalyst

Info

Publication number
JPH09276659A
JPH09276659A JP8096548A JP9654896A JPH09276659A JP H09276659 A JPH09276659 A JP H09276659A JP 8096548 A JP8096548 A JP 8096548A JP 9654896 A JP9654896 A JP 9654896A JP H09276659 A JPH09276659 A JP H09276659A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
weight
parts
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8096548A
Other languages
Japanese (ja)
Other versions
JP3595622B2 (en
Inventor
Atsushi Morii
淳 守井
Osamu Naito
内藤  治
Masanori Idemoto
昌則 出本
Kozo Iida
耕三 飯田
Hiroaki Rikimaru
浩昭 力丸
Toshikatsu Baba
敏勝 馬場
Yoshiyuki Yoshikawa
嘉之 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Sakai Chemical Industry Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sakai Chemical Industry Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9654896A priority Critical patent/JP3595622B2/en
Publication of JPH09276659A publication Critical patent/JPH09276659A/en
Application granted granted Critical
Publication of JP3595622B2 publication Critical patent/JP3595622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst which has a wear strength against abrasive dust contained in an exhaust gas without deteriorating a catalytic activity. SOLUTION: A molded catalyst for removing nitrogen oxide contained in an exhaust gas by reduction is a molding carrying 0.5-5.5 pts.wt. of magnesium sulfate obtained by thermally baking a porous molding, impregnated with an aqueous magnesium sulfate, which contains 5-20 pts.wt. of tungsten trioxide and 0-2.0 pts.wt. of vanadium pentaoxide for 100 pts.wt. of titanium oxide or a composite oxide of titanium oxide and silica.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排ガスに含まれる
窒素酸化物を還元剤を用いて還元除去するための触媒と
方法とに関し、更に、そのような触媒の製造方法に関す
る。特に、本発明は、排ガスに含まれる窒素酸化物を還
元剤を用いて還元除去するための触媒であって、排ガス
に含まれるダストによる摩耗に対する抵抗を有する触媒
と、排ガスに含まれる窒素酸化物を還元剤を用いて還元
除去するに際して、そのような触媒を用いる方法とに関
し、更に、そのような触媒の製造方法に関する。
TECHNICAL FIELD The present invention relates to a catalyst and a method for reducing and removing nitrogen oxides contained in exhaust gas by using a reducing agent, and further to a method for producing such a catalyst. In particular, the present invention is a catalyst for reducing and removing nitrogen oxides contained in exhaust gas using a reducing agent, the catalyst having resistance to abrasion due to dust contained in the exhaust gas, and nitrogen oxides contained in the exhaust gas. The present invention relates to a method of using such a catalyst for reducing and removing methane using a reducing agent, and further relates to a method of producing such a catalyst.

【0002】[0002]

【従来の技術】排ガスに含まれる窒素酸化物を触媒の存
在下にアンモニア等の還元剤と接触させて、還元除去す
る、即ち、脱硝するための触媒と方法は、既に種々のも
のが知られている。このような触媒のなかでも、触媒反
応器において、排ガスの流れ方向に貫通孔を有する固定
床を構成する成形触媒、例えば、所謂ハニカム触媒は、
一般に、ガス流れによる圧力損失が少ないので、他の固
定床触媒を充填した触媒反応器に比較して、排ガスの線
速度を大きくすることができ、更に、排ガスがダストを
含むときには、そのダストによって、上記貫通孔が目詰
まりを起こすことが少ないので、効率よく所要のガス接
触反応を行わせることができる利点を有し、従って、ハ
ニカム触媒は、従来、例えば、ボイラ等から発生する窒
素酸化物を含む燃焼排ガスの脱硝反応のために広く用い
られている。
2. Description of the Related Art Various catalysts and methods have already been known for removing nitrogen oxides contained in exhaust gas by contacting them with a reducing agent such as ammonia in the presence of a catalyst, that is, for removing NOx. ing. Among such catalysts, in the catalytic reactor, a shaped catalyst forming a fixed bed having through holes in the flow direction of exhaust gas, for example, a so-called honeycomb catalyst,
Generally, since the pressure loss due to the gas flow is small, the linear velocity of the exhaust gas can be increased as compared with other catalytic reactors packed with other fixed bed catalysts. Since the through holes are less likely to be clogged, there is an advantage that the required gas contact reaction can be efficiently performed. Therefore, the honeycomb catalyst is conventionally used, for example, a nitrogen oxide generated from a boiler or the like. It is widely used for the denitrification reaction of combustion exhaust gas containing.

【0003】しかしながら、このようなハニカム触媒を
用いる排ガスの処理においても、排ガスが摩耗性を有す
るダストを含むときには、このダストによってハニカム
触媒が摩耗し、その結果、ハニカム触媒が徐々に減耗
し、最終的には形状を失なって、使用に耐えなくなる場
合さえある。
However, even in the treatment of exhaust gas using such a honeycomb catalyst, when the exhaust gas contains dust having abradability, the honeycomb catalyst is abraded by the dust, and as a result, the honeycomb catalyst is gradually depleted and finally In some cases, it loses its shape and becomes unusable.

【0004】そこで、従来、例えば、特公昭57−14
211号公報、特公昭57−26820号公報、特公昭
57−26820号公報や、米国特許第 4,294,806号等
に記載されているように、排ガスの入口と出口とを備え
た触媒反応器に充填して用いる成形触媒であって、上記
入口からその触媒反応器に導入される排ガスの流れ方向
に少なくとも1つの貫通孔を有する成形触媒において、
排ガスの入口を含む成形触媒の先端部分を焼結したり、
或いはガラス物質で被覆し、強化して、耐摩耗性とする
ことが知られている。このような先端部分を強化した成
形触媒によれば、排ガスが摩耗性を有するダストを含む
場合であっても、成形触媒の先端部分をダストによる摩
耗から防止することができる。
Therefore, conventionally, for example, Japanese Patent Publication No. 57-14.
No. 211, JP-B-57-26820, JP-B-57-26820, US Pat. No. 4,294,806, etc., the catalyst reactor provided with an exhaust gas inlet and an outlet is filled. A molded catalyst used as a molded catalyst having at least one through hole in a flow direction of an exhaust gas introduced into the catalytic reactor from the inlet,
Sinter the tip of the molded catalyst including the exhaust gas inlet,
Alternatively, it is known to coat and strengthen glass materials to make them wear resistant. According to the shaped catalyst having the reinforced tip portion, the tip portion of the shaped catalyst can be prevented from being worn by the dust even when the exhaust gas contains dust having abradability.

【0005】しかし、代表的には、石炭焚きボイラから
の燃焼排ガスのように、摩耗性を有するダストを多量に
含む燃焼排ガスの脱硝処理においては、触媒反応器の断
面における排ガスの流れの不均一が起こりやすく、この
ことに起因して、触媒反応器内において、ダスト濃度の
不均一やダストの粒度分布の偏り等が生じることにな
り、かくして、上述したように、先端部分を強化した成
形触媒を用いる場合であっても、成形触媒がその他の箇
所において、局部的に摩耗することとなる。
[0005] However, typically, in the denitration treatment of a combustion exhaust gas containing a large amount of dust having abradability such as a combustion exhaust gas from a coal-fired boiler, the flow of the exhaust gas in the cross section of the catalytic reactor is not uniform. Is likely to occur, and due to this, in the catalytic reactor, non-uniformity of the dust concentration and uneven distribution of the particle size distribution of dust occur, and thus, as described above, the molded catalyst with the tip portion reinforced. Even in the case of using, the shaped catalyst is locally worn at other places.

【0006】そこで、成形触媒のガス入口を含む端面か
ら貫通孔の方向に長い距離にわたる先端部分を強化すれ
ば、その分、成形触媒を耐摩耗性とすることができる
が、反面、このように強化処理した触媒壁の面積が大き
くなればなるほど、得られる成形触媒は、初期の触媒活
性が低いものになる。
Therefore, by strengthening the tip portion over a long distance in the direction of the through hole from the end surface including the gas inlet of the shaped catalyst, the shaped catalyst can be made wear-resistant by that amount, but on the other hand, The larger the area of the strengthened catalyst walls, the lower the initial catalytic activity of the resulting shaped catalyst.

【0007】[0007]

【発明が解決しようとする課題】本発明は、排ガスに含
まれる窒素酸化物を触媒の存在下に還元剤を用いて還元
除去するための従来の触媒及び方法における上述したよ
うな問題を解決するためになされたものであって、耐摩
耗性と強度にすぐれ、排ガスに含まれる窒素酸化物を長
期間にわたって安定して還元除去することができる触媒
と方法とを提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in conventional catalysts and methods for reducing and removing nitrogen oxides contained in exhaust gas by using a reducing agent in the presence of a catalyst. It is an object of the present invention to provide a catalyst and a method which are excellent in wear resistance and strength and can stably reduce and remove nitrogen oxides contained in exhaust gas over a long period of time.

【0008】特に、本発明は、触媒活性を損なうことな
く、排ガス中に含まれる摩耗性を有するダストによる摩
耗に対する強度を付与した触媒と、更に、排ガスに含ま
れる窒素酸化物を還元剤を用いてそのような触媒の存在
下に長期間にわたって安定して還元除去することができ
る方法を提供することを目的とする。更に、本発明は、
上述したような触媒の製造方法を提供することを目的と
する。
[0008] In particular, the present invention uses a catalyst that imparts strength to abrasion by dust having abradability contained in exhaust gas without impairing catalytic activity, and further uses nitrogen oxide contained in the exhaust gas as a reducing agent. It is an object of the present invention to provide a method capable of performing stable reduction and removal over a long period of time in the presence of such a catalyst. Further, the present invention provides
It is an object of the present invention to provide a method for producing the above catalyst.

【0009】[0009]

【課題を解決するための手段】本発明による排ガスに含
まれる窒素酸化物を還元除去するための成形触媒は、
(a) 酸化チタン又は酸化チタン−シリカ複合酸化物10
0重量部に対して、(b) 三酸化タングステン5〜20重
量部と、(c) 五酸化バナジウム0〜2.0重量部とを含む
多孔質成形体に硫酸マグネシウム水溶液を含浸させ、加
熱焼成して、硫酸マグネシウムを0.5〜5.5重量部の範
囲で上記多孔質成形体に担持させてなることを特徴とす
る。
A molded catalyst for reducing and removing nitrogen oxides contained in exhaust gas according to the present invention comprises:
(a) Titanium oxide or titanium oxide-silica composite oxide 10
0 parts by weight of (b) 5 to 20 parts by weight of tungsten trioxide and (c) 0 to 2.0 parts by weight of vanadium pentoxide are impregnated with an aqueous magnesium sulfate solution and heated and baked. Then, magnesium sulfate is supported on the porous molded body in a range of 0.5 to 5.5 parts by weight.

【0010】[0010]

【発明の実施の形態】本発明において、窒素酸化物と
は、例えば、一酸化窒素、三酸化二窒素、二酸化窒素等
をいうものとする。本発明において、成形体は、主成分
が酸化チタンか、又は酸化チタン−シリカ複合酸化物か
らなり、従成分として、三酸化タングステンを含み、必
要に応じて、五酸化バナジウムを含む多孔質体であっ
て、このような多孔質成形体に硫酸マグネシウム水溶液
を含浸させ、加熱焼成して、硫酸マグネシウムを担持さ
せたものが本発明による成形触媒である。本発明におい
ては、上記成形体を形成する上記成分を触媒成分とい
う。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the nitrogen oxides mean, for example, nitric oxide, dinitrogen trioxide, nitrogen dioxide and the like. In the present invention, the molded body is a porous body containing titanium oxide as a main component or titanium oxide-silica composite oxide, containing tungsten trioxide as a subordinate component, and, if necessary, vanadium pentoxide. Therefore, the molded catalyst according to the present invention is obtained by impregnating such a porous molded body with an aqueous magnesium sulfate solution, heating and firing it to support magnesium sulfate. In the present invention, the above-mentioned components forming the above-mentioned molded body are called catalyst components.

【0011】本発明による特に好ましい成形触媒は、排
ガスの入口と出口とを備えた触媒反応器に充填して用い
る成形触媒であって、上記入口から上記触媒反応器に導
入される排ガスの流れ方向に少なくとも1つの貫通孔を
有し、通常、多数の貫通孔を有する所謂ハニカム触媒と
呼ばれるものである。
A particularly preferred shaped catalyst according to the present invention is a shaped catalyst which is used by filling it in a catalytic reactor having an exhaust gas inlet and an outlet, and the flow direction of the exhaust gas introduced into the catalytic reactor through the inlet. It is a so-called honeycomb catalyst that has at least one through-hole in each of the above, and usually has many through-holes.

【0012】本発明において、上記多孔質成形体を形成
する触媒成分のうち、酸化チタンの原料としては、予め
調製された酸化チタンのほか、チタン酸、水酸化チタ
ン、硫酸チタン等のチタン化合物が用いられる。また、
成形体の主成分が酸化チタン−シリカ複合酸化物からな
るとき、そのような複合酸化物は、例えば、硫酸チタン
等のチタン塩の水溶液にシリカゾルを加え、得られた混
合物にアンモニア等のアルカリを加えて、沈殿物を生じ
させ、次いで、このようにして得られた沈殿物を洗浄
し、乾燥させた後、150〜850℃で焼成することに
よって得ることができる。また、酸化チタンについて
は、その製造方法は何ら限定されるものではないが、例
えば、硫酸法による酸化チタンの製造工程から得られる
硫酸チタンをアンモニアで中和し、これを乾燥し、焼成
して得られる二酸化チタンが好ましく用いられる。
In the present invention, among the catalyst components forming the above-mentioned porous molded body, as raw materials for titanium oxide, titanium oxide prepared in advance and titanium compounds such as titanic acid, titanium hydroxide and titanium sulfate can be used. Used. Also,
When the main component of the molded body is composed of titanium oxide-silica composite oxide, such a composite oxide is obtained by adding silica sol to an aqueous solution of titanium salt such as titanium sulfate and adding an alkali such as ammonia to the resulting mixture. In addition, it can be obtained by forming a precipitate, and then washing the precipitate thus obtained, drying it, and calcining it at 150 to 850 ° C. Further, the production method of titanium oxide is not limited at all, but for example, titanium sulfate obtained from the production process of titanium oxide by the sulfuric acid method is neutralized with ammonia, dried and calcined. The titanium dioxide obtained is preferably used.

【0013】三酸化タングステンの原料としては、それ
自体のほか、パラタングステン酸アンモニウム、メタタ
ングステン酸アンモニウム等が好ましく用いられる。ま
た、五酸化バナジウムの原料としては、それ自体のほ
か、メタバナジン酸アンモニウム等が好ましく用いられ
る。このような触媒成分からなる多孔質成形体は、従
来、知られている通常の方法によって調製することがで
きる。例えば、触媒成分のそれぞれの酸化物を混合し、
焼成する方法、触媒成分のそれぞれ水溶性塩の混合物か
らそれぞれの酸化物を共沈させ、これらを焼成する方法
等によればよい。
As the raw material of tungsten trioxide, ammonium paratungstate, ammonium metatungstate, etc. are preferably used in addition to itself. As the raw material for vanadium pentoxide, ammonium metavanadate and the like are preferably used in addition to itself. A porous molded article containing such a catalyst component can be prepared by a conventionally known ordinary method. For example, mixing each oxide of the catalyst component,
A method of calcination, a method of coprecipitating each oxide from a mixture of water-soluble salts of catalyst components, and calcining these may be used.

【0014】具体例を挙げれば、例えば、硫酸チタンに
アンモニアのようなアルカリを加えて、沈澱させ、乾燥
させ、焼成し、これにメタタングステン酸アンモニウム
水溶液や、必要に応じて、メタバナジン酸アンモニウム
水溶液を混合し、成形し、乾燥し、焼成することによっ
て、触媒成分からなる成形体を得ることができる。この
ような方法によれば、既によく知られているように、圧
力2000kg/cm2 、水銀圧入法による測定にて、通
常、0.1〜0.5mL/g、好ましくは、0.2〜0.4mL
/g程度の細孔容積を有する多孔質の成形体を得ること
ができる。
To give a specific example, for example, an alkali such as ammonia is added to titanium sulfate to cause precipitation, drying and firing, and then an ammonium metatungstate aqueous solution and, if necessary, an ammonium metavanadate aqueous solution are added. By mixing, molding, drying, and firing, a molded body composed of the catalyst component can be obtained. According to such a method, as is well known, the pressure is 2000 kg / cm 2 , and the measurement is usually 0.1 to 0.5 mL / g, preferably 0.2 to 0.2, as measured by the mercury penetration method. 0.4 mL
It is possible to obtain a porous molded body having a pore volume of about / g.

【0015】本発明によれば、触媒成分からなる多孔質
成形体は、例えば、粒状物、環状物、筒状物、ハニカム
構造体等であるが、このような多孔質成形体を製造する
に際して、必要に応じて、粘土等の鉱物物質、シリカゾ
ル等の無機バインダーやポリビニルアルコール等の有機
バインダー等の種々の成形助剤、ガラス繊維やセラミッ
ク繊維等の種々の補強材等の充填材を用いてもよい。
According to the present invention, the porous molded body made of the catalyst component is, for example, a granular material, a ring-shaped material, a cylindrical material, a honeycomb structure, or the like. , If necessary, various fillers such as mineral substances such as clay, inorganic binders such as silica sol and organic binders such as polyvinyl alcohol, and various reinforcing materials such as glass fiber and ceramic fiber. Good.

【0016】本発明による成形触媒においては、多孔質
成形体は、酸化チタン又は酸化チタン−シリカ複合酸化
物100重量部に対して、三酸化タングステン5〜20
重量部と、五酸化バナジウム0〜2.0重量部、即ち、必
要に応じて、五酸化バナジウム2.0重量部以下とを含
み、このような多孔質成形体に後述するようにして、0.
5〜5.5重量部の範囲で硫酸マグネシウムを担持させる
ことによって、耐摩耗性と強度にすぐれ、排ガスに含ま
れる窒素酸化物を長期間にわたって安定して還元除去す
ることができる成形触媒を得ることができる。
In the molded catalyst according to the present invention, the porous molded body contains 5 to 20 parts by weight of tungsten trioxide based on 100 parts by weight of titanium oxide or titanium oxide-silica composite oxide.
Parts by weight, and vanadium pentoxide 0 to 2.0 parts by weight, that is, vanadium pentoxide 2.0 parts by weight or less, if necessary. .
By supporting magnesium sulfate in the range of 5 to 5.5 parts by weight, it is possible to obtain a molded catalyst having excellent wear resistance and strength and capable of stably reducing and removing nitrogen oxides contained in exhaust gas over a long period of time. be able to.

【0017】本発明において、触媒成分として五酸化バ
ナジウムを用いることによって、低温域での触媒活性を
高めることができる。他方、五酸化バナジウムは、二酸
化イオウの三酸化イオウへの酸化能が高いほか、反応温
度が高温であるときは、還元剤であるアンモニアを酸化
したり、或いはチタンの結晶成長を促進して、熱劣化を
加速する。従って、イオウ酸化物を高濃度に含む排ガス
を処理する場合には、五酸化バナジウムは、触媒成分と
して用いないか、又は用いても、低温域での触媒活性の
向上とのバランスを考慮して、少量の配合にとどめるの
が好ましい。特に、反応温度が400℃以上である場合
や、排ガスがイオウ酸化物を高濃度に含む場合には、通
常、触媒には、五酸化バナジウムを担持させないのが好
ましい。しかし、反応温度が400℃未満である場合に
は、触媒活性を高めるために、通常、酸化チタン又は酸
化チタン−シリカ複合酸化物100重量部に対して、0.
1重量部以上を担持させるのが好ましい。
In the present invention, by using vanadium pentoxide as the catalyst component, the catalytic activity in the low temperature range can be enhanced. On the other hand, vanadium pentoxide has a high ability to oxidize sulfur dioxide to sulfur trioxide, and when the reaction temperature is high, oxidizes ammonia as a reducing agent or promotes titanium crystal growth, Accelerates thermal degradation. Therefore, when treating an exhaust gas containing a high concentration of sulfur oxide, vanadium pentoxide is not used as a catalyst component, or even if it is used, considering the balance with the improvement of the catalyst activity in the low temperature range. However, it is preferable to keep only a small amount. In particular, when the reaction temperature is 400 ° C. or higher, or when the exhaust gas contains a high concentration of sulfur oxide, it is usually preferable not to support vanadium pentoxide on the catalyst. However, in the case where the reaction temperature is lower than 400 ° C., in order to enhance the catalytic activity, it is usually 0.100 with respect to 100 parts by weight of titanium oxide or titanium oxide-silica composite oxide.
It is preferable to support 1 part by weight or more.

【0018】本発明による成形触媒は、このようにして
多孔質成形体を調製した後、この成形体に硫酸マグネシ
ウム水溶液を含浸させ、乾燥させた後、加熱焼成して、
酸化チタン又は酸化チタン−シリカ複合酸化物100重
量部に対して、硫酸マグネシウムを0.5〜5.5重量部の
範囲で担持させることによって得ることができる。ここ
に、本発明において、硫酸マグネシウムの担持量は、よ
り好ましくは、酸化チタン又は酸化チタン−シリカ複合
酸化物100重量部に対して、1.0〜5.0重量部の範囲
である。上記硫酸マグネシウムとしては、例えば、硫酸
マグネシウム7水塩が好ましく用いられる。
In the molded catalyst according to the present invention, after the porous molded body is prepared in this manner, the molded body is impregnated with an aqueous magnesium sulfate solution, dried, and then heated and calcined,
It can be obtained by supporting magnesium sulfate in an amount of 0.5 to 5.5 parts by weight with respect to 100 parts by weight of titanium oxide or a titanium oxide-silica composite oxide. Here, in the present invention, the supported amount of magnesium sulfate is more preferably in the range of 1.0 to 5.0 parts by weight with respect to 100 parts by weight of titanium oxide or titanium oxide-silica composite oxide. As the magnesium sulfate, for example, magnesium sulfate heptahydrate is preferably used.

【0019】例えば、成形体を硫酸マグネシウム水溶液
に浸漬した後、通風乾燥し、この後、100〜120℃
の温度で加熱乾燥させ、次いで、空気中、300〜50
0℃程度の温度で加熱焼成して、成形体に硫酸マグネシ
ウムを担持させることができる。このようにして、本発
明によれば、成形体の全体にわたって、実質的に均一に
硫酸マグネシウムを担持させることができる。ここに、
硫酸マグネシウムは、水和物又は無水物として、成形体
中に担持されている。
For example, the molded body is dipped in an aqueous solution of magnesium sulfate, dried by ventilation, and then 100 to 120 ° C.
And dried in air at 300-50.
By heating and firing at a temperature of about 0 ° C., magnesium sulfate can be supported on the molded body. In this way, according to the present invention, magnesium sulfate can be supported substantially uniformly over the entire molded body. here,
Magnesium sulfate is supported in the molded body as a hydrate or anhydrate.

【0020】しかし、本発明によれば、必要に応じて、
成形体の先端部分のみに硫酸マグネシウム水溶液を含浸
させ、通風乾燥し、この後、100〜120℃の温度で
加熱乾燥させ、次いで、空気中、300〜500℃程度
の温度で加熱焼成して、成形体の先端部分のみに硫酸マ
グネシウムを担持させてもよい。この場合においても、
硫酸マグネシウムの担持量は、その先端部分において、
酸化チタン又は酸化チタン−シリカ複合酸化物100重
量部に対して、0.5〜5.0重量部の範囲であり、好まし
くは、1.0〜5.0重量部の範囲である。
However, according to the invention, if desired,
Only the tip portion of the molded body is impregnated with the magnesium sulfate aqueous solution, air-dried, and then heated and dried at a temperature of 100 to 120 ° C., and then heated and baked in air at a temperature of about 300 to 500 ° C. Magnesium sulfate may be supported only on the tip portion of the molded body. Even in this case,
The amount of magnesium sulfate loaded is
It is in the range of 0.5 to 5.0 parts by weight, and preferably in the range of 1.0 to 5.0 parts by weight, based on 100 parts by weight of titanium oxide or titanium oxide-silica composite oxide.

【0021】本発明による成形触媒は、このように、触
媒成分からなる多孔質成形体に硫酸マグネシウムを担持
させることによって、触媒活性を損なうことなく、排ガ
ス中の摩耗性のダストによる摩耗に対する強度を有する
成形触媒を得ることができる。成形触媒における硫酸マ
グネシウムの担持量が酸化チタン又は酸化チタン−シリ
カ複合酸化物100重量部に対して、5.5重量部を越え
るときは、得られる触媒の活性を低下させ、反対に、0.
5重量部よりも少ないときは、ダストによる摩耗に対す
る強度を付与することができない。
The shaped catalyst according to the present invention thus supports magnesium sulfate on a porous shaped body composed of a catalyst component, and thereby has a strength against abrasion due to abradable dust in exhaust gas without impairing catalytic activity. A shaped catalyst having can be obtained. When the supported amount of magnesium sulfate in the shaped catalyst exceeds 5.5 parts by weight with respect to 100 parts by weight of titanium oxide or titanium oxide-silica composite oxide, the activity of the obtained catalyst is lowered, and conversely, it is 0.
When the amount is less than 5 parts by weight, strength against abrasion due to dust cannot be imparted.

【0022】本発明によれば、予め触媒成分からなる成
形体を調製し、これに硫酸マグネシウム水溶液を含浸さ
せ、加熱焼成して、成形触媒とするので、硫酸マグネシ
ウムは多孔質成形体の細孔において、特に、酸化物の粒
子が相互に接触する接点の近傍に局在して、酸化物の粒
子を相互に接着させるので、成形触媒の重量に対して、
少量のみを担持させることによって、目的とするダスト
に対する強度を得ることができる。更に、本発明によれ
ば、成形触媒の所要の部分のみに硫酸マグネシウムを担
持させることができる利点もある。更に、本発明によれ
ば、硫酸マグネシウム水溶液を多孔質成形体に含浸させ
た後、加熱焼成する過程で、硫酸マグネシウム水和物が
その結晶水を失なって、結晶の寸法が変化しても、成形
体が予め調製されているので、強度を強化しても、低下
させることはない。
According to the present invention, a molded body composed of a catalyst component is prepared in advance, and this is impregnated with an aqueous magnesium sulfate solution and heated and baked to obtain a molded catalyst. In particular, since the oxide particles are localized in the vicinity of the contact point where they contact each other and adhere the oxide particles to each other,
By supporting only a small amount, the desired strength against dust can be obtained. Further, according to the present invention, there is an advantage that magnesium sulfate can be supported only on a required portion of the shaped catalyst. Furthermore, according to the present invention, even after the magnesium sulfate hydrate loses its crystal water in the process of impregnating the porous molded body with the magnesium sulfate aqueous solution and then heating and firing, the size of the crystal changes. Since the molded body is prepared in advance, the strength is not reduced even if it is strengthened.

【0023】これに対して、成形触媒に硫酸マグネシウ
ムを担持させるために、他の方法、例えば、触媒成分と
共に硫酸マグネシウムを湿式混練して、成形触媒を得る
方法によれば、硫酸マグネシウムは、酸化物の粒子の表
面に均一に分布し、従って、触媒成分に対して多量を用
いながら、目的とする強度を得ることが困難であり、更
に、余りに多量を用いれば、所要の強度を得ることがで
きても、初期活性の低いものとなる。また、成形体を加
熱焼成する過程で、硫酸マグネシウム水和物がその結晶
水を失なって、結晶の寸法が変化した際に、成形体自体
の強度を低下させるおそれもある。
On the other hand, in order to support magnesium sulfate on the shaped catalyst, according to another method, for example, a method of wet kneading magnesium sulfate with a catalyst component to obtain a shaped catalyst, magnesium sulfate is oxidized. Since it is evenly distributed on the surface of the particles of the product, it is difficult to obtain the desired strength while using a large amount for the catalyst component. Furthermore, if too much is used, the required strength can be obtained. Even if it is possible, the initial activity will be low. Further, in the process of heating and firing the compact, the magnesium sulfate hydrate loses its water of crystallization, and when the size of the crystal changes, the strength of the compact itself may be reduced.

【0024】本発明による成形触媒は、好ましくは、排
ガスの入口と出口とを備えた触媒反応器に充填して用い
られるものであって、上記入口から上記触媒反応器に導
入される排ガスの流れ方向に少なくとも1つの貫通孔を
有する構造体であり、特に、好ましくは、多数の貫通孔
を有する所謂ハニカム触媒である。従って、本発明によ
れば、成形触媒を上述したような触媒反応器に充填し、
これに排ガスを還元剤であるアンモニアと共にその入口
から導入し、出口から排出するようにして、成形触媒の
有するガス流れ方向の貫通孔を通過させ、その間に、排
ガスを成形触媒に接触させて、窒素酸化物を窒素と水と
に変換して、排ガスから除去する。
The shaped catalyst according to the present invention is preferably used by being filled in a catalytic reactor having an exhaust gas inlet and an outlet, and the flow of the exhaust gas introduced into the catalytic reactor from the inlet. It is a structure having at least one through hole in the direction, and particularly preferably a so-called honeycomb catalyst having a large number of through holes. Therefore, according to the present invention, a shaped catalyst is loaded into a catalytic reactor as described above,
Exhaust gas is introduced into this together with ammonia as a reducing agent from its inlet, and is discharged from the outlet so as to pass through a through hole in the gas flow direction of the shaped catalyst, while the exhaust gas is brought into contact with the shaped catalyst, The nitrogen oxides are converted to nitrogen and water and removed from the exhaust gas.

【0025】本発明によれば、前述したように、ダスト
を含む燃焼排ガスを脱硝処理する場合に、特に、成形触
媒の先端部分のダストによる摩耗を防止するために、成
形触媒を触媒反応器に充填した場合の前面のガス入口を
含む先端部分を耐摩耗性としてもよい。また、必要に応
じて、成形触媒を触媒反応器に充填した場合の後面のガ
ス出口を含む後端部分を耐摩耗性としてもよい。このよ
うに、成形触媒の先端部分を耐摩耗性とするには、例え
ば、既に、特公昭57−14211号公報、特公昭57
−26820号公報、特公昭61−17548号公報、
米国特許第 4,294,806号に記載されているように、幾つ
かの方法によることができる。
According to the present invention, as described above, when the combustion exhaust gas containing dust is subjected to the denitration treatment, in particular, in order to prevent wear of the tip portion of the shaped catalyst due to dust, the shaped catalyst is placed in the catalytic reactor. The tip portion including the gas inlet on the front surface when filled may be made wear resistant. Further, if necessary, the rear end portion including the gas outlet on the rear surface when the molded catalyst is filled in the catalytic reactor may be made wear-resistant. As described above, in order to make the tip portion of the molded catalyst wear resistant, for example, Japanese Patent Publication No. 57-14211 and Japanese Examined Patent Publication No.
-26820, Japanese Patent Publication No. 61-17548,
Several methods can be used, as described in US Pat. No. 4,294,806.

【0026】第1の方法として、成形触媒の先端部分に
重リン酸塩又は縮合リン酸塩の水溶液を含浸させた後、
加熱して、硬化物を形成させることによって、強化する
ことができる。重リン酸塩としては、例えば、第一リン
酸水素カルシウム、第一リン酸水素バリウム、第一リン
酸水素アルミニウム等を挙げることができる。また、縮
合リン酸塩としては、例えば、メタリン酸塩やポリリン
酸塩等を挙げることができる。
As a first method, after impregnating the tip portion of the shaped catalyst with an aqueous solution of a heavy phosphate or a condensed phosphate,
It can be strengthened by heating to form a cured product. Examples of the heavy phosphate include calcium hydrogen phosphate, barium hydrogen phosphate, aluminum hydrogen phosphate and the like. Examples of condensed phosphates include metaphosphates and polyphosphates.

【0027】具体的には、このような重リン酸塩又は縮
合リン酸塩の水溶液に、必要に応じて、マグネシアクリ
ンカー等のような骨材、粘土、リン酸ナトリウム、ケイ
酸アルカリ等を加え、水溶液又はスラリーとし、これに
成形触媒の先端部分を浸漬し、先端部分に付着させ、加
熱焼成すればよい。この加熱温度は、通常、200〜1
000℃の範囲であり、通常、400〜500℃程度で
ある。例えば、重リン酸アルミニウムの水溶液を成形触
媒の先端部分に塗布し、通常、400〜500℃程度の
温度に加熱すれば、硬化物の被膜が形成されて、成形触
媒の先端部分を強化することができる。
Specifically, if necessary, an aggregate such as magnesia clinker, clay, sodium phosphate, alkali silicate or the like is added to an aqueous solution of such a heavy phosphate or condensed phosphate. The solution may be made into an aqueous solution or slurry, and the tip portion of the shaped catalyst may be dipped in the solution, adhered to the tip portion, and baked by heating. This heating temperature is usually 200 to 1
The temperature is in the range of 000 ° C, and is usually about 400 to 500 ° C. For example, when an aqueous solution of aluminum diphosphate is applied to the tip portion of the shaped catalyst and heated to a temperature of about 400 to 500 ° C., a film of a cured product is formed to strengthen the tip portion of the shaped catalyst. You can

【0028】第2の方法として、成形触媒の先端部分を
ガラス物質で被覆することによって、強化することがで
きる。ガラス物質としては、例えば、水ガラス、チタニ
アゾル、シリカゾル、アルミナゾル、ケイ酸リチウム、
ホウ酸鉛、酸化ホウ素、ホウ砂、種々の釉、例えば、ホ
ウ酸鉛系釉、硬質磁器系釉等を挙げることができる。具
体的には、ガラス物質や釉を溶融させ、この融液中に成
形触媒の先端部分を浸漬するか、或いは上記融液を成形
触媒の先端部分に塗布し、冷却して、ガラス物質や釉で
被覆することによって、強化することができる。
As a second method, the tip portion of the shaped catalyst can be strengthened by coating it with a glass material. As the glass substance, for example, water glass, titania sol, silica sol, alumina sol, lithium silicate,
Examples thereof include lead borate, boron oxide, borax, and various glazes such as lead borate-based glaze and hard porcelain-based glaze. Specifically, the glass substance or glaze is melted and the tip portion of the shaped catalyst is immersed in this melt, or the melt is applied to the tip portion of the shaped catalyst and cooled to cool the glass substance or glaze. It can be strengthened by coating with.

【0029】第3の方法として、例えば、成形触媒の先
端部分を焼結してもよい。また、成形触媒の先端部分を
成形触媒の先端部分の端面と同じ形状の貫通孔を有する
金属製や磁器製の保護板で被覆してもよい。本発明によ
れば、還元剤の存在下に、窒素酸化物を含む排ガスを上
述したような成形触媒に接触させることによって、排ガ
スに含まれる窒素酸化物を還元除去することができる。
ここに、還元剤としては、アンモニア、尿素等が用いら
れるが、特に、実用的には、アンモニアが好ましく用い
られる。還元剤は、排ガスに含まれる窒素酸化物と完全
に反応するに必要な化学量論の0.1〜1.5倍程度、好ま
しくは、0.1〜1.2倍程度用いられる。
As a third method, for example, the tip portion of the shaped catalyst may be sintered. Further, the tip portion of the shaped catalyst may be covered with a protective plate made of metal or porcelain having a through hole having the same shape as the end surface of the tip portion of the shaped catalyst. According to the present invention, the nitrogen oxide contained in the exhaust gas can be reduced and removed by bringing the exhaust gas containing the nitrogen oxide into contact with the shaped catalyst as described above in the presence of the reducing agent.
Here, as the reducing agent, ammonia, urea and the like are used, but particularly practically, ammonia is preferably used. The reducing agent is used in an amount of about 0.1 to 1.5 times, preferably about 0.1 to 1.2 times the stoichiometric amount required to completely react with the nitrogen oxides contained in the exhaust gas.

【0030】排ガスにこのように還元剤を混合し、これ
を、通常、150〜500℃、好ましくは、300〜4
50℃の温度で空間速度(NTP換算空塔基準)200
0〜50000hr-1、好ましくは、2000〜100
00hr-1の範囲にて触媒に接触させることによって、
排ガス中の窒素酸化物を効率よく還元分解することがで
きる。
The exhaust gas is mixed with the reducing agent in this manner, and this is usually added at 150 to 500 ° C., preferably 300 to 4
Space velocity at a temperature of 50 ° C. (NTP conversion empty tower standard) 200
0-50000 hr -1 , preferably 2000-100
By contacting the catalyst in the range of 00 hr -1 ,
The nitrogen oxides in the exhaust gas can be efficiently reduced and decomposed.

【0031】本発明による成形触媒は、排ガスがダスト
を含む場合であっても、実質的に摩耗することがなく、
従って、例えば、石炭焚きボイラからの燃焼排ガス等の
摩耗性を有するダストを含む排ガス中の窒素酸化物を接
触還元除去するために好適に適用することができる。し
かし、本発明による成形触媒の用途は、これに限定され
るものではない。
The formed catalyst according to the present invention does not substantially wear even if the exhaust gas contains dust,
Therefore, for example, it can be suitably applied for catalytic reduction removal of nitrogen oxides in exhaust gas containing abrasive dust such as combustion exhaust gas from a coal-fired boiler. However, the use of the shaped catalyst according to the present invention is not limited to this.

【0032】[0032]

【発明の効果】以上のように、本発明によれば、触媒成
分からなる多孔質成形体に硫酸マグネシウム水溶液を含
浸させ、加熱焼成して、硫酸マグネシウムを所定量担持
させるので、触媒活性を損なうことなく、成形触媒にダ
ストによる摩耗に対する強度を与えることができ、成形
触媒は実質的に摩耗することがない。従って、本発明に
よる成形触媒を用いれば、長期間にわたって安定して効
率よく、排ガスの脱硝処理を行なうことができる。
Industrial Applicability As described above, according to the present invention, a porous molded body composed of a catalyst component is impregnated with an aqueous magnesium sulfate solution and heated and baked to carry a predetermined amount of magnesium sulfate, thereby impairing the catalytic activity. Without increasing the strength of the molded catalyst against abrasion due to dust, the molded catalyst does not substantially wear. Therefore, by using the shaped catalyst according to the present invention, it is possible to perform denitration treatment of exhaust gas stably and efficiently for a long period of time.

【0033】また、例えば、触媒反応器に多数の成形触
媒を充填して、排ガスの脱硝処理を行なうような場合、
触媒反応器における排ガスの流れの不均一により生じる
ダスト濃度の不均一やダストの粒度分布の偏り等によっ
て、成形触媒に局部的な摩耗が生じると予想される位置
に、本発明による成形触媒を用いることによって、長時
間にわたって安定して窒素酸化物の接触還元除去するこ
とができる。更に、本発明によれば、成形触媒の一部に
のみ、選択的に、所要の強度を与えることができるの
で、特に、摩耗の生じやすい箇所に硫酸マグネシウムを
担持させて、そのような摩耗から触媒を保護することも
できる。
In addition, for example, when a catalyst reactor is filled with a large number of shaped catalysts to denitrate exhaust gas,
The molded catalyst according to the present invention is used at a position where local wear of the molded catalyst is expected to occur due to non-uniformity of dust concentration caused by non-uniformity of exhaust gas flow in the catalytic reactor and deviation of particle size distribution of dust. As a result, the nitrogen oxide can be stably removed by catalytic reduction over a long period of time. Furthermore, according to the present invention, the required strength can be selectively imparted only to a part of the formed catalyst, so that magnesium sulfate is supported particularly on a portion where abrasion is likely to occur, and such a abrasion can be prevented. The catalyst can also be protected.

【0034】[0034]

【実施例】以下に、実施例を挙げて本発明を説明する
が、本発明はこれら実施例により何ら限定されるもので
はない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0035】実施例1 硫酸法による酸化チタン製造工程から得られるメタチタ
ン酸を中和した後、濾過、水洗して、ケーキ状のメタチ
タン酸を得た。このメタチタン酸(二酸化チタン換算に
て820kg)に67.5%硝酸8kgを加え、メタチタ
ン酸を部分的に解膠した後、得られたゾル液を蒸発乾固
し、更に、500℃で3時間焼成した。この後、冷却
し、微粉砕し、その粒度を調整して、二酸化チタン粉末
を得た。
Example 1 Metatitanic acid obtained from the step of producing titanium oxide by the sulfuric acid method was neutralized, then filtered and washed with water to obtain cake-shaped metatitanic acid. 8 kg of 67.5% nitric acid was added to this metatitanic acid (820 kg in terms of titanium dioxide) to partially deflocculate the metatitanic acid, and the resulting sol solution was evaporated to dryness, and further at 500 ° C. for 3 hours. Baked. Then, the mixture was cooled, pulverized, and its particle size was adjusted to obtain a titanium dioxide powder.

【0036】モノエタノールアミン水溶液に五酸化バナ
ジウム5.2kgとパラタングステン酸アンモニウム11
2kgを溶解した水溶液300L、ポリビニルアルコー
ル50kg及び炭化ケイ素繊維(繊維径11μm、繊維
長さ3mm、日本カーボン(株)製)100kgを上記
二酸化チタン粉末800kgに水約100Lと共に加
え、ニーダーにてこれらを混練した。
5.2 kg of vanadium pentoxide and ammonium paratungstate 11 in an aqueous monoethanolamine solution
300 L of an aqueous solution in which 2 kg was dissolved, 50 kg of polyvinyl alcohol, and 100 kg of silicon carbide fiber (fiber diameter: 11 μm, fiber length: 3 mm, manufactured by Nippon Carbon Co., Ltd.) were added to 800 kg of the above titanium dioxide powder together with about 100 L of water, and these were kneaded. Kneaded

【0037】次いで、この混練物をハニカム押出ノズル
を備えたスクリュー付き真空押出機によってハニカム成
形体に押出成形した。このハニカム成形体を十分に時間
をかけて自然乾燥させた後、100℃で5時間通風乾燥
した。この後、軸方向の両端を切り揃え、電気炉内にて
500℃で5時間焼成して、外径150mm×150m
m、軸方向長さ800mm、セルピッチ7.4mm、内壁
厚さ1.15mmのハニカム成形体Iを得た。
Next, this kneaded product was extruded into a honeycomb formed body by a vacuum extruder with a screw equipped with a honeycomb extrusion nozzle. The honeycomb formed body was naturally dried for a sufficient time, and then air-dried at 100 ° C. for 5 hours. After that, both ends in the axial direction are cut and aligned, and baked in an electric furnace at 500 ° C. for 5 hours to give an outer diameter of 150 mm × 150 m.
m, an axial length of 800 mm, a cell pitch of 7.4 mm, and an inner wall thickness of 1.15 mm were obtained.

【0038】別に、硫酸マグネシウム7水塩の結晶62
kgを溶解した水溶液240Lに上記成形体を15分間
浸漬した後、引き上げた。次いで、触媒に通風して、過
剰に付着している上記水溶液を吹き払い、110℃で3
時間乾燥した後、400℃で3時間焼成して、酸化チタ
ン100重量部に対して、三酸化タングステン12.43
重量部、五酸化バナジウム0.65重量部及び硫酸マグネ
シウム4.55重量部を担持させてなる成形触媒(ハニカ
ム触媒)Aを得た。
Separately, magnesium sulfate heptahydrate crystals 62
The molded body was immersed in 240 L of an aqueous solution in which kg was dissolved for 15 minutes and then pulled up. Then, the catalyst is ventilated to blow off the above-mentioned excessively adhered aqueous solution, and the mixture is kept at 110 ° C. for 3 hours.
After drying for 3 hours, calcination is performed at 400 ° C for 3 hours.
A molded catalyst (honeycomb catalyst) A was prepared by supporting 1 part by weight, 0.65 part by weight of vanadium pentoxide and 4.55 part by weight of magnesium sulfate.

【0039】実施例2 硫酸マグネシウム7水塩の結晶17.7kgを溶解した水
溶液240Lに上記実施例1で得たハニカム成形体Iを
15分間浸漬した後、引き上げた。次いで、触媒に通風
して、過剰に付着している上記溶液を吹き払い、110
℃で3時間乾燥した後、400℃で3時間焼成して、酸
化チタン100重量部に対して、三酸化タングステン1
2.42重量部、五酸化バナジウム0.65重量部及び硫酸
マグネシウム1.27重量部を担持させてなる成形触媒
(ハニカム触媒)Bを得た。
Example 2 The honeycomb formed article I obtained in Example 1 was immersed in 240 L of an aqueous solution in which 17.7 kg of magnesium sulfate heptahydrate crystals were dissolved, and then it was pulled up. Then, the catalyst is ventilated to blow off the excessively adhered solution,
After drying at ℃ for 3 hours, calcination at 400 ℃ for 3 hours, 1 part tungsten trioxide to 100 parts by weight titanium oxide.
A molded catalyst (honeycomb catalyst) B supporting 2.42 parts by weight, 0.65 parts by weight of vanadium pentoxide and 1.27 parts by weight of magnesium sulfate was obtained.

【0040】実施例3 硫酸法による酸化チタン製造工程から得られるメタチタ
ン酸を中和した後、濾過、水洗して、ケーキ状のメタチ
タン酸を得た。このメタチタン酸(二酸化チタン換算に
て820kg)に67.5%硝酸8kgを加え、メタチタ
ン酸を部分的に解膠した後、このゾル液を蒸発乾固し、
更に、500℃で3時間焼成した。この後、冷却し、微
粉砕して、粒度を調整して、二酸化チタン粉末を得た。
Example 3 Metatitanic acid obtained from the process for producing titanium oxide by the sulfuric acid method was neutralized, then filtered and washed with water to obtain a cake-shaped metatitanic acid. 8 kg of 67.5% nitric acid was added to this metatitanic acid (820 kg in terms of titanium dioxide) to partially peptize the metatitanic acid, and then the sol liquid was evaporated to dryness,
Furthermore, it baked at 500 degreeC for 3 hours. Then, it was cooled and pulverized to adjust the particle size to obtain a titanium dioxide powder.

【0041】モノエタノールアミン水溶液にパラタング
ステン酸アンモニウム112kgを溶解した水溶液30
0L、ポリビニルアルコール50kg及び炭化ケイ素繊
維(繊維径11μm、繊維長さ3mm、日本カーボン
(株)製)100kgを上記二酸化チタン粉末800k
gに水約100Lと共に加え、ニーダーに共に加え、こ
れらを混練した。
An aqueous solution 30 in which 112 kg of ammonium paratungstate is dissolved in an aqueous monoethanolamine solution
0 L, polyvinyl alcohol 50 kg, and silicon carbide fiber (fiber diameter 11 μm, fiber length 3 mm, manufactured by Nippon Carbon Co., Ltd.) 100 kg are used as the titanium dioxide powder 800 k.
About 100 L of water was added to g, and the kneader was added together, and these were kneaded.

【0042】次いで、この混練物をハニカム押出ノズル
を備えたスクリュー付き真空押出機によってハニカム成
形体に押出成形した。このハニカム成形体を十分に時間
をかけて自然乾燥させた後、100℃で5時間通風乾燥
した。この後、軸方向の両端を切り揃え、電気炉内にて
500℃で5時間焼成して、外径150mm×150m
m、軸方向長さ800mm、セルピッチ7.4mm、内壁
厚さ1.15mmのハニカム成形体Jを得た。
Next, this kneaded product was extruded into a honeycomb formed body by a vacuum extruder with a screw equipped with a honeycomb extrusion nozzle. The honeycomb formed body was naturally dried for a sufficient time, and then air-dried at 100 ° C. for 5 hours. After that, both ends in the axial direction are cut and aligned, and baked in an electric furnace at 500 ° C. for 5 hours to give an outer diameter of 150 mm × 150 m.
m, an axial length of 800 mm, a cell pitch of 7.4 mm, and an inner wall thickness of 1.15 mm were obtained.

【0043】別に、硫酸マグネシウム7水塩の結晶61.
7kgと五酸化バナジウム4.3kgとを含むシュウ酸水
溶液240Lに上記ハニカム成形体Jを15分間浸漬し
た後、引き上げた。次いで、触媒に通風して、過剰に付
着している上記溶液を吹き払い、110℃で5時間乾燥
した後、400℃で3時間焼成して、酸化チタン100
重量部に対して、三酸化タングステン12.43重量部、
五酸化バナジウム0.65重量部及び硫酸マグネシウム4.
55重量部を担持させてなる成形触媒(ハニカム触媒)
Cを得た。
Separately, crystals of magnesium sulfate heptahydrate 61.
The honeycomb formed body J was immersed in 240 L of an aqueous oxalic acid solution containing 7 kg and 4.3 kg of vanadium pentoxide for 15 minutes and then pulled up. Then, the catalyst is ventilated to blow off the excessively adhered solution, dried at 110 ° C. for 5 hours, and then calcined at 400 ° C. for 3 hours to obtain titanium oxide 100.
12.43 parts by weight of tungsten trioxide with respect to parts by weight,
0.65 parts by weight of vanadium pentoxide and magnesium sulfate 4.
Molded catalyst supporting 55 parts by weight (honeycomb catalyst)
C was obtained.

【0044】実施例4 硫酸法による酸化チタン製造工程より得られる硫酸チタ
ン溶液(二酸化チタン換算にて100g/L濃度)70
00Lとシリカゾル溶液(SiO2 換算で20重量%濃
度、日産化学(株)製)618kgを十分混合した後、
アンモンニア水にて中和し、濾過、水洗して、ケーキを
得た。このケーキを乾燥し、500℃で3時間焼成した
後、冷却し、微粉砕して、粒度を調整したチタン−シリ
カ複合酸化物を得た。
Example 4 Titanium sulfate solution (100 g / L concentration in terms of titanium dioxide) obtained from the production process of titanium oxide by the sulfuric acid method 70
After thoroughly mixing 00 L and 618 kg of a silica sol solution (concentration of 20% by weight in terms of SiO 2 , manufactured by Nissan Kagaku Co., Ltd.),
It was neutralized with Ammonia water, filtered, and washed with water to obtain a cake. The cake was dried, calcined at 500 ° C. for 3 hours, cooled, and finely pulverized to obtain a titanium-silica composite oxide having a controlled particle size.

【0045】モノエタノールアミン水溶液に五酸化バナ
ジウム5.2kgとパラタングステン酸アンモニウム11
2kgを溶解した水溶液300L、ポリビニルアルコー
ル50kg及び炭化ケイ素繊維(繊維径11μm、繊維
長さ3mm、日本カーボン(株)製)100kgを上記
複合酸化物粉末800kgに水約100Lと共に加え、
ニーダーにてこれらを混練した。
In an aqueous solution of monoethanolamine, 5.2 kg of vanadium pentoxide and ammonium paratungstate 11
300 L of an aqueous solution in which 2 kg was dissolved, 50 kg of polyvinyl alcohol and 100 kg of silicon carbide fiber (fiber diameter 11 μm, fiber length 3 mm, manufactured by Nippon Carbon Co., Ltd.) were added to 800 kg of the above complex oxide powder together with about 100 L of water,
These were kneaded with a kneader.

【0046】次いで、この混練物をハニカム押出ノズル
を備えたスクリュー付き真空押出機によってハニカム成
形体に成形した。このハニカム成形体を十分に時間をか
けて自然乾燥させた後、100℃で5時間通風乾燥し
た。この後、軸方向の両端を切り揃え、電気炉内にて5
00℃で5時間焼成して、外径150mm×150m
m、軸方向長さ800mmのセルピッチ7.4mm、内壁
厚さ1.15mmのハニカム成形体を得た。
Next, this kneaded material was molded into a honeycomb molded body by a vacuum extruder with a screw equipped with a honeycomb extrusion nozzle. The honeycomb formed body was naturally dried for a sufficient time, and then air-dried at 100 ° C. for 5 hours. Then, both ends in the axial direction are cut and aligned, and 5
Baking at 00 ℃ for 5 hours, outer diameter 150mm × 150m
m, an axial length of 800 mm, a cell pitch of 7.4 mm, and an inner wall thickness of 1.15 mm were obtained.

【0047】別に、硫酸マグネシウム7水塩の結晶59.
4kgを溶解した水溶液240Lに上記成形体を15分
間浸漬した後、引き上げた。次いで、ハニカム成形体に
通風して、過剰に付着している上記水溶液を吹き払い、
110℃で3時間乾燥した後、400℃で3時間焼成し
て、酸化チタン−シリカ複合酸化物100重量部に対し
て、三酸化タングステン12.43重量部、五酸化バナジ
ウム0.65重量部及び硫酸マグネシウム4.55重量部を
担持させてなる成形触媒(ハニカム触媒)Dを得た。
Separately, crystals of magnesium sulfate heptahydrate 59.
The molded body was immersed in 240 L of an aqueous solution in which 4 kg was dissolved for 15 minutes and then pulled up. Then, the honeycomb formed body is ventilated to blow off the excessively adhered aqueous solution,
After drying at 110 ° C. for 3 hours, it is baked at 400 ° C. for 3 hours to give 100 parts by weight of titanium oxide-silica composite oxide, 12.43 parts by weight of tungsten trioxide, 0.65 parts by weight of vanadium pentoxide, and A molded catalyst (honeycomb catalyst) D supporting 4.55 parts by weight of magnesium sulfate was obtained.

【0048】実施例5 硫酸マグネシウム7水塩の結晶61.5kgを溶解した水
溶液240Lに実施例3で得た成形体Jを15分間浸漬
した後、引き上げた。次いで、ハニカム成形体に通風し
て、過剰に付着している上記水溶液を吹き払い、110
℃で5時間乾燥した後、400℃で3時間焼成して、酸
化チタン100重量部に対して、三酸化タングステン1
2.43重量部及び硫酸マグネシウム4.55重量部を担持
させてなる成形触媒(ハニカム触媒)J1を得た。
Example 5 The molded body J obtained in Example 3 was immersed in 240 L of an aqueous solution in which 61.5 kg of magnesium sulfate heptahydrate crystals was dissolved for 15 minutes and then pulled up. Then, the honeycomb formed body is ventilated to blow off the excessively adhered aqueous solution.
After drying at ℃ for 5 hours, calcination at 400 ℃ for 3 hours, 1 part tungsten trioxide to 100 parts by weight titanium oxide.
A molded catalyst (honeycomb catalyst) J1 supporting 2.43 parts by weight and 4.55 parts by weight of magnesium sulfate was obtained.

【0049】実施例6 第一リン酸アルミニウム水溶液(多木化学(株)製、P
2 5 として33重量%、Al2 3 として8.5重量%
含有し、pHは1.4)を水にて2倍に希釈した。次い
で、実施例1で得た成形触媒Aを、そのガス入口を含む
先端部分を軸方向に端面から5cmの距離にわたって約
5分間浸漬した後、引き上げた。次いで、成形触媒に通
風して、過剰に付着している上記水溶液を吹き払い、1
10℃で3時間乾燥した後、400℃で3時間加熱し
て、成形触媒の先端部分を耐摩耗性とした成形触媒A1
を得た。
Example 6 Aqueous aluminum monophosphate solution (manufactured by Taki Chemical Co., Ltd., P
33% by weight as 2 O 5 , 8.5% by weight as Al 2 O 3
Containing, pH 1.4) was diluted 2-fold with water. Next, the molded catalyst A obtained in Example 1 was immersed in the tip portion including the gas inlet in the axial direction over a distance of 5 cm from the end surface for about 5 minutes, and then pulled up. Then, the molded catalyst is ventilated to blow off the excessively adhered aqueous solution,
After being dried at 10 ° C. for 3 hours, it is heated at 400 ° C. for 3 hours so that the tip portion of the molded catalyst has abrasion resistance.
I got

【0050】実施例7 実施例6において、成形触媒Aに代えて、実施例で得た
成形触媒Cを用いた以外は、実施例6と同様にして、そ
のガス入口を含む先端部分を軸方向に端面から5cmの
距離にわたって約5分間浸漬した後、引き上げ、次い
で、成形触媒に通風して、過剰に付着している上記水溶
液を吹き払い、110℃で3時間乾燥した後、400℃
で3時間加熱して、成形触媒の先端部分を耐摩耗性とし
た成形触媒C1を得た。
Example 7 In the same manner as in Example 6, except that the molded catalyst C obtained in Example was used in place of the molded catalyst A in Example 6, the tip portion including the gas inlet was axially moved. After being soaked for about 5 minutes from the end surface for about 5 minutes, then pulled up, and then blown over the formed catalyst to blow off the excessively adhered aqueous solution, and dried at 110 ° C. for 3 hours, and then 400 ° C.
By heating for 3 hours, a molded catalyst C1 having abrasion resistance at the tip of the molded catalyst was obtained.

【0051】実施例8 実施例1、2、3、4及び5にて得た触媒A、B、C、
D及びJ1をそれぞれ、断面45mm×45mm、長さ
100mmに裁断し、これを触媒反応に充填した。摩耗
材としてケイ砂(平均粒子径40μm)を濃度70g/
3 にて含むガスを大気圧下、20℃で成形触媒断面当
り、40m/秒の流速にて30分間、成形触媒に通過さ
せて、その間の成形触媒の摩耗量から、摩耗強度を求め
た。試験結果を表1に示す。摩耗強度は、 〔(W0 −W)/W0 〕×100(%) で与えられる。ここに、W0 は摩耗試験前の成形触媒の
重量、Wは摩耗試験後の成形触媒の重量であり、摩耗試
験前後の成形触媒の重量は、それぞれ110℃で5時間
加熱乾燥させた後、測定した重量である。
Example 8 Catalysts A, B, C obtained in Examples 1, 2, 3, 4 and 5
Each of D and J1 was cut into a cross section of 45 mm × 45 mm and a length of 100 mm, and this was filled in the catalytic reaction. Concentration of silica sand (average particle size 40 μm) as abrasion material 70 g /
The gas containing m 3 was passed through the molded catalyst at a flow rate of 40 m / sec for 30 minutes per cross-section of the molded catalyst at 20 ° C. under atmospheric pressure, and the wear strength was obtained from the amount of wear of the molded catalyst during that time. . Table 1 shows the test results. The wear strength is given by [(W 0 −W) / W 0 ] × 100 (%). Here, W 0 is the weight of the formed catalyst before the abrasion test, W is the weight of the formed catalyst after the abrasion test, and the weight of the formed catalyst before and after the abrasion test is respectively after heating and drying at 110 ° C. for 5 hours, It is the measured weight.

【0052】実施例9 実施例1、2、3及び4で得た触媒A、B、C及びDを
触媒反応器に充填して、石炭を燃料とする燃焼排ガスの
流通下、8000時間にわたって、脱硝処理を行なっ
た。上記燃焼排ガスの性状及び脱硝処理条件は次のとお
りである。脱硝処理前後の触媒活性を表1に示す。 (燃焼排ガスの性状) ダスト濃度:15g/Nm3 硫黄酸化物濃度:1640ppm 窒素酸化物濃度:320ppm 酸素濃度:4.2容量% (脱硝処理条件) 排ガス温度:340℃ ガス流速:2.55Nm/秒 空間速度(SV):4540hr-1 アンモニア/窒素酸化物モル比:1.0
Example 9 The catalysts A, B, C and D obtained in Examples 1, 2, 3 and 4 were charged in a catalytic reactor, and 8000 hours were passed under the flow of coal-burned combustion exhaust gas. A denitration process was performed. The properties of the combustion exhaust gas and the denitration treatment conditions are as follows. Table 1 shows the catalytic activity before and after the denitration treatment. (Properties of combustion exhaust gas) Dust concentration: 15 g / Nm 3 Sulfur oxide concentration: 1640 ppm Nitrogen oxide concentration: 320 ppm Oxygen concentration: 4.2% by volume (Denitration treatment condition) Exhaust gas temperature: 340 ° C. Gas flow rate: 2.55 Nm / Second space velocity (SV): 4540 hr -1 Ammonia / nitrogen oxide molar ratio: 1.0

【0053】更に、上述したようにして、燃焼排ガスの
脱硝処理を行なった成形触媒の先端部分の内壁(貫通孔
壁)厚さの変化と成形触媒のガス流れ方向の全長の1/
2の位置における内壁厚さの変化を調べた。その結果を
表1に示す。成形触媒の先端部分の内壁(貫通孔壁)厚
さの変化は括弧内に示す。
Further, as described above, the change in the thickness of the inner wall (through-hole wall) of the front end portion of the molded catalyst subjected to the denitration treatment of the combustion exhaust gas and 1 / l of the total length of the molded catalyst in the gas flow direction.
The change in the inner wall thickness at position 2 was investigated. Table 1 shows the results. The change in the thickness of the inner wall (through hole wall) at the tip of the shaped catalyst is shown in parentheses.

【0054】実施例10 実施例5で得た触媒J1を触媒反応器に充填して、石炭
を燃料とする燃焼排ガスの流通下、8000時間にわた
って、脱硝処理を行なった。上記燃焼排ガスの性状及び
脱硝処理条件は次のとおりである。脱硝処理前後の触媒
活性を表1に示す。 (燃焼排ガスの性状) ダスト濃度:22g/Nm3 硫黄酸化物濃度:890ppm 窒素酸化物濃度:260ppm 酸素濃度:4.0容量% (脱硝処理条件) 排ガス温度:450℃ ガス流速:2.11Nm/秒 空間速度(SV):3560hr-1 アンモニア/窒素酸化物モル比:1.0
Example 10 The catalyst J1 obtained in Example 5 was filled in a catalytic reactor and subjected to denitration treatment for 8000 hours under the flow of combustion exhaust gas using coal as a fuel. The properties of the combustion exhaust gas and the denitration treatment conditions are as follows. Table 1 shows the catalytic activity before and after the denitration treatment. (Properties of combustion exhaust gas) Dust concentration: 22 g / Nm 3 Sulfur oxide concentration: 890 ppm Nitrogen oxide concentration: 260 ppm Oxygen concentration: 4.0% by volume (Denitration treatment condition) Exhaust gas temperature: 450 ° C. Gas flow rate: 2.11 Nm / Second space velocity (SV): 3560 hr −1 Ammonia / nitrogen oxide molar ratio: 1.0

【0055】更に、上述したようにして、燃焼排ガスの
脱硝処理を行なった成形触媒の先端部分の内壁(貫通孔
壁)厚さの変化と成形触媒のガス流れ方向の全長の1/
2の位置における内壁厚さの変化を調べた。その結果を
表1に示す。成形触媒の先端部分の内壁(貫通孔壁)厚
さの変化は括弧内に示す。
Further, as described above, the change in the thickness of the inner wall (through-hole wall) of the tip portion of the shaped catalyst after denitration of the combustion exhaust gas and 1 / l of the total length of the shaped catalyst in the gas flow direction.
The change in the inner wall thickness at position 2 was investigated. Table 1 shows the results. The change in the thickness of the inner wall (through hole wall) at the tip of the shaped catalyst is shown in parentheses.

【0056】実施例11実施例6及び7で得られた触媒
A1及びC1をそれぞれ触媒反応器において成形触媒に
局部的な摩耗が生じる位置に充填した以外は、実施例9
と同じ条件下に、石炭を燃焼とする燃焼排ガスの流通
下、8000時間にわたって、脱硝処理を行なって、成
形触媒の先端部分の内壁(貫通孔壁)厚さの変化と成形
触媒のガス流れ方向の全長の1/2の位置における内壁
厚さの変化を調べた。結果を表2に示す。成形触媒の先
端部分の内壁(貫通孔壁)厚さの変化は括弧内に示す。
Example 11 Example 9 was repeated except that the catalysts A1 and C1 obtained in Examples 6 and 7 were charged in the catalytic reactor at the positions where the molded catalyst was locally worn.
Under the same conditions as above, under the flow of combustion exhaust gas that burns coal, denitration treatment was performed for 8000 hours to change the thickness of the inner wall (through hole wall) of the tip portion of the formed catalyst and the gas flow direction of the formed catalyst. The change in the thickness of the inner wall was examined at a position of 1/2 of the total length. Table 2 shows the results. The change in the thickness of the inner wall (through hole wall) at the tip of the shaped catalyst is shown in parentheses.

【0057】比較例1 実施例1による成形体Iの調製を比較例1とする。即
ち、成形体Iは、酸化チタン100重量部に対して、三
酸化タングステン12.43重量部と五酸化バナジウム0.
65重量部とからなる。
Comparative Example 1 The preparation of the molded article I according to Example 1 is referred to as Comparative Example 1. That is, the molded product I was obtained by adding 12.43 parts by weight of tungsten trioxide and 0.1% of vanadium pentoxide to 100 parts by weight of titanium oxide.
65 parts by weight.

【0058】比較例2 硫酸マグネシウム7水塩の結晶3.4kgを溶解した水溶
液240Lに上記成形体Iを15分間浸漬した後、引き
上げた。次いで、成形体に通風して、過剰に付着してい
る上記溶液を吹き払い、110℃で3時間乾燥した後、
400℃で3時間焼成して、酸化チタン100重量部に
対して、三酸化タングステン12.42重量部、五酸化バ
ナジウム0.65重量部及び硫酸マグネシウム0.25重量
部を担持してなる成形触媒Eを得た。
Comparative Example 2 The above molded article I was immersed in 240 L of an aqueous solution in which 3.4 kg of magnesium sulfate heptahydrate crystals were dissolved for 15 minutes and then pulled up. Then, the molded body is ventilated to blow off the excessively adhered solution and dried at 110 ° C. for 3 hours.
Molded catalyst prepared by calcining at 400 ° C. for 3 hours and supporting 100 parts by weight of titanium oxide, 12.42 parts by weight of tungsten trioxide, 0.65 part by weight of vanadium pentoxide and 0.25 part by weight of magnesium sulfate. I got E.

【0059】比較例3 硫酸マグネシウム7水塩の結晶89kgを溶解した水溶
液240Lに前記成形体Iを15分間浸漬した後、引き
上げた。次いで、触媒に通風して、過剰に付着している
上記溶液を吹き払い、110℃で3時間乾燥した後、4
00℃で3時間焼成して、酸化チタン100重量部に対
して、三酸化タングステン12.42重量部、五酸化バナ
ジウム0.65重量部及び硫酸マグネシウム6.6重量部を
担持してなる成形触媒Fを得た。
Comparative Example 3 The molding I was immersed in 240 L of an aqueous solution in which 89 kg of magnesium sulfate heptahydrate crystals were dissolved for 15 minutes and then pulled up. Then, the catalyst is ventilated to blow off the excessively adhered solution and dried at 110 ° C. for 3 hours, and then 4
Molded catalyst prepared by calcining at 00 ° C for 3 hours and supporting 100 parts by weight of titanium oxide, 12.42 parts by weight of tungsten trioxide, 0.65 parts by weight of vanadium pentoxide and 6.6 parts by weight of magnesium sulfate. I got F.

【0060】比較例4 実施例8において、触媒として、比較例1で得られた成
形体I、比較例2及び3で得られた成形触媒E及びFを
それぞれ用いた以外は、実施例8と同じ条件下に、成形
体又は成形触媒の摩耗試験を行なった。結果を表1に示
す。
Comparative Example 4 As in Example 8, except that the molded article I obtained in Comparative Example 1 and the molded catalysts E and F obtained in Comparative Examples 2 and 3 were used as the catalysts in Example 8, respectively. Under the same conditions, the wear test of the molded body or molded catalyst was performed. The results are shown in Table 1.

【0061】比較例5 実施例9において、触媒として、比較例1で得られた成
形体I、比較例2及び3で得られた成形触媒E及びFを
それぞれ用いた以外は、実施例9と同じ条件下に、燃焼
排ガスの脱硝試験を行なって、触媒の触媒活性を試験し
た。結果を表1に示す。更に、上述したようにして、燃
焼排ガスの脱硝処理を行なった成形触媒の先端部分の内
壁(貫通孔壁)の壁厚さの変化と成形触媒のガス流れ方
向の全長の1/2の位置における内壁の壁厚さの変化を
調べた。その結果を表1に示す。成形触媒の先端部分の
内壁(貫通孔壁)厚さの変化は括弧内に示す。
Comparative Example 5 As in Example 9, except that the molded article I obtained in Comparative Example 1 and the molded catalysts E and F obtained in Comparative Examples 2 and 3 were used as the catalysts, respectively. Under the same conditions, a flue gas denitration test was performed to test the catalytic activity of the catalyst. The results are shown in Table 1. Further, as described above, the change in the wall thickness of the inner wall (through-hole wall) of the tip portion of the molded catalyst that has been subjected to the denitration treatment of the combustion exhaust gas and the position of 1/2 of the total length of the molded catalyst in the gas flow direction. The change in the wall thickness of the inner wall was investigated. Table 1 shows the results. The change in the thickness of the inner wall (through hole wall) at the tip of the shaped catalyst is shown in parentheses.

【0062】比較例6 実施例11において、触媒A1及びC1に代えて、比較
例1得られた成形体I、比較例2及び3で得られた成形
触媒E及びFをそれぞれ用いた以外は、実施例11と同
じ条件下に、触媒反応器において成形触媒に局部的な摩
耗が生じる位置に充填した以外は、実施例9と同じ条件
下に、石炭を燃焼とする燃焼排ガスの流通下、8000
時間にわたって、脱硝処理を行なった。試験結果を表2
に示す。成形触媒の先端部分の内壁(貫通孔壁)厚さの
変化は括弧内に示す。
Comparative Example 6 In Example 11, the catalysts A1 and C1 were replaced by the molded article I obtained in Comparative Example 1 and the molded catalysts E and F obtained in Comparative Examples 2 and 3, respectively. Under the same conditions as in Example 11, under the same conditions as in Example 9, except that the molded catalyst was charged in a position where localized wear was generated in the catalytic reactor, under the flow of combustion exhaust gas in which coal was burned, 8000
A denitration treatment was performed over time. Table 2 shows test results
Shown in The change in the thickness of the inner wall (through hole wall) at the tip of the shaped catalyst is shown in parentheses.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】本発明によれば、所定の触媒成分からなる
成形体に硫酸マグネシウム水溶液を含浸させ、加熱焼成
して、硫酸マグネシウムを所定の範囲で担持させること
によって、触媒活性を損なうことなく、ダストによる摩
耗に対する強度を成形触媒に付与することができ、かく
して、排ガスを長期間にわたって、脱硝処理を行なって
も、触媒活性の低下は少なく、また、成形触媒の内壁厚
さの摩耗も殆ど生じていない。
According to the present invention, a molded body made of a predetermined catalyst component is impregnated with an aqueous solution of magnesium sulfate and heated and baked to support magnesium sulfate in a predetermined range, so that the catalyst activity is not impaired and dust is produced. It is possible to impart strength to the formed catalyst to abrasion, and thus even if exhaust gas is subjected to denitration treatment for a long period of time, there is little deterioration in catalyst activity, and abrasion of the inner wall thickness of the formed catalyst is almost generated. Absent.

【0066】これに対して、比較例1、2及び4によれ
ば、触媒活性は、長期間にわたる脱硝処理においても、
低下は少ないが、しかし、ハニカム触媒の内壁厚さが著
しく摩耗しており、長期間の使用には耐えない。更に、
比較例3及び4によれば、ハニカム触媒の内壁厚さの摩
耗は生じていないが、触媒の初期触媒活性が低く、ま
た、触媒活性の低下も大きく、同様に、長期間の使用に
耐えない。
On the other hand, according to Comparative Examples 1, 2 and 4, the catalytic activity was high even in the denitration treatment for a long period of time.
Although the decrease is small, however, the thickness of the inner wall of the honeycomb catalyst is significantly worn, and it cannot withstand long-term use. Furthermore,
According to Comparative Examples 3 and 4, although the inner wall thickness of the honeycomb catalyst is not abraded, the initial catalyst activity of the catalyst is low, and the catalyst activity is greatly reduced, and similarly, it cannot withstand long-term use. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出本 昌則 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 飯田 耕三 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 力丸 浩昭 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社内 (72)発明者 馬場 敏勝 大阪府泉大津市臨海町1丁目18番地 堺化 学工業株式会社内 (72)発明者 吉川 嘉之 大阪府泉大津市臨海町1丁目18番地 堺化 学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masanori Demoto 1-1, Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor, Kozo Iida 4-chome, Kannon-shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima No. 22 Mitsubishi Heavy Industries, Ltd. Hiroshima Research Institute (72) Inventor Hiroaki Rikimaru 5-1, Ebishima-cho, Sakai City, Osaka Prefecture Sakai Chemical Industry Co., Ltd. (72) Inventor, Toshikatsu Baba 1-1-18, Rinkai-cho, Izumiotsu-shi, Osaka Prefecture Sakai Kagaku Kogyo Co., Ltd. (72) Inventor Yoshiyuki Yoshikawa 1-18 Rinkai-cho, Izumiotsu City, Osaka Prefecture Sakai Kagaku Kogyo Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】(a) 酸化チタン又は酸化チタン−シリカ複
合酸化物100重量部に対して、 (b) 三酸化タングステン5〜20重量部と、 (c) 五酸化バナジウム0〜2.0重量部とを含む多孔質成
形体に硫酸マグネシウム水溶液を含浸させ、加熱焼成し
て、硫酸マグネシウムを0.5〜5.5重量部の範囲で上記
多孔質成形体に担持させてなることを特徴とする排ガス
に含まれる窒素酸化物を還元除去するための成形触媒。
Claims: 1. To (a) 100 parts by weight of titanium oxide or titanium oxide-silica composite oxide, (b) 5 to 20 parts by weight of tungsten trioxide and (c) 0 to 2.0 parts by weight of vanadium pentoxide. Characterized in that it is impregnated with a magnesium sulfate aqueous solution into a porous molded body including a part and is heated and baked to support magnesium sulfate in the range of 0.5 to 5.5 parts by weight on the porous molded body. Molded catalyst for reducing and removing nitrogen oxides contained in exhaust gas.
【請求項2】排ガスに含まれる窒素酸化物を還元除去す
るために、排ガスの入口と出口とを備えた触媒反応器に
充填して用いる成形触媒であって、上記入口から上記触
媒反応器に導入される排ガスの流れ方向に少なくとも1
つの貫通孔を有する請求項1に記載の成形触媒。
2. A molded catalyst which is used by filling a catalytic reactor provided with an inlet and an outlet of exhaust gas for reducing and removing nitrogen oxides contained in the exhaust gas, wherein the catalyst is supplied from the inlet to the catalytic reactor. At least 1 in the flow direction of the introduced exhaust gas
The molded catalyst according to claim 1, which has one through hole.
【請求項3】排ガスの入口を含む成形触媒の先端部分を
耐摩耗性にした請求項2に記載の成形触媒。
3. The molded catalyst according to claim 2, wherein the tip portion of the molded catalyst including the exhaust gas inlet is made wear resistant.
【請求項4】還元剤の存在下に窒素酸化物を含む排ガス
を請求項1、2又は3のいずれかに記載の成形触媒に接
触させる排ガスに含まれる窒素酸化物を還元除去する方
法。
4. A method for reducing and removing nitrogen oxides contained in an exhaust gas, which comprises contacting the exhaust gas containing nitrogen oxides with the molded catalyst according to claim 1, 2 or 3 in the presence of a reducing agent.
【請求項5】(a) 酸化チタン又は酸化チタン−シリカ複
合酸化物100重量部に対して、 (b) 三酸化タングステン5〜20重量部と、 (c) 五酸化バナジウム0〜2.0重量部とを含む多孔質成
形体に硫酸マグネシウム水溶液を含浸させ、加熱焼成し
て、硫酸マグネシウムを0.5〜5.5重量部の範囲で上記
多孔質成形体に担持させることを特徴とする排ガスに含
まれる窒素酸化物を還元除去するための成形触媒の製造
方法。
5. (a) 5 to 20 parts by weight of tungsten trioxide and (c) 0 to 2.0 parts by weight of vanadium pentoxide with respect to 100 parts by weight of titanium oxide or titanium oxide-silica composite oxide. An exhaust gas characterized by impregnating an aqueous magnesium sulfate solution into a porous molded body containing a part and heat-calcined to support magnesium sulfate in the range of 0.5 to 5.5 parts by weight on the porous molded body. A method for producing a molded catalyst for reducing and removing nitrogen oxides contained in.
【請求項6】排ガスに含まれる窒素酸化物を還元除去す
るために、排ガスの入口と出口とを備えた触媒反応器に
充填して用いる成形触媒の製造方法であって、上記入口
から上記触媒反応器に導入される排ガスの流れ方向に少
なくとも1つの貫通孔を有する請求項5に記載の成形触
媒の製造方法。
6. A method for producing a shaped catalyst, which is used by filling a catalytic reactor provided with an inlet and an outlet of exhaust gas to reduce and remove nitrogen oxides contained in the exhaust gas, the catalyst being supplied from the inlet to the catalyst. The method for producing a molded catalyst according to claim 5, wherein at least one through hole is provided in the flow direction of the exhaust gas introduced into the reactor.
【請求項7】排ガスの入口を含む成形触媒の先端部分を
耐摩耗性にする請求項6に記載の成形触媒の製造方法。
7. The method for producing a molded catalyst according to claim 6, wherein the front end portion of the molded catalyst including the exhaust gas inlet is made wear-resistant.
JP9654896A 1996-04-18 1996-04-18 Catalyst and method for reducing and removing nitrogen oxides contained in exhaust gas Expired - Lifetime JP3595622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9654896A JP3595622B2 (en) 1996-04-18 1996-04-18 Catalyst and method for reducing and removing nitrogen oxides contained in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9654896A JP3595622B2 (en) 1996-04-18 1996-04-18 Catalyst and method for reducing and removing nitrogen oxides contained in exhaust gas

Publications (2)

Publication Number Publication Date
JPH09276659A true JPH09276659A (en) 1997-10-28
JP3595622B2 JP3595622B2 (en) 2004-12-02

Family

ID=14168151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9654896A Expired - Lifetime JP3595622B2 (en) 1996-04-18 1996-04-18 Catalyst and method for reducing and removing nitrogen oxides contained in exhaust gas

Country Status (1)

Country Link
JP (1) JP3595622B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
KR100515907B1 (en) * 2002-06-27 2005-09-20 재단법인 한국환경기술진흥원 Catalyst for removing dioxin and/or nitrogen oxide, and preparation method thereof
JP2006231332A (en) * 2000-01-20 2006-09-07 Nippon Shokubai Co Ltd Abrasion resistant catalyst molded body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096154A (en) * 1999-09-29 2001-04-10 Yamada Sangyo Kk Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
JP2006231332A (en) * 2000-01-20 2006-09-07 Nippon Shokubai Co Ltd Abrasion resistant catalyst molded body
KR100515907B1 (en) * 2002-06-27 2005-09-20 재단법인 한국환경기술진흥원 Catalyst for removing dioxin and/or nitrogen oxide, and preparation method thereof

Also Published As

Publication number Publication date
JP3595622B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
AU602270B2 (en) Catalyst for the selective reduction of nitrogen oxides with amnonia
US4294806A (en) Method for preventing the wear of a monolithic catalyst by dusts
US5212140A (en) Catalyst for decomposing ozone
RU2058814C1 (en) Catalyst for selective nitrogen oxides reduction with ammonia and a method of its preparing
KR100781726B1 (en) Method for manufacturing de-nox scr coating catalyst using porous ceramic substrate
RU2393014C2 (en) Crust catalyst specifically designed for oxidising methanol to formaldehyde and method of preparing said catalyst
JPH02194839A (en) Silver catalyst for producing ethylene oxide and production thereof
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
JP2008512234A (en) Catalyst support substrate coated with a washcoat comprising fibrous material
JPH11507007A (en) Catalyst carrier
KR20090080268A (en) Fabrication Method of Zeolite Honeycomb type Catalyst for Reducing Nitrogen Oxide
KR100739409B1 (en) Silicon carbide-based catalytic body and process for producing the same
KR101362606B1 (en) NOx REMOVAL CATALYST FOR HIGH-TEMPERATURE FLUE GAS, MANUFACTURING METHOD THEREOF, AND NOx REMOVAL METHOD FOR HIGH-TEMPERATURE FLUE GAS
JPH0242536B2 (en)
RU1837957C (en) Catalyst for treatment of sulfur-containing gases
JPS63185448A (en) Catalyst and method for removing nitrogen oxide in exhaust gas
CN114011400A (en) Preparation method of acid system waste incineration SCR denitration catalyst and prepared denitration catalyst
JPS63274455A (en) Plate-shaped catalyst for removing nitrogen oxide from exhaust gas and its production
JPH09276659A (en) Catalyst for removal of nitrogen oxide contained in exhaust gas by reduction and manufacture of catalyst
KR101187758B1 (en) METHOD FOR MANUFACTURING DE-NOx SCR CATALYST USING CALCIUM SULFATE HEMIHYDRATE
JPH0480742B2 (en)
JP6157916B2 (en) NOx removal catalyst and method for producing the same
JPS603859B2 (en) catalyst molded product
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term