JPH09274921A - Fuel electrode for solid electrolyte fuel cell - Google Patents

Fuel electrode for solid electrolyte fuel cell

Info

Publication number
JPH09274921A
JPH09274921A JP8106287A JP10628796A JPH09274921A JP H09274921 A JPH09274921 A JP H09274921A JP 8106287 A JP8106287 A JP 8106287A JP 10628796 A JP10628796 A JP 10628796A JP H09274921 A JPH09274921 A JP H09274921A
Authority
JP
Japan
Prior art keywords
fuel electrode
electrode
solid electrolyte
nickel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8106287A
Other languages
Japanese (ja)
Other versions
JP3599894B2 (en
Inventor
Masakatsu Nagata
雅克 永田
Tsutomu Iwazawa
力 岩澤
Mikiyuki Ono
幹幸 小野
Takenori Nakajima
武憲 中島
Satoru Yamaoka
悟 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP10628796A priority Critical patent/JP3599894B2/en
Publication of JPH09274921A publication Critical patent/JPH09274921A/en
Application granted granted Critical
Publication of JP3599894B2 publication Critical patent/JP3599894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To keep the characteristics of the fuel electrode in a good condition for a solid electrolyte fuel cell for a long time. SOLUTION: This fuel electrode comprises a fuel electrode and an air electrode with solid electrolyte therebetween of primarily zirconia. And more than one kind among MgO, CaO, SrO, Y2 O3 , La2 O3 , Sc2 O3 , Al2 O3 , or tungsten powder or titanium powder is added to the material powder including at least nickel or nickel oxide, to make the base material for the film to be formed on the surface of solid electrolyte. Since high melting point powder is included in a condition of high dispersion, the sintering and coagulation of nickel is suppressed or prevented to keep the characteristics as the fuel cell electrode in a good condition for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、酸素イオン透過
性のある固体電解質を介して酸化・還元反応を生じさせ
て起電力を得る固体電解質型燃料電池に関し、特にその
燃料電極を形成するための材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell for producing an electromotive force by causing an oxidation / reduction reaction through a solid electrolyte having oxygen ion permeability, and particularly for forming a fuel electrode thereof. It is about materials.

【0002】[0002]

【従来の技術】この種の燃料電池は、図6に模式的に示
すように、薄膜状の固体電解質1を挟んだ両側に、多孔
質膜である燃料電極2と空気電極3とを形成したもので
あり、燃料電極2側を流れる燃料ガス(例えば水素ガ
ス)と空気電極3側を流れる酸素を含む気体(例えば空
気)中の酸素とが、固体電解質1を介して電気化学的に
反応することにより、各電極2,3を介して起電力を得
ることができる。
2. Description of the Related Art In this type of fuel cell, as schematically shown in FIG. 6, a fuel electrode 2 and an air electrode 3, which are porous membranes, are formed on both sides sandwiching a thin film solid electrolyte 1. The fuel gas (eg hydrogen gas) flowing on the fuel electrode 2 side and the oxygen in the gas containing oxygen (eg air) flowing on the air electrode 3 side electrochemically react with each other via the solid electrolyte 1. As a result, an electromotive force can be obtained via the electrodes 2 and 3.

【0003】すなわち空気は空気電極3の内部を固体電
解質1の表面にまで拡散し、その空気に含まれる酸素が
イオン化して固体電解質1の内部を酸素イオンの濃度差
に起因して、燃料電極2側に移動する。また燃料電極2
側では、水素ガスが燃料電極2の内部を固体電解質1の
表面にまで拡散し、ここで固体電解質1を通って移動し
てきた酸素と反応する。このような水素と酸素との電気
化学的な反応により生じる起電力が各電極2,3を介し
て外部に取り出される。
That is, air diffuses inside the air electrode 3 to the surface of the solid electrolyte 1, and oxygen contained in the air is ionized, and the inside of the solid electrolyte 1 is caused by a difference in concentration of oxygen ions. Move to side 2. Also fuel electrode 2
On the side, hydrogen gas diffuses inside the fuel electrode 2 to the surface of the solid electrolyte 1 where it reacts with oxygen that has moved through the solid electrolyte 1. The electromotive force generated by such an electrochemical reaction between hydrogen and oxygen is extracted to the outside via the electrodes 2 and 3.

【0004】上記の反応は、固体電解質1の活性度が優
れる1000℃程度の高温度で行われるので、固体電解
質1としては、酸素イオン透過性に優れることは勿論、
高温安定性に優れ、かつ導電性がないなどの特性が要求
される。そのため、従来、一般には、イットリアやカル
シアで安定化したジルコニア(YSZあるいはCSZ)
が固体電解質として使用されている。
Since the above reaction is carried out at a high temperature of about 1000 ° C. at which the activity of the solid electrolyte 1 is excellent, the solid electrolyte 1 is, of course, excellent in oxygen ion permeability.
Properties such as excellent stability at high temperature and lack of conductivity are required. Therefore, conventionally, generally, zirconia stabilized by yttria or calcia (YSZ or CSZ)
Is used as a solid electrolyte.

【0005】また、空気電極3は、強い酸化性雰囲気に
置かれるから、電子伝導度および酸素イオン伝導度が高
くかつ分極を生じにくいこと、あるいは固体電解質1と
の熱膨張率の差が小さいことなどのほかに、耐酸化性に
優れていることが要求される。そこで従来では、酸素電
極3をペロブスカイト型ランタン系複合酸化物によって
形成している。
Further, since the air electrode 3 is placed in a strong oxidizing atmosphere, it has high electronic conductivity and oxygen ion conductivity and hardly causes polarization, or has a small difference in thermal expansion coefficient from the solid electrolyte 1. In addition to the above, it is required to have excellent oxidation resistance. Therefore, conventionally, the oxygen electrode 3 is formed of a perovskite-type lanthanum-based composite oxide.

【0006】さらに、燃料電極2は、起電力を外部に取
り出すための電極であるから、電子伝導度が高くかつ分
極を生じにくいことのほかに、高温の還元雰囲気に曝さ
れるから、高温での安定性が要求され、また固体電解質
1との間の熱応力やこれに起因する剥離を防止するため
に、熱膨張率が固体電解質1の熱膨張率に近いことが望
まれる。そこで、これらの諸要求を満たすために、現
在、ニッケル(Ni)や酸化ニッケル(NiO)のサー
メットや、重量割合にして4:6〜6:4のNi/YS
ZやNiO/YSZのサーメットを燃料電極として採用
している。ここで、NiOは高温の還元雰囲気に曝され
てNiになることにより、導電性を有するようになって
いる。
Further, since the fuel electrode 2 is an electrode for taking out an electromotive force to the outside, it has a high electron conductivity and hardly causes polarization, and is exposed to a high temperature reducing atmosphere. Stability is required, and in order to prevent thermal stress from the solid electrolyte 1 and peeling due to this, it is desirable that the coefficient of thermal expansion be close to that of the solid electrolyte 1. Therefore, in order to meet these requirements, at present, a cermet of nickel (Ni) or nickel oxide (NiO), or a weight ratio of Ni / YS of 4: 6 to 6: 4.
Z or NiO / YSZ cermet is used as the fuel electrode. Here, NiO becomes conductive by being exposed to a high-temperature reducing atmosphere to become Ni.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな固体電解質型燃料電池を長時間高温状態で使用して
いると、燃料電極2に焼結(シンタリング)が進行する
ことにより、Ni(融点約1455℃)が凝集してしま
う。この結果、この燃料電極の多孔質構造が次第に崩壊
して、この燃料電極2の燃料ガス透過性が低下するとと
もに、この燃料電極2の電子伝導性が低下して電極とし
ての活性が失われるようになってしまい、その上、この
燃料電極2の分極抵抗が増大するという様々な問題があ
る。そこで最近では、固体電解質型燃料電池の燃料電極
として求められる条件をより満足させることができる燃
料電極の開発が望まれている。
However, when such a solid oxide fuel cell is used in a high temperature state for a long time, the sintering (sintering) of the fuel electrode 2 progresses, resulting in Ni (melting point). (About 1455 ° C.) aggregates. As a result, the porous structure of the fuel electrode is gradually collapsed, the fuel gas permeability of the fuel electrode 2 is lowered, and the electron conductivity of the fuel electrode 2 is lowered to lose its activity as an electrode. In addition, there are various problems that the polarization resistance of the fuel electrode 2 increases. Therefore, recently, there has been a demand for the development of a fuel electrode that can further satisfy the conditions required for a fuel electrode of a solid oxide fuel cell.

【0008】この発明は、上記の要望に応えるべくなさ
れたものであって、固体電解質型燃料電池の燃料電極の
特性を向上させることを目的とするものである。
The present invention has been made to meet the above-mentioned demands, and an object thereof is to improve the characteristics of the fuel electrode of a solid oxide fuel cell.

【0009】[0009]

【課題を解決するための手段およびその作用】請求項1
に記載した発明は、上記の目的を達成するために、ジル
コニアを主体とする固体電解質を挟んで燃料電極と空気
電極とを設けた固体電解質型燃料電池の燃料電極であっ
て、少なくともニッケルもしくは酸化ニッケルを含む材
料粉末に、MgO,CaO,SrO,Y23 ,La2
3 ,Sc23 ,Al23のうちのいずれか一種以
上の酸化物を添加してなる混合粉末材料によって、前記
固体電解質の表面に多孔構造の膜状に構成したことを特
徴とするものである。
Means for Solving the Problems and Their Functions
In order to achieve the above-mentioned object, the invention described in 1 is a fuel electrode of a solid oxide fuel cell in which a fuel electrode and an air electrode are provided with a solid electrolyte mainly composed of zirconia interposed therebetween, and at least nickel or oxide is used. The material powder containing nickel is added to MgO, CaO, SrO, Y 2 O 3 , La 2
It is characterized in that the surface of the solid electrolyte is formed into a film having a porous structure by a mixed powder material obtained by adding one or more oxides of O 3 , Sc 2 O 3 and Al 2 O 3. To do.

【0010】また請求項2に記載した発明は、ジルコニ
アを主体とする固体電解質を挟んで燃料電極と空気電極
とを設けた固体電解質型燃料電池の燃料電極であって、
少なくともニッケルもしくは酸化ニッケルを含む材料粉
末にチタンもしくはタングステンを添加した微粒子材料
を前記固体電解質の表面に付着させ、多孔構造の膜状に
構成したことを特徴とするものである。
The invention according to claim 2 is a fuel electrode for a solid oxide fuel cell in which a fuel electrode and an air electrode are provided with a solid electrolyte mainly composed of zirconia interposed therebetween.
A fine particle material obtained by adding titanium or tungsten to a material powder containing at least nickel or nickel oxide is attached to the surface of the solid electrolyte to form a film having a porous structure.

【0011】さらに請求項3に記載した発明は、ジルコ
ニアを主体とする固体電解質を挟んで燃料電極と空気電
極とを設けた固体電解質型燃料電池の燃料電極であっ
て、チタン粒子もしくはタングステン粒子を主体とする
核の外周に、少なくともニッケルもしくは酸化ニッケル
を含む外層を設けた微粒子材料を前記固体電解質の表面
に付着させ、多孔構造の膜状に構成したことを特徴とす
るものである。
Further, the invention according to claim 3 is a fuel electrode for a solid oxide fuel cell in which a fuel electrode and an air electrode are provided with a solid electrolyte mainly composed of zirconia sandwiched between titanium particles or tungsten particles. It is characterized in that a fine particle material having an outer layer containing at least nickel or nickel oxide provided on the outer periphery of the core as a main body is attached to the surface of the solid electrolyte to form a film having a porous structure.

【0012】したがって、請求項1に記載した発明によ
れば、添加される上記の酸化物(MO系もしくはM2
3 系)の融点が高いため(2000℃以上)、これが混
入された燃料電極の焼結の進行が抑制されて、燃料電極
においてニッケル粒子の凝集が防止される。
Therefore, according to the invention described in claim 1, the above-mentioned oxide (MO-based or M 2 O) added is added.
Since the melting point of ( 3 type) is high (2000 ° C. or higher), the progress of sintering of the fuel electrode mixed with this is suppressed, and the agglomeration of nickel particles is prevented in the fuel electrode.

【0013】また、請求項2に記載した発明によれば、
まずチタンの線膨張率(8.41×10-6/K)は、ニ
ッケルの線膨張率(13.3×10-6/K)より小さ
く、安定化ジルコニアの膨張率に近いため、膨張率の整
合性は高められる。また、チタンの融点は約1680℃
であるため、燃料電極の焼結の進行が抑制され、ニッケ
ル粒子の凝集することを防止する。さらに、チタンの比
抵抗(4.20×10-8Ωm)は、ニッケルの比抵抗
(6.84×10-8Ωm)より小さく、燃料電極中に導
電性物質の割合が増加することにより、燃料電極の導電
性が向上する。同様にタングステンの線膨張率(4.6
0×10-6/K)は、ニッケルの線膨張率より安定化ジ
ルコニアの膨張率に近いため、膨張率の整合性は、従来
の燃料電極すなわちニッケルもしくは酸化ニッケルと安
定化ジルコニアとのサーメットによる電極に比べて高め
られる。また、タングステンは融点が高いため(約34
10℃)、これが混入された燃料電極の焼結の進行が抑
制されて、燃料電極においてニッケル粒子の凝集するこ
とを防止する。さらに、タングステンの比抵抗は5.6
5×10-8Ωmであり、タングステンが混入された燃料
電極は導電性が向上する。
According to the invention described in claim 2,
First, the coefficient of linear expansion of titanium (8.41 × 10 -6 / K) is smaller than the coefficient of linear expansion of nickel (13.3 × 10 -6 / K), which is close to that of stabilized zirconia. The consistency of is enhanced. The melting point of titanium is approximately 1680 ° C.
Therefore, the progress of sintering of the fuel electrode is suppressed and the agglomeration of nickel particles is prevented. Furthermore, the specific resistance of titanium (4.20 × 10 −8 Ωm) is smaller than the specific resistance of nickel (6.84 × 10 −8 Ωm), and the ratio of the conductive substance in the fuel electrode increases, The conductivity of the fuel electrode is improved. Similarly, the coefficient of linear expansion of tungsten (4.6
Since 0 × 10 −6 / K) is closer to the expansion coefficient of stabilized zirconia than the linear expansion coefficient of nickel, the consistency of expansion coefficient depends on the conventional fuel electrode, that is, cermet of nickel or nickel oxide and stabilized zirconia. Elevated compared to electrodes. Also, since tungsten has a high melting point (about 34
(10 ° C.), the progress of sintering of the fuel electrode mixed with this is suppressed, and nickel particles are prevented from aggregating at the fuel electrode. Furthermore, the specific resistance of tungsten is 5.6.
It is 5 × 10 −8 Ωm, and the conductivity of the fuel electrode mixed with tungsten is improved.

【0014】また、請求項3に記載した発明によれば、
チタンもしくはタングステンの表面に少なくともニッケ
ルもしくは酸化ニッケルを配してあるため、チタンとニ
ッケルもしくは酸化ニッケルとの間の膨張率の差、およ
びタングステンと安定化ジルコニアとの間の膨張率の差
は、従来の燃料電極における膨張率の差すなわちニッケ
ルもしくは酸化ニッケルと安定化ジルコニアとの間の膨
張率の差より小さくなり、さらに固体電解質(安定化ジ
ルコニア)の表面に燃料電極を形成する際には、安定化
ジルコニア同士が結合することによって燃料電極が固体
電解質に一体化され、膨張率の整合性がより向上する。
According to the invention described in claim 3,
Since at least nickel or nickel oxide is arranged on the surface of titanium or tungsten, the difference in expansion coefficient between titanium and nickel or nickel oxide and the difference in expansion coefficient between tungsten and stabilized zirconia are The difference in the expansion coefficient of the fuel electrode, that is, the difference in the expansion coefficient between nickel or nickel oxide and the stabilized zirconia, is smaller than that of the solid electrolyte (stabilized zirconia). When the zirconia oxide is bonded to each other, the fuel electrode is integrated with the solid electrolyte, and the matching of the expansion coefficient is further improved.

【0015】[0015]

【発明の実施の形態】つぎに、この発明の実施例を図面
に基づいて説明する。この発明で対象とする燃料電極2
は図6に示す一般的な固体電解質型燃料電池の燃料電極
と同様に、イットリア安定化ジルコニア(YSZ)やカ
ルシア安定化ジルコニア(CSZ)からなる固体電解質
層(膜)の表面に多孔構造の薄膜状に形成される。その
組成は、電極としての電動性を良好に維持し、かつ固体
電解質との熱膨張率の点での整合性を保つためにニッケ
ル(Ni)とジルコニア(YSZもしくはCSZ)とを
主体としており、これらのサーメットが使用されてい
る。なお、原料としてNiに替えて酸化ニッケル(Ni
O)を使用でき、これは燃料電池の運転中に還元されて
Niとなり、電極の電導度を良好にする。さらにこの発
明では、これらに加えて適当量の金属酸化物が添加され
ている。これは、高温状態に長期間曝されることによる
Niのシンタリング(焼結)を防止するためであり、こ
の酸化物の例として、MgO,CaO,SrO,Y2
3 ,La23 ,Sc23 ,Al23 があり、これ
らのうちの少なくともいずれか一種が微粉末として高分
散状態に添加されている。
Next, an embodiment of the present invention will be described with reference to the drawings. Fuel electrode 2 targeted by the present invention
Is a thin film having a porous structure on the surface of a solid electrolyte layer (membrane) made of yttria-stabilized zirconia (YSZ) or calcia-stabilized zirconia (CSZ), similar to the fuel electrode of a general solid oxide fuel cell shown in FIG. Formed into a shape. The composition is mainly composed of nickel (Ni) and zirconia (YSZ or CSZ) in order to maintain good electric performance as an electrode and to maintain consistency in the coefficient of thermal expansion with the solid electrolyte, These cermets are used. Note that nickel oxide (Ni
O) can be used, which is reduced to Ni during operation of the fuel cell, which improves the electrical conductivity of the electrode. Further, in the present invention, an appropriate amount of metal oxide is added to these. This is to prevent sintering (sintering) of Ni due to long-term exposure to a high temperature state, and examples of this oxide include MgO, CaO, SrO, Y 2 O.
3 , La 2 O 3 , Sc 2 O 3 , and Al 2 O 3 , and at least one of them is added as a fine powder in a highly dispersed state.

【0016】この金属酸化物を含有する燃料電極は、種
々の方法で形成することができ、その例を示せば以下の
とおりである。
The fuel electrode containing the metal oxide can be formed by various methods, examples of which are as follows.

【0017】先ずスラリー法について図1を参照して説
明すると、粉末材料として、YSZ粉末とNi 粉末と上
記の金属酸化物粉末との混合材料を用意する。その配合
割合は、一例として、YSZ粉末:50wt%、Ni粉
末:49wt%、金属酸化物粉末:1wt%とし、これに溶
媒および助剤としてテレピネオール(特級)とポリピニ
ルブチラールとを加える。このように調整した材料を撹
拌・混合してスラリーとし、これを固体電解質の表面に
スクリーン印刷(塗布)して所定の厚さに形成する。つ
いで不活性ガス雰囲気で加熱して乾燥および脱脂を行う
とともに、さらに高温に加熱して多孔質の燃料電極とす
る。その場合の加熱・冷却プロフィールを図1に併せて
掲載してあり、一例として、昇温率50℃/hで6時間
加熱して300℃まで温度を上げ、10分間、その温度
に維持した後、200℃/hの昇温率で5時間加熱して
1200℃まで温度を上げ、5時間、その温度に維持し
た後に、200℃の冷却率で常温まで冷却する。
First, the slurry method will be described with reference to FIG. 1. As the powder material, a mixed material of YSZ powder, Ni powder and the above metal oxide powder is prepared. The compounding ratio is, for example, YSZ powder: 50 wt%, Ni powder: 49 wt%, metal oxide powder: 1 wt%, to which terpineol (special grade) and polypinyl butyral are added as a solvent and an auxiliary agent. The materials thus adjusted are stirred and mixed to form a slurry, which is screen-printed (applied) on the surface of the solid electrolyte to form a predetermined thickness. Then, it is heated in an inert gas atmosphere for drying and degreasing, and further heated to a high temperature to form a porous fuel electrode. The heating / cooling profile in that case is also shown in FIG. 1. As an example, after heating at a temperature rising rate of 50 ° C./h for 6 hours to raise the temperature to 300 ° C. and maintaining at that temperature for 10 minutes, After heating for 5 hours at a temperature rising rate of 200 ° C./h to 1200 ° C., maintaining the temperature for 5 hours, and then cooling to room temperature at a cooling rate of 200 ° C.

【0018】また溶射法について図2を参照して説明す
ると、それぞれ粒径を約40μmに調整したYSZ粉末
と、NiもしくはNiO粉末と、前記金属酸化物のいず
れか一種の粉末とを、それぞれ50wt%、49wt%、1
wt%の割合で配合し、これを充分撹拌・混合した後にプ
ラズマ溶射あるいはアーク溶射もしくはフレーム溶射な
どの適宜の方法で固体電解質の表面に溶射して多孔質の
薄膜状電極とする。
The thermal spraying method will be described with reference to FIG. 2. YSZ powder each having a particle size adjusted to about 40 μm, Ni or NiO powder, and 50 wt% of one of the metal oxide powders described above. %, 49 wt%, 1
It is mixed in a proportion of wt%, sufficiently stirred and mixed, and then sprayed on the surface of the solid electrolyte by an appropriate method such as plasma spraying, arc spraying or flame spraying to form a porous thin film electrode.

【0019】さらにスラリー法と電気化学蒸着法(EV
D法)とを組み合わせた方法について図3を参照して説
明すると、NiもしくはNiO粉末98wt%と上記のい
ずれかの金属酸化物2wt%とを、テレピネオール(特
級)とポリビニルブチラールとを溶媒および助剤として
撹拌・混合し、得られたスラリーを固体電解質の表面に
塗布し、不活性ガス雰囲気で仮焼成を行い、その表面に
YSZをEVD法により付着させる。この塗布および仮
焼成ならびにEVD法を繰り返し行って所定厚さの電極
を形成する。
Further, a slurry method and an electrochemical vapor deposition method (EV
A method in which the above method (D method) is combined will be described with reference to FIG. 3. 98 wt% of Ni or NiO powder and 2 wt% of any of the above metal oxides, terpineol (special grade) and polyvinyl butyral are used as a solvent and co-solvent. After stirring and mixing as an agent, the obtained slurry is applied to the surface of the solid electrolyte and calcined in an inert gas atmosphere, and YSZ is attached to the surface by the EVD method. This coating, calcination, and EVD method are repeated to form an electrode having a predetermined thickness.

【0020】つぎにこの発明の効果を確認するために行
った実験での測定結果を記す。先ず比較例としてNiと
YSZとのサーメットからなる厚さ100μmの電極を
固体電解質の表面に形成したものを用意し、その高温状
態でのNiのシンタリングの進行状態を判定するために
1000℃の雰囲気に500時間放置した場合の電気的
抵抗値の増大率を測定した。一方、本発明例として、N
iとYSZとの混合粉末に前述した金属酸化物を添加し
た材料粉末を用いて固体電解質の表面に電極を形成し、
その電極について上記の比較例と同様にして電気的抵抗
値の増大率を測定した。測定結果を図4に示してある。
Next, the measurement results of an experiment conducted to confirm the effect of the present invention will be described. First, as a comparative example, a 100 μm-thick electrode made of a cermet of Ni and YSZ formed on the surface of a solid electrolyte was prepared, and 1000 ° C. was used to determine the progress of sintering of Ni at the high temperature. The rate of increase in the electric resistance value when left in the atmosphere for 500 hours was measured. On the other hand, as an example of the present invention, N
An electrode is formed on the surface of the solid electrolyte by using the material powder obtained by adding the metal oxide described above to the mixed powder of i and YSZ,
The rate of increase of the electrical resistance value of the electrode was measured in the same manner as in the comparative example. The measurement results are shown in FIG.

【0021】この図4に示す測定結果から明らかなよう
に、この発明による燃料電極は、高温雰囲気での電気抵
抗の増大が殆どなく、このことからNiの焼結・凝集の
進行が抑制され、燃料電極としての特性の劣化が少なく
なることが認められた。これは、融点の高い物質が混合
されていることによるものと考えられる。
As is clear from the measurement results shown in FIG. 4, the fuel electrode according to the present invention showed almost no increase in electric resistance in a high temperature atmosphere, which suppressed the progress of sintering and agglomeration of Ni. It was confirmed that the deterioration of the characteristics of the fuel electrode was reduced. It is considered that this is because a substance having a high melting point is mixed.

【0022】この発明の他の実施例をつぎに説明する。
上記の実施例では、NiもしくはNiOの粉末とYSZ
の粉末とからなる混合粉末、あるいはNiもしくはNi
O粉末に、金属酸化物を少量添加することとしたが、こ
の金属酸化物に替えてチタン(Ti)を添加し、これを
原料として燃料電極を形成することができる。このチタ
ンは粒径が数μm〜数十μmの微粉末として添加する以
外に、図5に示すように、チタン微粒子10の表面にN
iおよび/またはYSZの微粉末からなる外層11を形
成した状態で添加され、高分散状態で燃料電極の中に分
布される。またその配合割合は、1%wt〜10wt%程度
が適当である。さらにチタンを添加した場合の電極の形
成方法としては前述したスラリー法、溶射法、スラリー
法とEVD法との組合わせのいずれかを採用できる。
Another embodiment of the present invention will be described below.
In the above embodiment, Ni or NiO powder and YSZ
Mixed powder, or Ni or Ni
Although a small amount of metal oxide is added to the O powder, titanium (Ti) may be added instead of this metal oxide, and a fuel electrode can be formed using this as a raw material. This titanium is added as a fine powder having a particle diameter of several μm to several tens of μm, and as shown in FIG.
It is added in a state where the outer layer 11 made of fine powder of i and / or YSZ is formed, and distributed in the fuel electrode in a highly dispersed state. Further, it is suitable that the compounding ratio is about 1% to 10% by weight. Further, as a method of forming the electrode when titanium is added, any of the above-mentioned slurry method, thermal spraying method, and a combination of the slurry method and the EVD method can be adopted.

【0023】チタンを高分散状態に配合した燃料電極に
ついて上述した実験例と同様にして高温雰囲気での電気
抵抗の増大率を測定したところ、上記の実施例とほぼ同
様に1%程度の増大率にとどまり、Niの焼結やそれに
起因する特性の低下などが抑制されることが認められ
た。またチタンを添加した燃料電極は、チタンとNiと
の接合およびチタンとYSZとの接合およびYSZ同士
の接合によって形成されるため、膨張率の整合性が向上
することにより、熱負荷による燃料電極の剥離現象等が
防止されるとともに導電率も向上する。
The increase rate of the electric resistance in a high temperature atmosphere was measured in the same manner as in the above-mentioned experimental example for the fuel electrode in which titanium was mixed in a highly dispersed state. It was confirmed that the sintering of Ni and the deterioration of the characteristics due to it were suppressed. Further, since the fuel electrode containing titanium is formed by joining titanium and Ni, joining titanium and YSZ, and joining YSZ together, the matching of the expansion coefficient is improved, so that the fuel electrode of The peeling phenomenon is prevented and the conductivity is improved.

【0024】つぎに、この発明のさらに他の実施例を説
明する。上記の実施例では、NiもしくはNiOの粉末
とYSZの粉末とからなる混合粉末、あるいはNiもし
くはNiO粉末に、タングステン(W)を添加し、これ
を原料として燃料電極を形成することもできる。このタ
ングステンは粒径が数μm〜数十μmの微粉末として添
加する以外に、図5に示すように、タングステン微粒子
10の表面にNiおよび/またはYSZの微粉末からな
る外層11を形成した状態で添加され、高分散状態で燃
料電極の中に分布される。またその配合割合は、1wt%
〜10wt%程度が適当である。さらにタングステンを添
加した場合の電極の形成方法としては前述したスラリー
法、溶射法、スラリー法とEVD法との組合わせのいず
れかを採用できる。
Next, still another embodiment of the present invention will be described. In the above embodiment, tungsten (W) may be added to a mixed powder of Ni or NiO powder and YSZ powder, or Ni or NiO powder to form a fuel electrode using this as a raw material. In addition to the fine powder having a particle size of several μm to several tens of μm, the tungsten has a state in which an outer layer 11 made of fine powder of Ni and / or YSZ is formed on the surface of the tungsten fine particles 10 as shown in FIG. And is distributed in the fuel electrode in a highly dispersed state. The blending ratio is 1 wt%
About 10 to 10 wt% is suitable. Further, as a method of forming an electrode when tungsten is added, any of the above-mentioned slurry method, thermal spraying method, and a combination of the slurry method and the EVD method can be adopted.

【0025】タングステンを高分散状態に配合した燃料
電極について上述した実施例と同様にして高温雰囲気で
の電気抵抗の増大率を測定したところ、上記の実施例と
ほぼ同様に1%程度の増大率にとどまり、Niの焼結や
それに起因する特性の低下などが抑制されることが認め
られた。またタングステンを添加した燃料電極は、タン
グステンとNiとの接合およびタングステンとYSZと
の接合およびYSZ同士の接合によって形成されるた
め、膨張率の整合性が向上することにより、熱負荷によ
る燃料電極の剥離現象等が防止されるとともに導電率も
向上する。
The increase rate of the electric resistance in a high temperature atmosphere was measured in the same manner as in the above-described examples for the fuel electrode containing tungsten in a highly dispersed state. The increase rate was about 1%, which was almost the same as in the above example. It was confirmed that the sintering of Ni and the deterioration of the characteristics due to it were suppressed. Further, since the fuel electrode to which tungsten is added is formed by joining tungsten and Ni, joining tungsten and YSZ, and joining YSZ to each other, the matching of the expansion coefficient is improved, so that the fuel electrode of the fuel electrode due to heat load is improved. The peeling phenomenon is prevented and the conductivity is improved.

【0026】なお、上記の実施例では、金属酸化物の一
種あるいはタングステンもしくはチタンを、Niを含む
粉末材料に添加することとしたが、二種類以上の金属酸
化物もしくはこれらとタングステンさらにこれらにチタ
ンとを添加することとしても同様の効果を得ることがで
きる。
In the above embodiment, one kind of metal oxide or tungsten or titanium was added to the powder material containing Ni. However, two or more kinds of metal oxides or tungsten and titanium, or titanium. Similar effects can be obtained by adding and.

【0027】[0027]

【発明の効果】以上説明したようにこの発明による燃料
電極によれば、金属酸化物(MO系もしくはM23
系)の融点が高いため、燃料電極に含まれるニッケルの
焼結・凝集が抑制もしくは防止され、その結果、電極の
活性が維持されて燃料電極の寿命特性が向上し、ひいて
は固体電解質型燃料電池の発電能力を長期間に亘って良
好に維持することができる。
As described above, according to the fuel electrode of the present invention, the metal oxide (MO type or M 2 O 3
Since the melting point of the (system) is high, the sintering / aggregation of nickel contained in the fuel electrode is suppressed or prevented, and as a result, the activity of the electrode is maintained and the life characteristics of the fuel electrode are improved, which in turn results in a solid oxide fuel cell. The power generation capacity of can be favorably maintained over a long period of time.

【0028】また、タングステンもしくはチタンを添加
した構成では、タングステンおよびチタンの融点が高い
ため、金属酸化物を添加した場合と同様に、電極の活性
が維持されて燃料電極の寿命特性が向上する。さらに、
燃料電極の膨張率の整合性を向上させることができるた
め、クラックおよび電極の剥離現象の発生などを防止す
ることができる。そのうえ、燃料電極中に導電性物質の
割合が増加することにより、燃料電極の導電性が向上す
る。
Further, in the structure in which tungsten or titanium is added, the melting point of tungsten and titanium is high, so that the activity of the electrode is maintained and the life characteristics of the fuel electrode are improved as in the case of adding the metal oxide. further,
Since it is possible to improve the matching of the expansion coefficient of the fuel electrode, it is possible to prevent the occurrence of cracks and electrode peeling phenomenon. Moreover, the conductivity of the fuel electrode is improved by increasing the proportion of the conductive material in the fuel electrode.

【0029】さらにタングステン粒子もしくはチタン粒
子の外周に少なくともニッケルを含む外層を形成し、こ
れを高分散状態にして配合した構成では、タングステン
もしくはチタンとニッケル(もしくは酸化ニッケル)の
接合およびタングステンもしくはチタンと安定化ジルコ
ニアの接合および安定化ジルコニア同士の接合によって
形成されるため、膨張率の整合性をより向上することが
できるため、熱負荷による燃料電極のクラックおよび電
極の剥離現象の発生などを防止することができる。
Further, in the structure in which an outer layer containing at least nickel is formed on the outer periphery of the tungsten particles or titanium particles and is mixed in a highly dispersed state, the bonding of tungsten or titanium and nickel (or nickel oxide) and the bonding of tungsten or titanium with tungsten or titanium are carried out. Since it is formed by bonding of stabilized zirconia and bonding of stabilized zirconia to each other, it is possible to further improve the matching of the expansion coefficient and prevent the occurrence of cracks of the fuel electrode and peeling phenomenon of the electrode due to heat load. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる燃料電極の形成方法の一例と
してのスラリー法による工程図である。
FIG. 1 is a process drawing by a slurry method as an example of a method for forming a fuel electrode according to the present invention.

【図2】同溶射法による工程図である。FIG. 2 is a process drawing of the same thermal spraying method.

【図3】同スラリー法とEVD法を複合した方法による
工程図である。
FIG. 3 is a process drawing of a combined method of the slurry method and the EVD method.

【図4】本発明例と比較例との高温雰囲気での電気抵抗
の増大率の測定結果を示す図表である。
FIG. 4 is a chart showing the measurement results of the rate of increase in electric resistance in high temperature atmospheres of the present invention example and the comparative example.

【図5】タングステン粒子もしくはチタン粒子の外周に
ニッケルを含む外層を形成した添加粒子を拡大して模式
的に示す断面図である。
FIG. 5 is a cross-sectional view schematically showing enlarged added particles in which an outer layer containing nickel is formed on the outer periphery of tungsten particles or titanium particles.

【図6】固体電解質型燃料電池の原理的な構造を示す模
式的な部分断面図である。
FIG. 6 is a schematic partial cross-sectional view showing the principle structure of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1…固体電解質、 2…燃料電極、 10…タングステ
ンもしくはチタンの粒子、 11…外層。
1 ... Solid electrolyte, 2 ... Fuel electrode, 10 ... Tungsten or titanium particles, 11 ... Outer layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 武憲 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 山岡 悟 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takenori Nakajima 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Satoru Yamaoka 1-1-5 Kiba, Koto-ku, Tokyo Shareholders Inside Fujikura

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニアを主体とする固体電解質を挟
んで燃料電極と空気電極とを設けた固体電解質型燃料電
池の燃料電極において、 少なくともニッケルもしくは酸化ニッケルを含む材料粉
末に、下記の酸化物のうちのいずれか一種以上を添加し
てなる混合粉末材料によって、前記固体電解質の表面に
多孔構造の膜状に構成したことを特徴とする固体電解質
型燃料電池の燃料電極。 酸化物:MgO,CaO,SrO,Y23 ,La2
3 ,Sc23 ,Al23
1. In a fuel electrode of a solid oxide fuel cell in which a fuel electrode and an air electrode are provided with a solid electrolyte mainly composed of zirconia sandwiched therebetween, a material powder containing at least nickel or nickel oxide is mixed with the following oxides. A fuel electrode for a solid oxide fuel cell, characterized in that a mixed powder material obtained by adding one or more of them is formed into a film having a porous structure on the surface of the solid electrolyte. Oxides: MgO, CaO, SrO, Y 2 O 3 , La 2 O
3 , Sc 2 O 3 , Al 2 O 3
【請求項2】 ジルコニアを主体とする固体電解質を挟
んで燃料電極と空気電極とを設けた固体電解質型燃料電
池の燃料電極において、 少なくともニッケルもしくは酸化ニッケルを含む材料粉
末にチタンもしくはタングステンを添加した微粒子材料
を前記固体電解質の表面に付着させ、多孔構造の膜状に
構成したことを特徴とする固体電解質型燃料電池の燃料
電極。
2. In a fuel electrode of a solid oxide fuel cell having a fuel electrode and an air electrode sandwiching a solid electrolyte mainly composed of zirconia, titanium or tungsten is added to a material powder containing at least nickel or nickel oxide. A fuel electrode for a solid oxide fuel cell, characterized in that a fine particle material is adhered to the surface of the solid electrolyte to form a film having a porous structure.
【請求項3】 ジルコニアを主体とする固体電解質を挟
んで燃料電極と空気電極とを設けた固体電解質型燃料電
池の燃料電極において、 チタン粒子もしくはタングステン粒子を主体とする核の
外周に、少なくともニッケルもしくは酸化ニッケルを含
む外層を設けた微粒子材料を前記固体電解質の表面に付
着させ、多孔構造の膜状に構成したことを特徴とする固
体電解質型燃料電池の燃料電極。
3. In a fuel electrode of a solid oxide fuel cell in which a fuel electrode and an air electrode are provided with a solid electrolyte mainly composed of zirconia sandwiched therebetween, at least nickel is provided on the outer periphery of a nucleus mainly composed of titanium particles or tungsten particles. Alternatively, a fuel electrode for a solid oxide fuel cell, characterized in that a fine particle material provided with an outer layer containing nickel oxide is adhered to the surface of the solid electrolyte to form a film having a porous structure.
JP10628796A 1996-04-03 1996-04-03 Fuel electrode of solid oxide fuel cell Expired - Fee Related JP3599894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10628796A JP3599894B2 (en) 1996-04-03 1996-04-03 Fuel electrode of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10628796A JP3599894B2 (en) 1996-04-03 1996-04-03 Fuel electrode of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH09274921A true JPH09274921A (en) 1997-10-21
JP3599894B2 JP3599894B2 (en) 2004-12-08

Family

ID=14429857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10628796A Expired - Fee Related JP3599894B2 (en) 1996-04-03 1996-04-03 Fuel electrode of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3599894B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207314B1 (en) * 1997-11-07 2001-03-27 Mitsubishi Heavy Industries, Ltd. Base material for a fuel battery
WO2004102704A1 (en) * 2003-05-14 2004-11-25 Matsushita Electric Industrial Co., Ltd. Solid oxide fuel cell and method for producing same
JP2006147334A (en) * 2004-11-19 2006-06-08 Toho Gas Co Ltd Fuel electrode material for solid oxide fuel cell, fuel electrode for same, and solid oxide fuel cell
JP2006351224A (en) * 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd Nickel powder for electrode of solid oxide fuel cell and its manufacturing method
JP2007073336A (en) * 2005-09-07 2007-03-22 Toto Ltd Solid oxide fuel cell
JP2008098156A (en) * 2006-09-12 2008-04-24 Toto Ltd Cell for solid oxide fuel cell
JP2008541336A (en) * 2005-01-31 2008-11-20 テクニカル ユニバーシティ オブ デンマーク Redox stable anode
JP2009211830A (en) * 2008-02-29 2009-09-17 Toshiba Corp Solid oxide electrochemical cell and processes for producing the same
JP2009277470A (en) * 2008-05-14 2009-11-26 Inst Nuclear Energy Research Rocaec Method of manufacturing electrode layer of solid oxide fuel cell having specified porosity and gas permeability
US8002166B2 (en) 2004-12-28 2011-08-23 Technical University Of Denmark Method of producing metal to glass, metal to metal or metal to ceramic connections
JP2011198758A (en) * 2010-02-26 2011-10-06 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode material for solid oxide fuel cell, fuel electrode, solid oxide fuel cell, and manufacturing method of fuel electrode material
US8039175B2 (en) 2005-01-12 2011-10-18 Technical University Of Denmark Method for shrinkage and porosity control during sintering of multilayer structures
US9263758B2 (en) 2005-08-31 2016-02-16 Technical University Of Denmark Reversible solid oxide fuel cell stack and method for preparing same
JP2017004957A (en) * 2015-06-15 2017-01-05 国立研究開発法人物質・材料研究機構 Anode material for solid oxide type fuel battery, manufacturing method for the same and solid oxide type fuel battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479183B2 (en) * 1997-11-07 2002-11-12 Mitsubishi Heavy Industries, Ltd. Base material for a fuel battery
US6207314B1 (en) * 1997-11-07 2001-03-27 Mitsubishi Heavy Industries, Ltd. Base material for a fuel battery
WO2004102704A1 (en) * 2003-05-14 2004-11-25 Matsushita Electric Industrial Co., Ltd. Solid oxide fuel cell and method for producing same
EP1641062A1 (en) * 2003-05-14 2006-03-29 Matsushita Electric Industrial Co., Ltd. Solid oxide fuel cell and method for producing same
EP1641062A4 (en) * 2003-05-14 2007-06-06 Matsushita Electric Ind Co Ltd Solid oxide fuel cell and method for producing same
US7608357B2 (en) 2004-11-19 2009-10-27 Toho Gas Co., Ltd. Fuel electrode material, a fuel electrode, and a solid oxide fuel cell
JP2006147334A (en) * 2004-11-19 2006-06-08 Toho Gas Co Ltd Fuel electrode material for solid oxide fuel cell, fuel electrode for same, and solid oxide fuel cell
US8002166B2 (en) 2004-12-28 2011-08-23 Technical University Of Denmark Method of producing metal to glass, metal to metal or metal to ceramic connections
US8039175B2 (en) 2005-01-12 2011-10-18 Technical University Of Denmark Method for shrinkage and porosity control during sintering of multilayer structures
US8252478B2 (en) 2005-01-31 2012-08-28 Technical University Of Denmark Redox-stable anode
JP2008541336A (en) * 2005-01-31 2008-11-20 テクニカル ユニバーシティ オブ デンマーク Redox stable anode
JP2006351224A (en) * 2005-06-13 2006-12-28 Sumitomo Metal Mining Co Ltd Nickel powder for electrode of solid oxide fuel cell and its manufacturing method
JP4517949B2 (en) * 2005-06-13 2010-08-04 住友金属鉱山株式会社 Nickel oxide powder for electrode of solid oxide fuel cell and method for producing the same
US9263758B2 (en) 2005-08-31 2016-02-16 Technical University Of Denmark Reversible solid oxide fuel cell stack and method for preparing same
JP4596158B2 (en) * 2005-09-07 2010-12-08 Toto株式会社 Solid oxide fuel cell
JP2007073336A (en) * 2005-09-07 2007-03-22 Toto Ltd Solid oxide fuel cell
JP2008098156A (en) * 2006-09-12 2008-04-24 Toto Ltd Cell for solid oxide fuel cell
JP2009211830A (en) * 2008-02-29 2009-09-17 Toshiba Corp Solid oxide electrochemical cell and processes for producing the same
JP2009277470A (en) * 2008-05-14 2009-11-26 Inst Nuclear Energy Research Rocaec Method of manufacturing electrode layer of solid oxide fuel cell having specified porosity and gas permeability
JP2011198758A (en) * 2010-02-26 2011-10-06 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode material for solid oxide fuel cell, fuel electrode, solid oxide fuel cell, and manufacturing method of fuel electrode material
JP2017004957A (en) * 2015-06-15 2017-01-05 国立研究開発法人物質・材料研究機構 Anode material for solid oxide type fuel battery, manufacturing method for the same and solid oxide type fuel battery

Also Published As

Publication number Publication date
JP3599894B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP5072169B2 (en) Improvements in fuel cells and related equipment
US5937264A (en) Electrode structure for solid state electrochemical devices
US6635376B2 (en) Solid oxide fuel cell having composition gradient between electrode and electrolyte
JP5430009B2 (en) Removal of impurity phase from electrochemical devices
RU2521874C2 (en) Solid oxide cell and battery containing same
JP2695641B2 (en) Method for manufacturing solid electrolyte fuel cell
CN105409041B (en) Solid oxide fuel cell and its manufacturing method
JP3599894B2 (en) Fuel electrode of solid oxide fuel cell
JP4211254B2 (en) Solid oxide fuel cell
JPH08213029A (en) Fuel electrode of solid electrolyte fuel cell
JP2002216807A (en) Air electrode collector for solid electrolyte type fuel cell
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
JP2002309203A (en) Electroconductive bonding material
JPH08162120A (en) Solid electrolyte type electrochemical cell
JPH09259895A (en) Electrode base of solid electrolytic fuel cell
JP3609146B2 (en) Fuel electrode of solid oxide fuel cell
JP4508592B2 (en) Fuel cell manufacturing method
JP3162881B2 (en) Solid oxide fuel cell
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
WO2004112173A2 (en) Electrode for fuel cell and solid oxide fuel cell using the same
JPH0689723A (en) Fuel electrde fabrication method for fuel cell with solid electrolyte
JP2948453B2 (en) Solid oxide fuel cell
JP2003017088A (en) Solid electrolyte material, its manufacturing method, and solid electrolyte fuel cell
JPH05170528A (en) Method for sintering lanthanum chromite

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees