JPH09273797A - Multi-chamber air conditioner - Google Patents

Multi-chamber air conditioner

Info

Publication number
JPH09273797A
JPH09273797A JP8082356A JP8235696A JPH09273797A JP H09273797 A JPH09273797 A JP H09273797A JP 8082356 A JP8082356 A JP 8082356A JP 8235696 A JP8235696 A JP 8235696A JP H09273797 A JPH09273797 A JP H09273797A
Authority
JP
Japan
Prior art keywords
indoor
outdoor
expansion valve
air conditioner
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8082356A
Other languages
Japanese (ja)
Inventor
Yasutaka Yoshida
康孝 吉田
Yozo Hibino
陽三 日比野
Hiroshi Yasuda
弘 安田
Susumu Nakayama
進 中山
Kensaku Kokuni
研作 小国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8082356A priority Critical patent/JPH09273797A/en
Publication of JPH09273797A publication Critical patent/JPH09273797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable continuation of normal operation even when abnormal condition is generated in an operating indoor machine by a method wherein a control device, operating the whole of multi-chamber air conditioners normally by compensating the functions of detecting means or operating means, which can not be operated normally, through the other detecting means or operating means, is provided. SOLUTION: The initial value of amount of operation, such as the driving frequency, the opening degree of an indoor expansion valve and the like, is operated in a control device in accordance with an outdoor air temperature, an indoor air temperature and the like, then, is outputted (S1-S5). An indoor machine air outlet temperature and air temperature of a utilizing house are detected by detectors to operate the capacity of the indoor machine (S8-S9). When an abnormal condition is obtained, newly clarifying of the characteristics of an indoor machine under abnormal condition is prepared (S10-S12). A parameter for indicating the characteristic of the indoor machine is estimated. According to this method, the opening degree of the indoor expansion valve is operated (S13, S14). The driving frequency of a compressor is operated newly and operation effected by prior steps is repeated until the operation of the multi-chamber air conditioner is stopped (S15-S17).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は多室空気調和機に関
する。
TECHNICAL FIELD The present invention relates to a multi-room air conditioner.

【0002】[0002]

【従来の技術】従来の制御技術では、制御装置の検知手
段,操作手段が正常に作動したときのみ、制御対象を良
好な状態に保持できる構造である。例えば、特開昭63−
29155号公報では、圧縮機駆動周波数と膨張弁開度を操
作して、利用家屋室内空気温度と、圧縮機冷媒吸入過熱
度を干渉させずに制御する。
2. Description of the Related Art A conventional control technique has a structure in which an object to be controlled can be kept in a good state only when the detecting means and the operating means of the control device are normally operated. For example, JP-A-63-
According to Japanese Patent No. 29155, the compressor driving frequency and the expansion valve opening are manipulated to control the indoor air temperature of the user's house and the compressor refrigerant suction superheat degree without interfering with each other.

【0003】[0003]

【発明が解決しようとする課題】ところが、検知手段
や、操作手段が正常な作動をしているときには、効率,
精度ともに良い制御を行うことのできる制御方式でも、
検知手段,作動手段が作動不良の時には、作動不良の部
分は当然、正常なその他の部分にも悪影響を及ぼす。例
えば、室内膨張弁開度を調節し、各室内機に冷媒を分配
する際、各室内膨張弁が、所定開度設定や、比例配分設
定,固定ゲイン室内機能力フィードバックなどを行う
と、もしある室内膨張弁が何らかの原因で支障をきた
し、作動不可能となった場合に、故障した室内膨張弁が
担う室内機は、その他の正常な室内機も正規の能力を出
力することを期待できない。これは、一般的に、複数の
制御対象を制御する場合、ある制御量はその他の制御量
と干渉するという性質があるからであり、故障した一つ
の室内膨張弁の影響は、その他の室内機にも及ぶ。例え
ば、もし、室内膨張弁の開度が小さな状態で故障する
と、冷媒はその他の室内機に流れ込み、故障した室内機
が必要とする冷媒あるいは室内機能力は不足し、その他
の室内機の冷媒あるいは室内機能力は過剰となり、本来
適正である筈の正常な室内膨張弁の開度が、場合によっ
ては、不適正となってしまうのである。この、故障によ
る干渉の問題は、もともと正常作動の時、干渉を取り除
くような構造となっている制御のほうが、逆に顕著であ
る。
However, when the detecting means and the operating means are operating normally, the efficiency,
Even with a control method that can perform control with good accuracy,
When the detecting means and the operating means are malfunctioning, the malfunctioning portion naturally affects other normal portions as well. For example, if the indoor expansion valve opening is adjusted and the refrigerant is distributed to each indoor unit, each indoor expansion valve may perform a predetermined opening setting, proportional distribution setting, fixed gain indoor functional force feedback, etc. When the indoor expansion valve becomes inoperable due to some reason and becomes inoperable, the indoor unit that the failed indoor expansion valve bears cannot be expected to output the normal capacity to other normal indoor units. This is because, when controlling a plurality of controlled objects, in general, a certain control amount has the property of interfering with other control amounts, and the effect of one failed indoor expansion valve is Extends to For example, if the indoor expansion valve fails in a small opening, the refrigerant flows into the other indoor unit, the refrigerant or the indoor function required by the failed indoor unit is insufficient, and the refrigerant of the other indoor unit or The indoor functional force becomes excessive, and the normal opening degree of the indoor expansion valve, which should be proper, may become inappropriate in some cases. The problem of the interference due to the failure is conspicuous to the contrary in the control which is originally structured to remove the interference during the normal operation.

【0004】[0004]

【課題を解決するための手段】本発明の空気調和機は、
室外機と、室内機を一台または複数台設け、前記室外機
と前記室内機とを配管接続して閉回路となし、前記閉回
路の中に冷媒を封入し、前記室外機では、周波数可変の
圧縮機と室外熱交換器、及び室外膨張弁を配管するとと
もに前記室外熱交換器に送風する室外ファンを備え、前
記室内機では、室内空気と熱交換を行う室内熱交換器と
前記室内熱交換器の冷媒の流量を調節する室内膨張弁を
順次配管するとともに前記室内熱交換器に送風する室内
ファンを備えて形成される多室空気調和機で、室外空気
温度,圧縮機冷媒吐出過熱度,圧縮機冷媒吸入圧力,圧
縮機冷媒吐出圧力,圧縮機消費電力,利用家屋室内空気
温度及び室内機吹出空気温度を含む各制御量を検知する
検知手段と、圧縮機駆動周波数,室外ファン回転数,室
外膨張弁開度,室内ファン回転数及び室内膨張弁開度を
含む各操作量を操作する操作手段と、室内設定温度を含
む設定値を設定する設定手段を備え、ある検知手段ある
いは操作手段が正常に作動しなくなっても、その他の検
知手段あるいは操作手段がその機能を補い、多室空気調
和機全体が正常に作動する耐故障性が高いことを特徴と
する。
An air conditioner according to the present invention comprises:
An outdoor unit and one or more indoor units are provided, the outdoor unit and the indoor unit are connected by piping to form a closed circuit, and a refrigerant is sealed in the closed circuit, and the frequency is variable in the outdoor unit. The compressor and the outdoor heat exchanger, and the outdoor expansion valve is provided with an outdoor fan for blowing air to the outdoor heat exchanger, the indoor unit, the indoor heat exchanger for performing heat exchange with the indoor air and the indoor heat A multi-chamber air conditioner formed by sequentially installing indoor expansion valves for adjusting the flow rate of refrigerant in an exchanger and having an indoor fan for blowing air to the indoor heat exchanger, the outdoor air temperature, the compressor refrigerant discharge superheat degree. Detecting means for detecting each controlled variable including compressor refrigerant suction pressure, compressor refrigerant discharge pressure, compressor power consumption, indoor air temperature of the user's house and indoor unit air temperature, compressor drive frequency, outdoor fan speed , Outdoor expansion valve opening, room Even if some detection means or operation means does not operate normally, it is provided with operation means for operating each operation amount including fan rotation speed and indoor expansion valve opening degree, and setting means for setting a set value including indoor set temperature. The other multi-chamber air conditioner operates normally, and the other detection means or operation means complements the function, and the fault tolerance is high.

【0005】また、本発明の多室空気調和機は、室外空
気温度,圧縮機冷媒吐出過熱度,圧縮機冷媒吸入圧力,
圧縮機冷媒吐出圧力,圧縮機消費電力,利用家屋室内空
気温度及び室内機吹出空気温度を含む各制御量を検知す
る検知手段と、圧縮機駆動周波数,室外ファン回転数,
室外膨張弁開度,室内ファン回転数及び室内膨張弁開度
を含む各操作量を操作する操作手段と、室内設定温度を
含む設定値を設定する設定手段を備え、ある室内機に搭
載されている室内膨張弁が正常に作動しなくなった際
に、その他の室内機に搭載されている室内膨張弁が開度
を調節し、正常な室内機に対して、室内機能力,供給冷
媒量、あるいは圧縮機冷媒吐出圧力を含む制御量を、故
障以前と同じく制御し、また、故障した室内機に対して
も、室内機能力,供給冷媒量、あるいは吐出圧力を含む
制御量の不安定化を防ぎ、多室空気飽和機が、部分的な
故障によって、異常停止することを防止する制御装置を
有することが好ましい。
Further, the multi-room air conditioner of the present invention has the following characteristics: outdoor air temperature, compressor refrigerant discharge superheat degree, compressor refrigerant suction pressure,
Detecting means for detecting each controlled variable including compressor refrigerant discharge pressure, compressor power consumption, indoor air temperature of the house used and indoor unit blown air temperature, compressor drive frequency, outdoor fan speed,
It is equipped with an operating means for operating each operation amount including an outdoor expansion valve opening degree, an indoor fan rotation speed and an indoor expansion valve opening degree, and a setting means for setting a set value including an indoor set temperature. When the indoor expansion valve that is present does not operate normally, the indoor expansion valve installed in other indoor units adjusts the opening, and the indoor functional force, the amount of supplied refrigerant, or the The control amount including the compressor refrigerant discharge pressure is controlled in the same way as before the failure, and even for the failed indoor unit, the instability of the control amount including the indoor functional force, the supply refrigerant amount, and the discharge pressure is prevented. It is preferable that the multi-chamber air saturator has a control device that prevents abnormal stop due to a partial failure.

【0006】また、本発明の多室空気調和機は、室外空
気温度,圧縮機冷媒吐出過熱度,圧縮機冷媒吸入圧力,
圧縮機冷媒吐出圧力,圧縮機消費電力,利用家屋室内空
気温度及び室内機吹出空気温度を含む各制御量を検知す
る検知手段と、圧縮機駆動周波数,室外ファン回転数,
室外膨張弁開度,室内ファン回転数及び室内膨張弁開度
を含む各操作量を操作する操作手段と、室内設定温度を
含む設定値を設定する設定手段を備え、ある室内機に搭
載されている室内送風機が正常に作動しなくなった際
に、その他の室内機に搭載されている室内送風機がその
回転数を補正し、正常な室内機に対して、室内機能力あ
るいは圧縮機冷媒吐出圧力を含む制御量を、故障以前と
同じく正常に制御を行い、多室空気調和機が、部分的な
故障によって、異常停止することを防止する制御装置を
有することが好ましい。
Further, the multi-room air conditioner of the present invention has an outdoor air temperature, a compressor refrigerant discharge superheat degree, a compressor refrigerant suction pressure,
Detecting means for detecting each controlled variable including compressor refrigerant discharge pressure, compressor power consumption, indoor air temperature of the house used and indoor unit blown air temperature, compressor drive frequency, outdoor fan speed,
It is equipped with an operating means for operating each operation amount including an outdoor expansion valve opening degree, an indoor fan rotation speed and an indoor expansion valve opening degree, and a setting means for setting a set value including an indoor set temperature. When the indoor blower that is present does not operate normally, the indoor blowers installed in other indoor units correct the rotation speed, and the indoor functional force or compressor refrigerant discharge pressure is applied to normal indoor units. It is preferable that the multi-room air conditioner has a control device that controls the included control amount normally as before the failure and prevents the multi-room air conditioner from abnormally stopping due to a partial failure.

【0007】[0007]

【発明の実施の形態】本発明の多室空気調和機の制御装
置は、設定熱環境空間を得るための方策は、複数の利用
家屋室内空気温度,圧縮機冷媒吐出圧力,圧縮機冷媒吸
入圧力,圧縮機冷媒吐出過熱度,多室空気調和機能力な
どの制御量が、それぞれ決められた設定値に一致するよ
うに、圧縮機駆動周波数,室外膨張弁開度,室外ファン
回転数,室内膨張弁開度,室内ファン回転数といった操
作量を制御するものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the control device for a multi-room air conditioner of the present invention, the measures for obtaining the set thermal environment space are as follows: plural indoor air temperatures in the house, compressor refrigerant discharge pressure, compressor refrigerant suction pressure. , Compressor drive frequency, outdoor expansion valve opening, outdoor fan speed, indoor expansion so that the control quantities such as compressor refrigerant discharge superheat and multi-room air conditioning functional force match the respective set values. It controls the manipulated variables such as valve opening and indoor fan speed.

【0008】さらに、本多室空気調和機における制御装
置は、たとえある検知手段や操作手段が故障したときに
も、多室空気調和機全体が、可能な限り適正な運転状態
となることを目的とし、安定かつ安全な運転を保持する
とともに、空調負荷の増減に応じた暖房あるいは冷房能
力を発揮させ、使用者に好ましい熱環境空間を得ること
を制御目的としている。ここで、本多室空気調和機で
は、耐故障性向上の手段として、適応制御で用いられる
様々な適応則を用いている。
Further, the control device in the present multi-room air conditioner aims at ensuring that the entire multi-room air conditioner is in the most appropriate operating state even if some detecting means or operating means fails. The purpose of the control is to maintain stable and safe operation, and to exert the heating or cooling capacity according to the increase or decrease of the air conditioning load to obtain a thermal environment space that is preferable to the user. Here, in this multi-room air conditioner, various adaptive rules used in adaptive control are used as means for improving fault tolerance.

【0009】以下、本発明の多室空気調和機の制御装置
の実施の形態を、図に基づいて説明する。
An embodiment of a control device for a multi-room air conditioner according to the present invention will be described below with reference to the drawings.

【0010】図2は多室空気調和機を示す構成図であ
り、一台あるいは複数台の圧縮機2,室外熱交換器3,
室外熱交換器3に対し室外ファン4,アキュムレータ
5,四方弁6、及びレシーバ7と室外膨張弁8を備えた
室外機1を設け、室内熱交換器101,10N,室内熱
交換器101,10Nに対し室内ファン111,11
N、及び室内熱交換器101,10Nの冷媒の循環量を
調整する室内膨張弁121,12Nからなる室内機9
1,9Nを一台あるいは複数台設け、室外機1、及び複
数の室内機91,9Nの各ガス側、及び液側を各々ガス
側管路13、及び液側管路14を分岐管151,15N
で接続して閉回路となし、閉回路の内部に冷媒を封入し
て多室空気調和機を、また多室空気調和機とその周囲の
環境である利用家屋161,16Nを表している。
FIG. 2 is a block diagram showing a multi-room air conditioner. One or a plurality of compressors 2, an outdoor heat exchanger 3,
The outdoor heat exchanger 3 is provided with the outdoor fan 1, the accumulator 5, the four-way valve 6, and the outdoor unit 1 including the receiver 7 and the outdoor expansion valve 8, and the indoor heat exchangers 101 and 10N and the indoor heat exchangers 101 and 10N are provided. Against indoor fans 111, 11
N, and an indoor unit 9 including indoor expansion valves 121 and 12N for adjusting the circulation amount of the refrigerant in the indoor heat exchangers 101 and 10N.
One or a plurality of 1, 9N are provided, and the gas side and the liquid side of the outdoor unit 1 and the plurality of indoor units 91, 9N are respectively connected to the gas side pipeline 13, and the liquid side pipeline 14 to the branch pipe 151. 15N
Represents a multi-room air conditioner by enclosing a refrigerant inside the closed circuit, and also represents the multi-room air conditioner and user houses 161 and 16N which are the surrounding environment.

【0011】ここで制御機器では室外空気温度を検知す
る室外空気温度検知器17,圧縮機冷媒吐出温度検知器
及び冷媒過熱度演算器からなる圧縮機冷媒吐出過熱度検
知器18,圧縮機冷媒吸入圧力を検知する圧縮機冷媒吸
入圧力検知器19,圧縮機冷媒吐出圧力を検知する圧縮
機冷媒吐出圧力検知器20,圧縮機2の電力を検知する
圧縮機電力検知器21,圧縮機2の周波数を操作するイ
ンバータ圧縮機操作器22,室外ファン4の送風能力を
操作する室外側送風能力操作器23,室外ファン4の電
力を検知する室外ファン電力検知器24,室外膨張弁8
の開度を操作する室外膨張弁開度操作器25,利用家屋
161,16Nの利用家屋室内空気温度を検知する利用
家屋室内空気温度検知器261,26N,利用家屋への
吹出空気温度を検知する室内機吹出空気温度検知器27
1,27N,室内ファン111,11Nの送風能力を操
作する室内側送風能力操作器281,28N,室内ファ
ン111,11Nの電力を検知する室内ファン電力検知
器291,29N,室内膨張弁121,12Nの冷媒循
環量を操作する室内膨張弁開度操作器301,30N,
予め与えられた設定値を記憶、あるいは使用者が好みの
熱環境を設定するための設定器311,31N,制御演
算装置32から構成されている。
Here, in the control device, an outdoor air temperature detector 17 for detecting the outdoor air temperature, a compressor refrigerant discharge superheat degree detector 18 comprising a compressor refrigerant discharge temperature detector and a refrigerant superheat degree calculator, and a compressor refrigerant suction. Compressor refrigerant suction pressure detector 19 for detecting pressure, compressor refrigerant discharge pressure detector 20 for detecting compressor refrigerant discharge pressure, compressor power detector 21 for detecting electric power of the compressor 2, frequency of the compressor 2. Inverter compressor operation unit 22 for operating, outdoor air blowing capacity operation unit 23 for operating the air blowing capacity of the outdoor fan 4, outdoor fan power detector 24 for detecting the power of the outdoor fan 4, outdoor expansion valve 8
Outdoor expansion valve opening controller 25 for operating the opening of the user, indoor air temperature detectors 261 and 26N for detecting the indoor air temperature of the user houses 161 and 16N, and the temperature of air blown to the user house. Indoor unit blown air temperature detector 27
1, 27N, indoor fans 111 and 11N, and indoor fan power detectors 291 and 29N that detect the power of the indoor fans 111 and 11N, and indoor expansion valves 121 and 12N. Indoor expansion valve opening operation devices 301, 30N, which operate the refrigerant circulation amount of
It is composed of setters 311 and 31N for storing a preset set value in advance or for setting a thermal environment desired by the user, and a control arithmetic unit 32.

【0012】本多室空気調和機の耐故障性向上制御設計
法とその動作について説明する。多室空気調和機室内機
能力を制御量,室内膨張弁を操作量として、室内膨張弁
の操作により、室内機能力が、ある希望値に追従するよ
うに設計するサーボ問題として考える。ここでは例とし
て暖房運転を想定する。
A fault tolerant improvement control design method and its operation of the present multi-room air conditioner will be described. It is considered as a servo problem that the indoor functional force is designed to follow a desired value by operating the indoor expansion valve, with the indoor functional force of the multi-room air conditioner as the controlled variable and the indoor expansion valve as the manipulated variable. Here, heating operation is assumed as an example.

【0013】このシステムへの入出力間の関係を表すパ
ラメータを、制御運転を行いながら推定する推定機構を
適用すると、環境の変化に順応,適応する制御機構とす
ることができる。いま、第n番目室内膨張弁開度をε
(n)(k),第n番目室内能力をQ(n)(k),室内機全数
をNで表すと、制御対象モデルとして、数1の関係式が
成り立つとする。
By applying an estimation mechanism for estimating the parameter indicating the relationship between the input and output to this system while performing control operation, a control mechanism that adapts and adapts to changes in the environment can be obtained. Now, let the opening of the nth indoor expansion valve be ε
(n) (k), the nth indoor capacity is represented by Q (n) (k), and the total number of indoor units is represented by N. It is assumed that the relational expression of Formula 1 holds as the controlled object model.

【0014】[0014]

【数1】 Q(n)(k)=q(n)(n)(k−1)+Ka(n)ε(n)(k−1)+Kb(n)…(数1) このパラメータq(n),Ka(n),Kb(n)を運転と同時に
時々刻々推定し、第n番目室内膨張弁開度ε(n)(k)を
操作量として決定する。推定値をq′(n),K′a(n)
K′b(n)とし、推定ベクトルを数2のように定義する
と、数3のように逐次計算の形で求められる。
## EQU1 ## Q (n) (k) = q (n) Q (n) (k-1) + Ka (n) ε (n) (k-1) + Kb (n) (Equation 1) The parameters q (n) , K a (n) and K b (n) are estimated momentarily at the same time as the operation, and the nth indoor expansion valve opening ε (n) (k) is determined as the manipulated variable. The estimated values are q ' (n) , K'a (n) ,
If K'b (n) is defined and the estimated vector is defined as in Equation 2, it is obtained in the form of sequential calculation as in Equation 3.

【0015】[0015]

【数2】 [Equation 2]

【0016】[0016]

【数3】 (Equation 3)

【0017】この推定値を用いて第n番目室内膨張弁開
度ε(n)(k)を求める。第n番目室内空気温度をT
iIN(n)(k),第n番目室内空気設定温度をT
iSET(n)(k)として、例えば数4のように求める。
The n-th indoor expansion valve opening ε (n) (k) is calculated using this estimated value. The nth indoor air temperature is T
iIN (n) (k), the nth indoor air set temperature is T
iSET (n) (k) is calculated as in, for example, Equation 4.

【0018】[0018]

【数4】 ε(n)(k)=k′(n)(q′,K′a(n),K′b(n))[Q(n)(k) −K(n){TiSET(n)(k)−TiIN(n)(k)}] +bias(q′,K′a(n),K′b(n)) …(数4) ここでK(n) は、第n番目利用家屋の熱通過係数であ
る。
## EQU00004 ## .epsilon. (N) (k) = k ' (n) (q', K'a (n) , K'b (n) ) [Q (n) (k) -K (n) {T iSET (n) (k) -T iIN (n) (k)}] + bias (q ', K' a (n), K 'b (n)) ... ( Equation 4) where K (n) is This is the heat transfer coefficient of the nth user house.

【0019】この室内膨張弁開度は、多室空気調和機の
個々の室内機の能力配分を考慮して得られた値である。
つまりそれは、配管施工によって、冷媒が流れにくく能
力が出力されにくい室内機に対してはK′a(n)を小さく
推定するのでε(n)(k)の開度を大きく、冷媒が流れ易
く能力が出力され易い室内機に対しては、K′a(n)を大
きく推定するのでε(n)(k)の開度を小さくするよう
に、また、設定温度が高く、能力を必要とする室内に対
しては、ε(n)(k)の開度を大きく、設定温度が低く、
能力を必要としない室内に対しては、ε(n)(k)の開度
を小さく調整する適応性を備えている。
This indoor expansion valve opening is a value obtained in consideration of the capacity distribution of each indoor unit of the multi-room air conditioner.
That it, the pipe construction, increase the degree of opening of the so estimating reduced K 'a (n) ε ( n) (k) for the refrigerant flows hardly capacity hard indoor unit is output, easily refrigerant flows For indoor units whose capacity is likely to be output, K'a (n) is estimated to be large, so the opening of ε (n) (k) should be made small, and the set temperature is high and capacity is required. For a room that is open, the opening of ε (n) (k) is large, the set temperature is low,
For a room that does not require the capacity, it is adaptable to adjust the opening of ε (n) (k) to a small value.

【0020】多室空気調和機で、ある室内膨張弁開度
は、他の室内機能力に影響を与える性質を備えている。
つまり、第m番目室内膨張弁開度は、第m番目室内機能
力に最も影響を与えるが、第n番目室内機能力(n≠
m)にも影響を与える。これが干渉の問題である。この
干渉を取り除くために、従来の技術では、第m番目室内
膨張弁開度が、第n番目室内機能力に及ぼす干渉の大き
さ、逆に第n番目室内膨張弁開度が、第m番目室内機能
力に及ぼす干渉の大きさを、様々な実験条件で実験,確
認し、補償アルゴリズムを構築していた。
In a multi-room air conditioner, a certain indoor expansion valve opening degree has a property of affecting other indoor functional forces.
That is, the m-th indoor expansion valve opening most affects the m-th indoor functional force, but the n-th indoor functional force (n ≠
It also affects m). This is the problem of interference. In order to remove this interference, in the conventional technique, the m-th indoor expansion valve opening degree is the magnitude of the interference exerted on the n-th indoor functional force, and conversely, the n-th indoor expansion valve opening degree is the m-th indoor expansion valve opening degree. The magnitude of the interference on the indoor functional force was tested and confirmed under various experimental conditions, and a compensation algorithm was constructed.

【0021】しかし、本多室空気調和機では、この干渉
は、推定機構の出力する推定値の変化によって、除去さ
れる仕組みになっている。第m番目室内膨張弁の開度変
化は、干渉先の第n番目室内機にとっては、ただの外乱
である。しかし、制御モデル数16には第m番目室内膨
張弁開度情報は入っていない。そこで、第m番目室内膨
張弁開度変化による第n番目室内機能力変動は、あたか
も推定値q′(n),K′a(n),K′b(n) が変動している
ようにとらえ、その時々の制御ゲインを適応的に調節す
ることで、第n番目室内機能力変動を抑える。
However, in this multi-room air conditioner, this interference is removed by a change in the estimated value output by the estimating mechanism. The change in the opening degree of the m-th indoor expansion valve is just a disturbance for the n-th indoor unit of the interference destination. However, the control model number 16 does not include the m-th indoor expansion valve opening degree information. Therefore, the fluctuation in the nth indoor functional force due to the change in the opening of the mth indoor expansion valve is as if the estimated values q ' (n) , K'a (n) and K'b (n) are changing. By grasping and adaptively adjusting the control gain at each time, the fluctuation of the nth indoor functional force is suppressed.

【0022】今、第m番目室内膨張弁が何らかの支障を
きたして、作動不可能となったとする。もし、本多室空
気調和機のように、分散的に個々の室内膨張弁が制御さ
れる機構となっていれば、そのとき、数1,数2と数3
によって、第n番目室内膨張弁開度の値を、独立に算出
することができる。しかもこれは、第m番目室内膨張弁
の故障によって引き起こされた干渉の特性変動を、推定
値q′(n),K′a(n),K′b(n)の変化で吸収することに
より、常に適正な値となる。さらには、第m番目室内膨
張弁の異常情報と、異常停止時の室内膨張弁開度が既知
であると、異常情報取得時から、確率分散を意味する数
3のP(m)(k)を初期化することによって、より的確
に、応答性の高い適応的な対処を行うことができる。
It is now assumed that the m-th indoor expansion valve has some trouble and cannot operate. If there is a mechanism in which individual indoor expansion valves are controlled in a distributed manner, such as the present multi-chamber air conditioner, then, at that time, Equations 1, 2 and 3
Thus, the value of the n-th indoor expansion valve opening can be calculated independently. Moreover, this is because the characteristic fluctuation of the interference caused by the failure of the m-th indoor expansion valve is absorbed by the change of the estimated values q ' (n) , K'a (n) and K'b (n). , Always a proper value. Furthermore, if the abnormality information of the m-th indoor expansion valve and the indoor expansion valve opening degree at the time of abnormal stop are known, P (m) (k) of Equation 3 meaning probability dispersion from the time of acquisition of the abnormality information. By initializing, it is possible to more accurately and adaptively respond with high responsiveness.

【0023】ところが、従来技術のように、第n番目室
内膨張弁が互いに干渉を打ち消し合うような機構となっ
ていたとする。その場合には第n番目室内膨張弁は、第
1番目から第N番目までの室内機能力の線形フィードバ
ックで構成されるのが一般的であるので、その中で第m
番目室内膨張弁が所定の値に作動しないわけであるか
ら、第m番目室内機能力はもちろん、第n番目室内機能
力も所定の値に制御できるとは限らない。あるいは、従
来技術の、互いの干渉の大きさを見積もって補償する方
式でも、故障した第m番目室内膨張弁の異常情報と、異
常停止時開度が必ず必要となる。
However, it is assumed that, as in the prior art, the n-th indoor expansion valve has a mechanism that cancels interference with each other. In that case, since the n-th indoor expansion valve is generally constituted by linear feedback of the indoor functional forces from the 1st to the N-th, the m-th indoor expansion valve
Since the th indoor expansion valve does not operate to the predetermined value, it is not always possible to control not only the mth indoor functional force but also the nth indoor functional force to the predetermined value. Alternatively, even in the conventional method of estimating and compensating for the magnitude of mutual interference, the abnormality information of the failed m-th indoor expansion valve and the abnormal opening degree are always required.

【0024】図1は図2で示した多室空気調和機におけ
る耐故障性向上制御装置32での信号処理の一例を示す
ブロックダイアグラムである。
FIG. 1 is a block diagram showing an example of signal processing in the fault tolerance improving control device 32 in the multi-room air conditioner shown in FIG.

【0025】331,33Nは利用家屋室内設定温度信
号T(1)iSET,T(N)iSET、341,34Nは第1番目,
第N番目室内機吹出空気温度TiEX(1)(k),T
iEX(N)(k)、351,35Nは能力を受けて変化する、
第1番目,第N番目利用家屋室内空気温度T
(1)iIN(k),T(N)iIN(k)、361,36Nは第1番
目,第N番目室内機能力検知信号Q(1)(k),Q
(N)(k)、371,37Nは第1番目,第N番目室内膨
張弁開度信号ε(1)(k),ε(N)(k)、381,38N
は、第1番目,第N番目室内ファン回転数信号η
(1)(k),η(N)(k)、39は多室空気調和機特性推定値
信号ベクトル、40は室外ファン回転数演算器、41は
圧縮機駆動周波数演算器、42は室外膨張弁開度演算
器、43は室内膨張弁開度演算器、44は室内ファン回
転数演算器、45は適応調節器、46は多室空気調和機
能力演算器である。
331 and 33N are user house interior set temperature signals T (1) iSET and T (N) iSET , 341 and 34N are the first,
Nth indoor unit blown air temperature T iEX (1) (k), T
iEX (N) (k), 351 and 35N change according to ability,
Indoor air temperature T of the 1st and Nth users
(1) iIN (k), T (N) iIN (k), 361, 36N are the first and Nth indoor functional force detection signals Q (1) (k), Q
(N) (k), 371, 37N are the first and Nth indoor expansion valve opening signals ε (1) (k), ε (N) (k), 381, 38N.
Is the first and Nth indoor fan rotation speed signals η
(1) (k), η (N) (k), 39 is a multi-room air conditioner characteristic estimated value signal vector, 40 is an outdoor fan rotation speed calculator, 41 is a compressor drive frequency calculator, and 42 is outdoor expansion A valve opening calculator, 43 is an indoor expansion valve opening calculator, 44 is an indoor fan rotation speed calculator, 45 is an adaptive controller, and 46 is a multi-room air conditioning functional force calculator.

【0026】以下に、従来多室空気調和機と、本多室空
気調和機の、制御法の違いによる干渉,耐故障性の違い
を、数理的な意味で説明する。
The difference in interference and fault tolerance between the conventional multi-room air conditioner and this multi-room air conditioner due to the difference in control method will be described below in a mathematical sense.

【0027】一般的に、制御対象は、各制御量,各操作
量が互いに干渉し合う関係となっている。そのモデルと
して、制御量が二つ、各々の制御量に対して有効である
操作量が一つずつ備わっている、数5に示すような形を
考える。
In general, the controlled object has a relationship in which each control amount and each operation amount interfere with each other. As the model, consider a form as shown in Formula 5, in which two control variables are provided and one operation variable is provided for each control variable.

【0028】[0028]

【数5】 (Equation 5)

【0029】あるいは、個々に分解して、数6で考える
とする。
Alternatively, it is assumed that each of them is disassembled and considered by the equation (6).

【0030】[0030]

【数6】 (Equation 6)

【0031】ここで、x1(k),x2(k)は制御量、u
1(k)はx1(k)に有効な操作量、u2(k)はx2(k)に有
効な操作量、a,b,c,d,e,f,g,hは係数、
kは時間ステップを表すカウンタとする。
Here, x 1 (k) and x 2 (k) are control variables and u
1 (k) is an effective operation amount for x 1 (k), u 2 (k) is an effective operation amount for x 2 (k), and a, b, c, d, e, f, g, h are coefficients. ,
Let k be a counter that represents a time step.

【0032】この式に見られるように、制御量x1(k)
を制御しようとすると、別の制御量x2(k)の挙動を無
視することができない。さらには、x1(k)を制御する
ために備わっているわけでない操作量u2(k)も影響す
る。これが干渉の問題である。
As can be seen from this equation, the controlled variable x 1 (k)
However, the behavior of another controlled variable x 2 (k) cannot be ignored. Furthermore, the manipulated variable u 2 (k) not provided for controlling x 1 (k) also affects. This is the problem of interference.

【0033】単純な制御では、干渉は外乱と見なし、あ
る程度の大きさまでは積極的に対処せず、個々の制御量
に対して、個々の操作量が働く制御方式としている。そ
れは、数7で表せるような形をしている。
In the simple control, the interference is regarded as a disturbance, and it is not actively dealt with to a certain extent, and a control system in which each manipulated variable works with respect to each controlled variable. It has a shape that can be expressed by Equation 7.

【0034】[0034]

【数7】 (Equation 7)

【0035】この方式での制御量の挙動は、数7を数6
に代入し、数8で表すことができる。
The behavior of the controlled variable in this system is expressed by Equation 7
And can be expressed by Equation 8.

【0036】[0036]

【数8】 (Equation 8)

【0037】この制御方式で、今、操作量u2(k)が何
らかの異常をきたして、作動不能となったとする。ここ
では簡単のため、u2(k)=0を例にとる。これは、式
の上では、k2 =0とおいたことに相当する。すると、
状態量x2(k)はもちろんのこと、x1(k)に対して
も、正規の制御を期待することができない。それは、数
8から分かるように、x1(k)からすると外乱であるx
2(k)とその係数(b+fk2 )が、それまではある程
度小さく抑えられていたのに対し、k2 =0となったこ
とで元の大きさに増大し、x2(k)の影響を如実に受け
るからである。
In this control system, it is assumed that the operation amount u 2 (k) has some abnormality and cannot operate. Here, for simplification, u 2 (k) = 0 will be taken as an example. This corresponds to setting k 2 = 0 in the equation. Then
Regular control cannot be expected not only for the state quantity x 2 (k) but also for x 1 (k). As can be seen from Equation 8, it is a disturbance x 1 (k)
2 (k) and its coefficient (b + fk 2 ) were kept small to some extent until then, but when k 2 = 0, the original size was increased, and the effect of x 2 (k) It is because it is really received.

【0038】そこで、干渉を除く制御を考える。干渉の
問題を解決するには、1入力1出力の制御しか考慮しな
い古典制御理論では困難で、多入力多出力を扱う現代制
御理論が有効である。一般的には、非干渉制御の操作量
の解は、数9で表す形である。
Therefore, let us consider control for eliminating interference. In order to solve the problem of interference, it is difficult to use the classical control theory that considers only the control of one input and one output, and the modern control theory that handles multiple inputs and multiple outputs is effective. In general, the solution of the manipulated variable for non-interference control is in the form represented by Equation 9.

【0039】[0039]

【数9】 [Equation 9]

【0040】あるいは個々に分解して数10で表せる形
をしている。
Alternatively, it is in a form that can be individually decomposed and expressed by equation (10).

【0041】[0041]

【数10】 (Equation 10)

【0042】この制御による制御量の挙動は、数10を
数6に代入して、数11で表せる。
The behavior of the controlled variable due to this control can be expressed by Equation 11 by substituting Equation 10 into Equation 6.

【0043】[0043]

【数11】 [Equation 11]

【0044】非干渉制御は、互いに外乱と見なせる項、
1(k)に対しては(b+ek12+fk22)を小さく、
2(k)に対しては(c+gk11+hk21)を小さくす
れば達成できる。
In the non-interference control, terms that can be regarded as disturbances to each other,
For x 1 (k), (b + ek 12 + fk 22 ) is small,
This can be achieved by reducing (c + gk 11 + hk 21 ) with respect to x 2 (k).

【0045】ところが今、u2(k)が何らかの異常をき
たして、作動不可能となったとする。ここでは簡単のた
め、u2(k)=0を例にとる。これは、式の上では、k
21=k22=0とおいたことに相当する。すると、方式で
起こった不都合が、数11からも分かるように、同じよ
うに顕在化する。つまり、x1(k)を制御するときにu
2(k)、言い換えればk21,k22を必要としているの
で、操作量u2(k)の故障は、制御量x2(k)を正規に
制御できないのはもちろん、x1(k)をも制御できな
い。それは、k21=k22=0は、x1(k)の挙動を決め
る係数(a+ek11+fk21)にも影響を与えることか
ら容易に分かる。
However, it is now assumed that u 2 (k) has become abnormal due to some abnormality. Here, for simplification, u 2 (k) = 0 will be taken as an example. This is k
This is equivalent to setting 21 = k 22 = 0. Then, the inconvenience that has occurred in the method is manifested in the same manner as can be seen from the equation 11. That is, when controlling x 1 (k), u
Since 2 (k), in other words, k 21 and k 22 are required, the failure of the manipulated variable u 2 (k) cannot control the controlled variable x 2 (k) normally, and of course x 1 (k) Can't even control. It is easily understood that k 21 = k 22 = 0 also affects the coefficient (a + ek 11 + fk 21 ) that determines the behavior of x 1 (k).

【0046】以上が従来空気調和機の制御方法の干渉
と、異常事態発生時の問題点である。
The above is the interference of the control method of the conventional air conditioner and the problems when an abnormal situation occurs.

【0047】そこで、次のような方法をとる。まず、非
干渉制御を期待せず、前述の単純制御のように、個々の
状態量に、個々の操作量を担わせる方式をとる。そし
て、制御対象の特性を時々刻々把握する推定機構を設
け、その推定パラメータをオンラインで調節する適応制
御則を適用する。推定機構を構築する際には、その制御
対象のモデルを決定しなければならない。一般に、制御
対象のモデルを正確に表すことは困難なので、近似モデ
ルを用いる。ここでは制御対象数6に対して、数12で
表す近似モデルを用いることとする。
Therefore, the following method is adopted. First, without expecting non-interference control, a method is adopted in which each state quantity is responsible for each operation amount as in the simple control described above. Then, an estimation mechanism for grasping the characteristics of the controlled object from moment to moment is provided, and an adaptive control law for adjusting the estimation parameter online is applied. When constructing the estimation mechanism, the model of the controlled object must be determined. Generally, it is difficult to accurately represent the model of the controlled object, so an approximate model is used. Here, the approximate model represented by the equation 12 is used for the controlled object number 6.

【0048】[0048]

【数12】 (Equation 12)

【0049】このモデル中のパラメータを何らかの方法
で推定し、パラメータが推定できると、操作量は、その
パラメータ推定値をもとに演算される制御ゲインを用い
る。それは数13で表される。
When the parameters in this model can be estimated by some method and the parameters can be estimated, the control amount used is the control gain calculated based on the parameter estimated value. It is expressed by equation 13.

【0050】[0050]

【数13】 (Equation 13)

【0051】ここでa′,e′,d′,h′はa,e,
d,hの推定値である。この制御ゲインは、制御対象の
特性パラメータの推定値の関数であり、可変ゲインであ
る。このようにして構成された制御システムは、基本的
には数8で表されるものと同様になるが、制御ゲインk
1,k2の代わりに可変ゲインk1′,k2′であることが
異なる点である。それは数14で表される。
Where a ', e', d ', h'are a, e,
These are estimated values of d and h. This control gain is a function of the estimated value of the characteristic parameter to be controlled, and is a variable gain. The control system configured in this way is basically the same as the one expressed by Equation 8, but the control gain k
The difference is that variable gains k 1 ′ and k 2 ′ are used instead of 1 and k 2 . It is expressed by equation (14).

【0052】[0052]

【数14】 [Equation 14]

【0053】この構成では、前述したように、制御量x
1(k)は、x2(k)と、u2(k)による干渉を免れな
い。しかし、推定機構は、それらを外乱と見なし、見掛
け上の推定値a′,e′を推定する。つまり、実際加わ
るx2(k)の影響を、いかにもパラメータa′,e′が
時間的に変化している結果のように考える。それによ
り、フィードバックゲインも調整し直され、外乱x
2(k)を全く考慮しない前述の単純な制御則よりも、制
御対象をより良く制御することができる。これは適応制
御のロバスト性を背景としている。
In this configuration, as described above, the controlled variable x
1 (k) cannot avoid interference from x 2 (k) and u 2 (k). However, the estimation mechanism regards them as disturbances and estimates the apparent estimated values a ′ and e ′. That is, the effect of x 2 (k) actually added is considered as a result of the parameters a ′ and e ′ changing with time. As a result, the feedback gain is also adjusted, and the disturbance x
The controlled object can be controlled better than the simple control law described above that does not consider 2 (k) at all. This is due to the robustness of adaptive control.

【0054】ここでもし、操作量u2(k)が故障して作
動不可能となったとする。すると、制御量x2(k)の挙
動が変化するので、これらを包含する意味で推定してい
た見掛け上の推定値a′,e′の値が、さらに変化す
る。そして、フィードバックゲインk1′は、外乱x
2(k)の挙動変化のため起こった状態変化を、システム
の特性a′,e′の変化と見なすことで吸収し、以前と
同じ制御状態にしようとするので、x2(k)が乱れたに
もかかわらず、比較的安定な状態に保つことができる。
Here, it is assumed that the manipulated variable u 2 (k) fails and becomes inoperable. Then, since the behavior of the controlled variable x 2 (k) changes, the values of the apparent estimated values a ′ and e ′ estimated in the meaning of including them further change. Then, the feedback gain k 1 ′ is the disturbance x
The state change caused by the behavior change of 2 (k) is absorbed by considering it as the change of the system characteristics a ′ and e ′, and the same control state as before is absorbed, so that x 2 (k) is disturbed. However, it can be kept relatively stable.

【0055】以上が、従来多室空気調和機と、本多室空
気調和機の制御法の違いによる干渉,耐故障性の違いで
ある。
The above is the difference in interference and failure resistance due to the difference in control method between the conventional multi-room air conditioner and this multi-room air conditioner.

【0056】次に本多室空気調和機の一連の動作を、図
3のフローチャートを用いて説明する。
Next, a series of operations of the multi-room air conditioner will be described with reference to the flowchart of FIG.

【0057】初めに、多室空気調和機が起動される(S
1)。そのときの室外空気温度や、利用家屋室内空気温
度などの条件に応じて、図1,図2の制御装置32が、
圧縮機駆動周波数や、室内膨張弁開度などの操作量の初
期値が演算し、出力する(S1,S2,S3,S4,S
5)。
First, the multi-room air conditioner is started (S
1). According to the conditions such as the outdoor air temperature at that time and the indoor air temperature of the user's house, the control device 32 of FIG. 1 and FIG.
The initial value of the operation amount such as the compressor drive frequency and the indoor expansion valve opening is calculated and output (S1, S2, S3, S4, S
5).

【0058】次に、異常情報を示す信号が割り込んだか
を確認し、異常室内機があれば、その番号mを取得する
(S6)。異常室内機がある,ないにかかわらず、室内
機吹出空気温度,利用家屋室内空気温度が、変化してい
るので、その様子を、検知器により観測し、室内機能力
を演算する(S8,S9)。
Next, it is confirmed whether or not the signal indicating the abnormality information is interrupted, and if there is an abnormal indoor unit, the number m thereof is acquired (S6). Regardless of whether or not there is an abnormal indoor unit, the indoor unit blown air temperature and the indoor air temperature of the user's house are changing, so the situation is observed by a detector and the indoor functional force is calculated (S8, S9). ).

【0059】もし異常情報が取得されているならば、異
常事態が発生する以前の室内機特性とは異なったものに
なるので、その室内機番号が既知ならば異常室内機につ
いてのP(m)(k)を初期化する。これは、P(m)(k)
が、以前の室内機特性情報を蓄積する、確率分散を意味
するからであり、異常状態の室内機特性を、いち早く、
新たに明確化する準備を整える(S10,S11,S1
2)。異常があるにもかかわらず、異常情報が入手でき
ないときや、あるいは異常室内機の番号が明確に断定で
きないときには、確率分散を初期化できないため、やや
応答が鈍る。しかし、室内機特性を把握するという本来
の機能を失うわけではないので、以下の手順に支障をき
たすことはない。
If the abnormality information is acquired, the indoor unit characteristics before the occurrence of the abnormal situation are different, so if the indoor unit number is known, P (m) for the abnormal indoor unit Initialize (k). This is P (m) (k)
Is because it means probability distribution, which accumulates the previous indoor unit characteristic information, so that the indoor unit characteristic in an abnormal state can be quickly
Prepare for new clarification (S10, S11, S1
2). If there is an abnormality, but the abnormality information is not available, or if the number of the abnormal indoor unit cannot be clearly determined, the probability distribution cannot be initialized, and the response is somewhat slow. However, since the original function of grasping the indoor unit characteristics is not lost, the following procedure will not be hindered.

【0060】ここで室内機特性を表すパラメータを推定
する。それによって、室内機特性に応じた室内膨張弁開
度を演算する(S13,S14)。
Here, the parameters representing the indoor unit characteristics are estimated. Thereby, the indoor expansion valve opening degree according to the indoor unit characteristic is calculated (S13, S14).

【0061】圧縮機駆動周波数が新たに算出され、以前
のステップで行われた作業を、多室空気調和機が停止さ
れるまで、繰り返す(S15,S16,S17)。
The compressor drive frequency is newly calculated, and the work performed in the previous steps is repeated until the multi-room air conditioner is stopped (S15, S16, S17).

【0062】このようにして多室空気調和機の各室内機
の特性に応じて、室内膨張弁開度を、適応的にかつ独立
分散的に演算,操作することによって、異常事態が発生
したときにも、多室空気調和機の全室内機の制御特性を
劣化させることなく、最小限の被害にとどめるような運
転を行うことができる。
In this way, when an abnormal situation occurs by calculating and operating the indoor expansion valve opening degree adaptively and independently in accordance with the characteristics of each indoor unit of the multi-room air conditioner. Moreover, it is possible to perform an operation that minimizes the damage without deteriorating the control characteristics of all the indoor units of the multi-room air conditioner.

【0063】以上の例では、室内膨張弁開度のみについ
て扱ったが、室内ファンについても、以上の考え方に準
じることによって、同じ効果を得ることができる。また
利用部として空気調和だけでなく、冷凍,水温管理な
ど、様々な熱機械でも使用できる。
In the above example, only the opening degree of the indoor expansion valve is dealt with, but the same effect can be obtained for the indoor fan by applying the above concept. Moreover, it can be used not only for air conditioning but also for various heat machines such as freezing and water temperature control as a utilization part.

【0064】[0064]

【発明の効果】本発明によれば、多室空気調和機で、運
転室内機に何らかの異常事態が発生した際にも、正常室
内機の運転を継続し、被害を最小限にとどめる効果を発
揮することができる。
According to the present invention, in a multi-room air conditioner, even when an abnormal situation occurs in a driving indoor unit, the operation of the normal indoor unit is continued and the damage is minimized. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の制御装置におけるブロック図。FIG. 1 is a block diagram of a control device of the present invention.

【図2】多室空気調和機とその利用家屋の系統図。FIG. 2 is a system diagram of a multi-room air conditioner and a house where the air conditioner is used.

【図3】本発明の制御装置の実施例における検知器,演
算器,操作器の一連の動作を表すアルゴリズムを表すフ
ローチャート。
FIG. 3 is a flowchart showing an algorithm showing a series of operations of a detector, a computing unit, and an operating unit in the embodiment of the control device of the present invention.

【符号の説明】[Explanation of symbols]

18…温度検知器、19,20…圧力検知器、22…イ
ンバータ圧縮機操作器、23…送風能力操作器、25…
室外膨張弁開度操作器、261,26N,271,27N
…空気温度検知器、281,28N…送風能力操作器、
291,29N…電力検知器、301,30N…膨張
弁、311,31N…設定器、32…制御演算装置、4
0…室外ファン回転数演算器、41…圧縮機駆動周波数
演算器、42…室外膨張弁開度演算器、43…室内膨張
弁開度演算器、44…室内ファン回転数演算器、45…
適応調節器、46…多室空気調和機能力演算器。
18 ... Temperature detector, 19, 20 ... Pressure detector, 22 ... Inverter compressor operator, 23 ... Blower capacity operator, 25 ...
Outdoor expansion valve opening operation device, 261, 26N, 271, 27N
... Air temperature detector, 281, 28N ... Blower capacity controller,
291, 29N ... Power detector, 301, 30N ... Expansion valve, 311, 31N ... Setting device, 32 ... Control arithmetic unit, 4
0 ... Outdoor fan rotation speed calculator, 41 ... Compressor drive frequency calculator, 42 ... Outdoor expansion valve opening calculator, 43 ... Indoor expansion valve opening calculator, 44 ... Indoor fan rotation speed calculator, 45 ...
Adaptive controller, 46 ... Multi-room air conditioning functional force calculator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 進 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 小国 研作 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Susumu Nakayama 390 Muramatsu, Shimizu-shi, Shizuoka Hitachi Air Conditioning Systems Division (72) Inventor Kensaku Oguni 390, Muramatsu, Shimizu-shi, Hitachi Hitachi Air Conditioning Systems Business Department

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】室外機と、室内機を一台または複数台設
け、前記室外機と前記室内機とを配管接続して閉回路と
なし、前記閉回路の中に冷媒を封入し、前記室外機で
は、周波数可変の圧縮機と室外熱交換器、及び室外膨張
弁を配管するとともに前記室外熱交換器に送風する室外
ファンを備え、前記室内機では、室内空気と熱交換を行
う室内熱交換器と前記室内熱交換器の冷媒の流量を調節
する室内膨張弁を順次配管するとともに前記室内熱交換
器に送風する室内ファンを備えて形成される多室空気調
和機において、室外空気温度,圧縮機冷媒吐出過熱度,
圧縮機冷媒吸入圧力,圧縮機冷媒吐出圧力,圧縮機消費
電力,利用家屋室内空気温度及び室内機吹出空気温度を
含む各制御量を検知する検知手段と、圧縮機駆動周波
数,室外ファン回転数,室外膨張弁開度,室内ファン回
転数及び室内膨張弁開度を含む各操作量を操作する操作
手段と、室内設定温度を含む設定値を設定する設定手段
とを備え、ある検知手段あるいは操作手段が正常に作動
しなくなっても、その他の検知手段あるいは操作手段が
その機能を補い、多室空気調和機全体が正常に作動する
制御装置を備えたことを特徴とする多室空気調和機。
1. An outdoor unit and one or a plurality of indoor units are provided, the outdoor unit and the indoor unit are connected by piping to form a closed circuit, and a refrigerant is sealed in the closed circuit to form the outdoor unit. The indoor unit includes an outdoor fan for piping a variable frequency compressor, an outdoor heat exchanger, and an outdoor expansion valve and blowing air to the outdoor heat exchanger, and for the indoor unit, indoor heat exchange for exchanging heat with indoor air. In the multi-room air conditioner formed by sequentially piping an indoor expansion valve for adjusting the flow rate of the refrigerant of the indoor heat exchanger and the indoor fan for blowing air to the indoor heat exchanger, the outdoor air temperature and compression Machine refrigerant discharge superheat degree,
Detecting means for detecting each controlled variable including compressor refrigerant suction pressure, compressor refrigerant discharge pressure, compressor power consumption, indoor air temperature of the house used and air temperature of blown indoor air, compressor drive frequency, outdoor fan speed, An operating means for operating each operation amount including an outdoor expansion valve opening degree, an indoor fan rotation speed, and an indoor expansion valve opening degree, and a setting means for setting a set value including an indoor set temperature. A multi-room air conditioner including a control device for compensating for the function of the other multi-room air conditioner even if the normal operation of the multi-room air conditioner does not operate normally.
JP8082356A 1996-04-04 1996-04-04 Multi-chamber air conditioner Pending JPH09273797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8082356A JPH09273797A (en) 1996-04-04 1996-04-04 Multi-chamber air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8082356A JPH09273797A (en) 1996-04-04 1996-04-04 Multi-chamber air conditioner

Publications (1)

Publication Number Publication Date
JPH09273797A true JPH09273797A (en) 1997-10-21

Family

ID=13772309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8082356A Pending JPH09273797A (en) 1996-04-04 1996-04-04 Multi-chamber air conditioner

Country Status (1)

Country Link
JP (1) JPH09273797A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529410A (en) * 2007-06-12 2010-08-26 ダンフォス・アクチ−セルスカブ Method for controlling a vapor compression system
WO2014106443A1 (en) * 2013-01-07 2014-07-10 四川长虹电器股份有限公司 Air-conditioning control system
CN104422072A (en) * 2013-09-05 2015-03-18 珠海格力电器股份有限公司 Control method of multi-split air conditioner and control system of multi-split air conditioner
WO2018230281A1 (en) * 2017-06-12 2018-12-20 日立ジョンソンコントロールズ空調株式会社 Air conditioning system, air conditioning method, and control device
CN109798644A (en) * 2019-01-15 2019-05-24 广东美的暖通设备有限公司 Control method and air-conditioning system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529410A (en) * 2007-06-12 2010-08-26 ダンフォス・アクチ−セルスカブ Method for controlling a vapor compression system
WO2014106443A1 (en) * 2013-01-07 2014-07-10 四川长虹电器股份有限公司 Air-conditioning control system
CN104422072A (en) * 2013-09-05 2015-03-18 珠海格力电器股份有限公司 Control method of multi-split air conditioner and control system of multi-split air conditioner
CN104422072B (en) * 2013-09-05 2017-03-15 珠海格力电器股份有限公司 Control method of multi-split air conditioner and control system of multi-split air conditioner
WO2018230281A1 (en) * 2017-06-12 2018-12-20 日立ジョンソンコントロールズ空調株式会社 Air conditioning system, air conditioning method, and control device
CN109392304A (en) * 2017-06-12 2019-02-26 日立江森自控空调有限公司 Air-conditioning system, air-conditioning method and control device
JPWO2018230281A1 (en) * 2017-06-12 2019-06-27 日立ジョンソンコントロールズ空調株式会社 Air conditioning system, air conditioning method, and control device
CN109392304B (en) * 2017-06-12 2021-04-20 日立江森自控空调有限公司 Air conditioning system, air conditioning method and control device
US11015834B2 (en) 2017-06-12 2021-05-25 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioning system, air conditioning method, and control device
CN109798644A (en) * 2019-01-15 2019-05-24 广东美的暖通设备有限公司 Control method and air-conditioning system
CN109798644B (en) * 2019-01-15 2020-11-13 广东美的暖通设备有限公司 Control method and air conditioning system

Similar Documents

Publication Publication Date Title
JP4336209B2 (en) Heat transfer system and heat transfer method
JP4134781B2 (en) Air conditioning equipment
US5791155A (en) System for monitoring expansion valve
US20180267515A1 (en) Control system with combined extremum-seeking control and feedforward control
US20100298987A1 (en) Constant air volume hvac system with a dehumidification function and discharge air temperature control, an hvac controller therefor and a method of operation thereof
CN105509387A (en) Air-cooled heat pump unit and openness control method of electronic expansion valve therein and air conditioner
US10268212B2 (en) Method and devices for balancing a group of consumers in a fluid transport system
AU2018432700B2 (en) Air-conditioning apparatus and air-conditioning method
US9885489B2 (en) HVAC systems
CN110332648B (en) Control method and device of electronic expansion valve and multi-connected air conditioning system
EP2918934A1 (en) Control device
US20230288087A1 (en) Avoiding Coil Freeze in HVAC Systems
JP2014206304A (en) Air conditioner
AU2003213441B2 (en) Air conditioner, and method of controlling air conditioner
JPH07269926A (en) Control device for air conditioner
JPH09273797A (en) Multi-chamber air conditioner
JP2005301582A (en) Process management device
JP2003262384A (en) Air conditioning heat source system and controlling method of the air conditioning heat source system
JP3383901B2 (en) Air conditioner
JP2017101907A (en) Air conditioning control device, air conditioning control method, air conditioning control program, and air conditioning control system
US11408626B2 (en) Central plant control system with dynamic computation reduction
JP3534048B2 (en) Air conditioning system
JP2760144B2 (en) Multi-room air conditioner
JP3465217B2 (en) Air conditioner
JP3388305B2 (en) Multi-room air conditioner