JPH09260635A - Current control device - Google Patents

Current control device

Info

Publication number
JPH09260635A
JPH09260635A JP6410096A JP6410096A JPH09260635A JP H09260635 A JPH09260635 A JP H09260635A JP 6410096 A JP6410096 A JP 6410096A JP 6410096 A JP6410096 A JP 6410096A JP H09260635 A JPH09260635 A JP H09260635A
Authority
JP
Japan
Prior art keywords
voltage
variable resistance
current control
output terminals
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6410096A
Other languages
Japanese (ja)
Inventor
Masayoshi Ishibashi
雅義 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6410096A priority Critical patent/JPH09260635A/en
Publication of JPH09260635A publication Critical patent/JPH09260635A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a super-small-sized current control device when an integrating circuit is manufactured, using atoms and molecules by a method, wherein an output current is controlled when a voltage is applied to between input and output terminals by the dope to a variable resistance portion. SOLUTION: In a state where a voltage is not applied to gate electrodes 6, 7, resistance values of variable resistance parts 4, 5 are equal. Accordingly, when a voltage is applied between input and output terminals, current values of output terminals 11, 12 are equal. When a voltage is applied between gate electrodes 6 and 7, a dopant is attracted to the positive electrode side by a coulomb force. Accordingly, when a voltage is applied between the input and output terminals, a current flows more in the output terminal 11 than in the output terminal 12. Reversely, when a voltage is applied between the input and output terminals, a current flows more in the output terminal 12 than in the output terminal 11. As a result, a current amount of the output terminal can be controlled by the voltage amount applied to a gate electrode. Further, switching of two output terminals can be performed by a magnitude of the voltage amount applied to the gate electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電流制御素子に関す
る。
TECHNICAL FIELD The present invention relates to a current control element.

【0002】[0002]

【従来の技術】現在のデジタル電子素子では、シリコン
微細加工技術の進歩により「集積化の容易性」と「低消
費電力」,「高速度処理」という三つの特徴をもつシリ
コンMOSトランジスタを使用したものが主流となって
いる。
2. Description of the Related Art In the current digital electronic device, a silicon MOS transistor having three characteristics of "ease of integration", "low power consumption", and "high speed processing" is used due to the progress of silicon microfabrication technology. Things are the mainstream.

【0003】年々素子の小型化が進んでいるが、シリコ
ンMOSトランジスタが上記三つの特徴を保ちながら動
作するのは、電極の大きさ,間隔が0.1μm 程度が限
界といわれている。現在の小型化の進歩の割合でいくと
2010年には0.1μmに達してしまう。そのため、
シリコンMOSトランジスタよりも小さくかつ高性能な
次の世代の素子の開発が要望されている。
Although the size of the device has been reduced year by year, it is said that the size of the electrode and the interval between the electrodes are about 0.1 μm for the silicon MOS transistor to operate while maintaining the above three characteristics. The current rate of miniaturization will reach 0.1 μm in 2010. for that reason,
There is a demand for the development of next-generation devices that are smaller and have higher performance than silicon MOS transistors.

【0004】[0004]

【発明が解決しようとする課題】シリコンMOSトラン
ジスタの次の世代の素子として、原子を並べて作製する
原子素子、あるいは単独の分子の機能性を直接利用した
分子素子などが有力な候補に挙げられている。原子素
子,分子素子を用いて集積化回路を作製する際には電流
を制御する素子が必要になる。
As the next-generation element of the silicon MOS transistor, an atomic element prepared by arranging atoms, or a molecular element directly utilizing the functionality of a single molecule is cited as a strong candidate. There is. When manufacturing an integrated circuit using atomic elements and molecular elements, an element that controls current is required.

【0005】本発明の目的は、原子,分子を用いて集積
化回路を作製する際の超小型電流制御素子を提供するこ
とである。
It is an object of the present invention to provide a microminiature current control element for manufacturing an integrated circuit using atoms and molecules.

【0006】[0006]

【課題を解決するための手段】本発明によれば、可変抵
抗部分にドープ量により導電性が変化する物質の機能性
を利用し、一つの入力端子と複数の出力端子をもち、入
力端子の先に分岐点をもち、前記分岐点で複数の導線に
分岐し、分岐した先に可変抵抗部分があり出力端子につ
ながる構造を作ることにより、分子,原子素子で回路を
作製するときに必要な超小型電流制御素子が提供され
る。
According to the present invention, by utilizing the functionality of a substance whose conductivity changes depending on the doping amount in the variable resistance portion, it has one input terminal and a plurality of output terminals, and Necessary when making a circuit with a molecular or atomic element by having a branch point first, branching into a plurality of conducting wires at the branch point, and forming a structure in which there is a variable resistance part at the branched point and is connected to an output terminal A miniature current control device is provided.

【0007】本発明によれば、ゲートに電圧を印加し、
可変抵抗部分の電気抵抗を変化させることにより入出力
端子間の電流量の制御,スイッチを印加電圧の大きさに
よって自由に行うことができる。
According to the present invention, a voltage is applied to the gate,
By changing the electric resistance of the variable resistance portion, the amount of current between the input and output terminals can be controlled and the switch can be freely performed according to the magnitude of the applied voltage.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)図1に本発明の実施例に基づく電流制御素
子の構造を示す。導線2は分岐点3で二股に分かれ、そ
の先に各々ドープ量により導電性が変化する可変抵抗部
4,5があり、再び導線9,10につながる。可変抵抗
部4,5の片側にはそれぞれゲート電極6,7がある。
可変抵抗部4,5の間には電荷移動部8がある。
(Embodiment 1) FIG. 1 shows the structure of a current control element according to an embodiment of the present invention. The conducting wire 2 is bifurcated at a branch point 3, and variable resistance portions 4 and 5 whose conductivity changes depending on the doping amount are provided at the ends thereof, and are connected to the conducting wires 9 and 10 again. Gate electrodes 6 and 7 are provided on one side of the variable resistance portions 4 and 5, respectively.
The charge transfer unit 8 is provided between the variable resistance units 4 and 5.

【0009】導線2,6,7,ゲート電極9,10は厚
さ,幅ともに約2nmの白金線である。可変抵抗部4,
5はポリアセチレンのフィブリル。電荷移動部8にはド
ーパントとしてヨウ素を封入した。また、この素子は酸
化シリコン基板の上に作製し、さらに上から酸化シリコ
ンで挟み込む構造にしてある。
The conductors 2, 6, 7 and the gate electrodes 9, 10 are platinum wires each having a thickness and a width of about 2 nm. Variable resistance part 4,
5 is fibril of polyacetylene. Iodine was enclosed in the charge transfer portion 8 as a dopant. In addition, this element is manufactured on a silicon oxide substrate and further sandwiched by silicon oxide from above.

【0010】図2は上記素子のゲート電圧による電流制
御,スイッチング特性を示す。横軸はゲート電極に印加
する電圧量、縦軸は入出力端子間に電圧をかけた場合の
電流量である。ドーパントはI3 -という形で負に帯電し
ている。可変抵抗部4,5に使用したポリアセチレンは
ドーパントのドープ量によって抵抗値が変化する。
FIG. 2 shows current control and switching characteristics by the gate voltage of the above device. The horizontal axis represents the amount of voltage applied to the gate electrode, and the vertical axis represents the amount of current when a voltage is applied between the input and output terminals. The dopant is negatively charged in the form I 3 . The resistance value of the polyacetylene used for the variable resistance parts 4 and 5 changes depending on the doping amount of the dopant.

【0011】ゲート電極6,7に電圧をかけない状態で
は可変抵抗部4,5にドーパントが均等にドープされて
いるため、可変抵抗部4,5の抵抗値は等しい。したが
って、入出力端子間に電圧をかけた場合、出力端子1
1,12の電流値は等しい。
When no voltage is applied to the gate electrodes 6 and 7, the variable resistance portions 4 and 5 are uniformly doped with a dopant, so that the resistance values of the variable resistance portions 4 and 5 are equal. Therefore, when a voltage is applied between the input and output terminals, the output terminal 1
The current values of 1 and 12 are equal.

【0012】ゲート電極6,7間に電圧を印加するとク
ーロン力により正の電極側にドーパントが引き寄せられ
る。ゲート電極6を正とした場合、ゲート電極への印加
電圧量の増大に伴い、可変抵抗部4の抵抗値が小さくな
り、可変抵抗部5の抵抗値が大きくなる。したがって、
入出力端子間に電圧をかけた場合、出力端子11の方が
出力端子12より電流は多く流れる。
When a voltage is applied between the gate electrodes 6 and 7, the Coulomb force attracts the dopant to the positive electrode side. When the gate electrode 6 is positive, the resistance value of the variable resistance portion 4 decreases and the resistance value of the variable resistance portion 5 increases as the amount of voltage applied to the gate electrode increases. Therefore,
When a voltage is applied between the input and output terminals, a larger amount of current flows in the output terminal 11 than in the output terminal 12.

【0013】逆に、ゲート電極6を負とした場合、ゲー
ト電極への印加電圧量の増大に伴い、可変抵抗部4の抵
抗値が大きくなり、可変抵抗部5の抵抗値が小さくな
る。したがって、入出力端子間に電圧をかけた場合、出
力端子12の方が出力端子11より電流は多く流れる。
On the contrary, when the gate electrode 6 is made negative, the resistance value of the variable resistance portion 4 increases and the resistance value of the variable resistance portion 5 decreases as the applied voltage amount to the gate electrode increases. Therefore, when a voltage is applied between the input and output terminals, a larger amount of current flows in the output terminal 12 than in the output terminal 11.

【0014】可変抵抗部4,5に、ポリパラフェニレン
ビニレン,ポリチオール,ポリピロール,C60,C70
LaC82,YC82,カーボンナノチューブを、電荷移動
部8に封入するドーパントに臭素(Br)をそれぞれ用
いても同様な結果が得られた。
In the variable resistance parts 4 and 5, polyparaphenylene vinylene, polythiol, polypyrrole, C 60 , C 70 ,
Similar results were obtained when LaC 82 , YC 82 , and carbon nanotubes were used and bromine (Br) was used as the dopant to be sealed in the charge transfer portion 8.

【0015】これらのことから、ゲート電極に印加する
電圧量により出力端子の電流量を制御できることが実証
できた。また、ゲート電極に印加する電圧量の大きさに
より二つの出力端子のスイッチングもできることが実証
できた。
From the above, it was proved that the amount of current at the output terminal can be controlled by the amount of voltage applied to the gate electrode. It was also proved that two output terminals can be switched depending on the amount of voltage applied to the gate electrode.

【0016】(実施例2)電荷移動部8に封入するドー
パントにカリウム(K)を用いて実施例1と同様の構造
を作製し、実施例1と同様にゲート間に電圧を印加し入
出力端子間に電圧をかけた場合の電流量を測定した。
(Embodiment 2) A structure similar to that of Embodiment 1 is prepared by using potassium (K) as a dopant to be sealed in the charge transfer portion 8, and a voltage is applied between the gates as in Embodiment 1 to input / output. The amount of current when a voltage was applied between the terminals was measured.

【0017】その結果、実施例1とは逆に、ゲート電極
6を正として、入出力端子間に電圧をかけた場合、ゲー
ト電極への印加電圧量の増大に伴い、出力端子12の方
が出力端子11より電流は多く流れるようになる。ま
た、ゲート電極6を負として、入出力端子間に電圧をか
けた場合、出力端子11の方が出力端子12より電流は
多く流れる。
As a result, contrary to the first embodiment, when the gate electrode 6 is positive and a voltage is applied between the input and output terminals, the output terminal 12 is more likely to be connected with the increase of the voltage applied to the gate electrode. A larger amount of current will flow from the output terminal 11. When the gate electrode 6 is negative and a voltage is applied between the input and output terminals, a larger amount of current flows in the output terminal 11 than in the output terminal 12.

【0018】これは、ドーパントのカリウムがK+ とい
う形で正に帯電しているためと考えられる。また、可変
抵抗部4,5に、ポリパラフェニレンビニレン,ポリチ
オール,ポリピロール,C60,C70,LaC82,Y
82,カーボンナノチューブを、電荷移動部8に封入す
るドーパントにナトリウム,ルビジウムをそれぞれ用い
ても同様な結果が得られた。
It is considered that this is because the dopant potassium is positively charged in the form of K +. Further, polyparaphenylene vinylene, polythiol, polypyrrole, C 60 , C 70 , LaC 82 , Y are added to the variable resistance parts 4 and 5.
Similar results were obtained when C 82 and carbon nanotubes were used as the dopants to be encapsulated in the charge transfer portion 8 and sodium and rubidium were used, respectively.

【0019】これらのことから、実施例1の時と同様に
ゲート電極に印加する電圧量により出力端子の電流量を
制御することができ、二つの出力端子のスイッチングも
できることが実証できた。
From these facts, it was proved that the amount of current applied to the gate electrode can be controlled by the amount of voltage applied to the gate electrode and switching between two output terminals can be performed, as in the first embodiment.

【0020】(実施例3)電荷移動部8の部分に強誘電
体チタン酸バリウムを用いて実施例1と同様の構造を作
製し、実施例1と同様にゲート間に電圧を印加し入出力
端子間に電圧をかけた場合の電流量を測定した。その結
果が図3である。
(Embodiment 3) A structure similar to that of Embodiment 1 is prepared by using a ferroelectric barium titanate in the portion of the charge transfer portion 8, and a voltage is applied between the gates as in Embodiment 1 to input / output. The amount of current when a voltage was applied between the terminals was measured. The result is shown in FIG.

【0021】ゲート電極6,7に電圧をかけない状態で
は可変抵抗部4,5にドープされていないため、可変抵
抗部4,5は絶縁体である。したがって、入出力端子間
に電圧を印加しても、出力端子11,12に電流は流れ
ない。ゲート電極6,7間に電圧を印加すると強誘電体
チタン酸バリウムが誘電分極する。ゲート電極6を正と
した場合、ゲート電極への印加電圧量の増大に伴い、可
変抵抗部4は誘電分極した強誘電体表面の電子が注入さ
れ抵抗値が小さくなる。可変抵抗部5も誘電分極した強
誘電体表面のホールが注入され抵抗値が小さくなるが、
可変抵抗部4と比べると遥かに大きい。これは、ポリア
セチレンの電子受容性が強いためである。
Since the variable resistance portions 4 and 5 are not doped in a state where no voltage is applied to the gate electrodes 6 and 7, the variable resistance portions 4 and 5 are insulators. Therefore, even if a voltage is applied between the input and output terminals, no current flows in the output terminals 11 and 12. When a voltage is applied between the gate electrodes 6 and 7, the ferroelectric barium titanate is dielectrically polarized. When the gate electrode 6 is positive, the variable resistance portion 4 is injected with electrons on the surface of the dielectrically polarized ferroelectric substance as the applied voltage amount to the gate electrode increases, and the resistance value decreases. The variable resistance portion 5 is also injected with holes on the surface of the dielectrically polarized ferroelectric substance, so that the resistance value becomes small.
It is much larger than the variable resistance unit 4. This is because polyacetylene has a strong electron accepting property.

【0022】したがって、入出力端子間に電圧をかけた
場合、出力端子11の方が出力端子12より電流は多く
流れる。また、可変抵抗部4,5に、ポリパラフェニレ
ンビニレン,ポリチオール,ポリピロール,C60
70,LaC82,YC82,カーボンナノチューブをそれ
ぞれ用いても、同様な結果が得られた。
Therefore, when a voltage is applied between the input and output terminals, a larger amount of current flows in the output terminal 11 than in the output terminal 12. Further, the variable resistance parts 4 and 5 are provided with polyparaphenylene vinylene, polythiol, polypyrrole, C 60 ,
Similar results were obtained using C 70 , LaC 82 , YC 82 and carbon nanotubes, respectively.

【0023】このことから、ゲート電極に印加する電圧
量により出力端子の電流量を制御することができること
がわかった。また、ゲート電極に印加する電圧量の大き
さにより二つの出力端子のスイッチングもできることが
実証できた。
From this, it was found that the amount of current applied to the gate electrode can control the amount of current at the output terminal. It was also proved that two output terminals can be switched depending on the amount of voltage applied to the gate electrode.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、ゲ
ートへの印加電圧により入出力端子間の電流量を制御で
きる超小型素子ができる。
As described above, according to the present invention, it is possible to provide a microminiature element in which the amount of current between the input and output terminals can be controlled by the voltage applied to the gate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の素子の構造図。FIG. 1 is a structural diagram of an element according to an embodiment of the present invention.

【図2】本発明の一実施例における素子の基本性能を示
す図。
FIG. 2 is a diagram showing basic performance of an element according to an example of the present invention.

【図3】本発明の一実施例における素子の基本性能を示
す図。
FIG. 3 is a diagram showing basic performance of an element according to an example of the present invention.

【符号の説明】[Explanation of symbols]

2…導線、3…分岐点、4…可変抵抗部…、5…可変抵
抗部、6…ゲート電極、7…ゲート電極、8…電荷移動
部、9…導線、10…導線。
2 ... Conductive wire, 3 ... Branch point, 4 ... Variable resistance part ... 5 ... Variable resistance part, 6 ... Gate electrode, 7 ... Gate electrode, 8 ... Charge transfer part, 9 ... Conductive wire, 10 ... Conductive wire.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】一つの入力端子と分岐点と複数の出力端子
をもち、入力端子は導電体による導線でその先に分岐点
をもち、前記分岐点で複数の導線に分岐し、分岐した先
に各々ドープ量により導電性が変化する可変抵抗部分が
あり出力端子につながる構造を有し、可変抵抗部分への
ドープ量により入出力端子間に電圧を印加した場合の出
力電流を制御することを特徴とする電流制御素子。
1. An input terminal, a branch point, and a plurality of output terminals, wherein the input terminal is a conductor made of a conductor and has a branch point at the end thereof, and the branch point is branched to a plurality of conductor wires. Each has a variable resistance part whose conductivity changes depending on the doping amount and has a structure connected to the output terminal.The output current when a voltage is applied between the input and output terminals is controlled by the doping amount to the variable resistance part. Characteristic current control element.
【請求項2】前記可変抵抗部にドープにより伝導度が変
化するπ電子系化合物を使用することを特徴とする請求
項1記載の電流制御素子。
2. The current control element according to claim 1, wherein the variable resistance portion is made of a π-electron compound whose conductivity is changed by doping.
【請求項3】請求項2記載の素子において、可変抵抗部
にポリアセチレン,ポリパラフェニレンビニレン,ポリ
チオール,ポリピロール等のドープにより伝導度が変化
する導電性高分子を使用することを特徴とする電流制御
素子。
3. The device according to claim 2, wherein the variable resistance portion is made of a conductive polymer whose conductivity is changed by doping with polyacetylene, polyparaphenylene vinylene, polythiol, polypyrrole or the like. element.
【請求項4】請求項2記載の素子において、可変抵抗部
にC60,C70,LaC82,YC82,カーボンナノチュー
ブ等のドープにより伝導度が変化するフラーレン類を使
用することを特徴とする電流制御素子。
4. A device according to claim 2, characterized by the use of fullerenes which changes conductivity by doping of C 60, C 70, LaC 82 , YC 82, such as carbon nanotubes variable resistor Current control element.
【請求項5】請求項3,4記載の素子の可変抵抗部の両
側にゲート電極を配置し、複数の可変抵抗部分間に電圧
により電荷の移動が可能な電荷移動部分をもち、ゲート
電極に印加する電圧量により電荷移動部分の電荷を動か
し、可変抵抗部へドープ量を変化させることを特徴とす
る電流制御素子。
5. A gate electrode is arranged on both sides of a variable resistance portion of the element according to claim 3 and has a charge transfer portion capable of transferring charges by a voltage between a plurality of variable resistance portions, and the gate electrode is provided on the gate electrode. A current control element characterized in that a charge of a charge transfer portion is moved according to an applied voltage amount to change a doping amount to a variable resistance portion.
【請求項6】請求項5記載の素子において、上記電荷移
動部分に、ヨウ素,臭素などの電子供与体を使用するこ
とを特徴とする電流制御素子。
6. The current control device according to claim 5, wherein an electron donor such as iodine or bromine is used in the charge transfer portion.
【請求項7】請求項5記載の素子において、上記電荷移
動部分に、ナトリウム,カリウム,ルビジウムなどの電
子受容体を使用することを特徴とする電流制御素子。
7. The current control element according to claim 5, wherein an electron acceptor such as sodium, potassium or rubidium is used in the charge transfer portion.
【請求項8】請求項5記載の素子において、複数の可変
抵抗部分間の電圧により電荷の移動が可能な部分に、チ
タン酸バリウムなどの強誘電体を使用することを特徴と
する電流制御素子。
8. The current control element according to claim 5, wherein a ferroelectric material such as barium titanate is used in a portion where charges can be moved by a voltage between a plurality of variable resistance portions. .
JP6410096A 1996-03-21 1996-03-21 Current control device Pending JPH09260635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6410096A JPH09260635A (en) 1996-03-21 1996-03-21 Current control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6410096A JPH09260635A (en) 1996-03-21 1996-03-21 Current control device

Publications (1)

Publication Number Publication Date
JPH09260635A true JPH09260635A (en) 1997-10-03

Family

ID=13248329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6410096A Pending JPH09260635A (en) 1996-03-21 1996-03-21 Current control device

Country Status (1)

Country Link
JP (1) JPH09260635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005451A1 (en) * 2001-07-05 2003-01-16 Nec Corporation Field-effect transistor constituting channel by carbon nano tubes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005451A1 (en) * 2001-07-05 2003-01-16 Nec Corporation Field-effect transistor constituting channel by carbon nano tubes

Similar Documents

Publication Publication Date Title
EP0487101B1 (en) Electrically device with a doped amorphous silicon channel
US7183141B1 (en) Reversible field-programmable electric interconnects
JP4036757B2 (en) Active devices, field effect transistors, electrical circuits and fabrics
US10936944B2 (en) Three-terminal neuromorphic vertical sensing
JP3149718B2 (en) Single electron transistor
JP2001177109A (en) Thin film transistor
KR20040066931A (en) Organic thin-film transistor and manufacturing method thereof
KR20180049558A (en) Fibrous transistor and method for manufacturing the same
KR20020088356A (en) Organic semiconductor devices with short channels
JP2002026336A (en) Device equipped with bipolar semiconductor film
JP2006286681A (en) Field effect transistor and its manufacturing method
Keshmiri et al. A silicon-organic hybrid voltage equalizer for supercapacitor balancing
JPH09260635A (en) Current control device
JP3030285B2 (en) Nanoscale Mott transition molecular field effect transistor
JP2001024244A (en) Single-electron tunnel transistor using laminated structure
WO2020120133A1 (en) Nanoelectronic device and method for producing thereof
KR100560431B1 (en) Molecular switching devices
JPS5833872A (en) Manufacture of thin film field effect transistor
TW201108484A (en) Organic field-effect transistor
JP2013026389A (en) Electrochemical element and complementary circuit using electrochemical element
JP5453066B2 (en) Transistor with wire source and drain
TWI308377B (en) Logical circuit with ritds and mosfet
KR100340926B1 (en) Resonant tunneling transistor with carbon nanotubes as source and drain
JP4307661B2 (en) Variable resistance element
JP2004079674A (en) Filamentary element having plastic property, complementary type filamentary element having plastic property, and element having resonance property using same element