JPH09260199A - Multilayer capacitor - Google Patents

Multilayer capacitor

Info

Publication number
JPH09260199A
JPH09260199A JP8068582A JP6858296A JPH09260199A JP H09260199 A JPH09260199 A JP H09260199A JP 8068582 A JP8068582 A JP 8068582A JP 6858296 A JP6858296 A JP 6858296A JP H09260199 A JPH09260199 A JP H09260199A
Authority
JP
Japan
Prior art keywords
element body
internal electrode
electrodes
multilayer capacitor
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8068582A
Other languages
Japanese (ja)
Inventor
Nobuo Mamada
信雄 儘田
Kiwa Okino
喜和 沖野
Yoshio Akimoto
欣男 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP8068582A priority Critical patent/JPH09260199A/en
Publication of JPH09260199A publication Critical patent/JPH09260199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer capacitor which can suppress generation of delamination at ends of internal electrodes. SOLUTION: The multilayer capacitor comprises an element body 23 made up of dielectric layers 21 and internal electrodes 22 alternately stacked and then burned and also comprises a pair of external electrodes 24 provided to both ends of the element body 23 as connected alternately in parallel to the internal electrodes 22. End faces of the element body 23 are formed therein with recesses 23a with ends of the internal electrodes 22 retreated inwardly from end faces of the element body 23. External electrode material is filled into the recesses 23a. Since this causes dispersion of a stress generated by shrinkage of the external electrodes 24 at the time of forming the external electrodes at ends of the internal electrodes 22 in a parallel to the plane direction of the internal electrodes 22 and a direction perpendicular to the plane of the internal electrodes, generation of delamination at the connection parts between the internal and external electrodes 22 and 24 can be remarkably suppressed and reliability can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、積層コンデンサに
関し、特に小型の積層コンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer capacitor, and more particularly to a small multilayer capacitor.

【0002】[0002]

【従来の技術】図2乃至図4に従来例の積層コンデンサ
を示す。図2は分解斜視図、図3は平面図、図4は図3
のA−A線矢視方向断面図である。
2. Description of the Related Art FIGS. 2 to 4 show a conventional multilayer capacitor. 2 is an exploded perspective view, FIG. 3 is a plan view, and FIG.
3 is a sectional view taken along line AA of FIG.

【0003】図において、10は積層コンデンサで、誘
電体層11と内部電極12とを交互に積層してなる素体
13と、素体13の両端部において内部電極を交互に並
列に接続している一対の外部電極14とから構成されて
いる。
[0003] In the drawing, reference numeral 10 denotes a multilayer capacitor in which a dielectric body 13 formed by alternately laminating dielectric layers 11 and internal electrodes 12 and internal electrodes are alternately connected in parallel at both ends of the dielectric body 13. And a pair of external electrodes 14.

【0004】各内部電極12は、交互にその一端或いは
他端側において外部電極14に接続されている。
Each internal electrode 12 is alternately connected to the external electrode 14 at one end or the other end thereof.

【0005】誘電体層11は矩形のシート上のセラミッ
ク焼結体からなり、セラミック焼結体は、例えばチタン
酸バリウム等を主成分とする誘電体磁器材料から形成さ
れている。
[0005] The dielectric layer 11 is formed of a ceramic sintered body on a rectangular sheet, and the ceramic sintered body is formed of a dielectric ceramic material containing, for example, barium titanate as a main component.

【0006】内部電極12は金属ペーストを焼結させた
金属薄膜からなり、金属ペーストとしては、例えばPd
やAg−Pdのような貴金属材料を主成分とするものが
使用されている。外部電極14も内部電極12と同様の
材料により形成され、表面には半田濡れ性をよくするた
めに半田メッキが施されている。
The internal electrode 12 is made of a metal thin film obtained by sintering a metal paste.
A material containing a precious metal material such as Ag or Pd as a main component is used. The external electrode 14 is also formed of the same material as the internal electrode 12, and the surface is plated with solder to improve solder wettability.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述し
た従来の積層コンデンサにおいては、内部電極12の端
部と外部電極14との接続部分において、デラミネーシ
ョンが生ずることがあり、信頼性が低下していた。
However, in the above-mentioned conventional multilayer capacitor, delamination may occur at the connecting portion between the end portion of the internal electrode 12 and the external electrode 14, and the reliability is deteriorated. It was

【0008】即ち、内部電極12を含む素体13を焼成
した後に、素体13の端部に金属ペーストを塗布してこ
れを焼成することにより外部電極14を形成しているの
で、図5に示すように、焼成時に外部電極14が収縮す
ることにより発生する応力Pが内部電極12の端部に集
中するため、この部分においてデラミネーションが発生
しやすいと考えられる。
That is, after the element body 13 including the internal electrodes 12 is fired, the external electrode 14 is formed by applying a metal paste to the end portions of the element body 13 and firing the metal paste. As shown, the stress P generated by the contraction of the external electrode 14 during firing is concentrated on the end portion of the internal electrode 12, so that delamination is likely to occur at this portion.

【0009】本発明の目的は上記の問題点に鑑み、内部
電極の端部におけるデラミネーションの発生を低減した
積層コンデンサを提供することにある。
In view of the above problems, it is an object of the present invention to provide a multilayer capacitor which reduces the occurrence of delamination at the ends of internal electrodes.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するために請求項1では、誘電体層と内部電極層とを
交互に積層してなる略直方体形状の素体と、該素体の両
端部において該端面を覆うように前記内部電極層に形成
された内部電極を交互に並列に接続している一対の外部
電極とからなる積層コンデンサであって、前記素体の端
面において前記内部電極の端部が素体の端面よりも内側
に引き込まれて形成されると共に、該内部電極端部が引
き込んでいる凹部に外部電極部材が充填されている積層
コンデンサを提案する。
In order to achieve the above object, the present invention provides, in claim 1, a substantially rectangular parallelepiped element body in which dielectric layers and internal electrode layers are alternately laminated, and the element body. A multilayer capacitor comprising a pair of external electrodes, in which internal electrodes formed on the internal electrode layers are alternately connected in parallel so as to cover the end faces at both ends of a body, There is proposed a multilayer capacitor in which an end portion of an internal electrode is formed so as to be drawn inward from an end surface of an element body, and a recess into which the end portion of the internal electrode is drawn is filled with an external electrode member.

【0011】該積層コンデンサによれば、素体の端面に
おいて内部電極の端部が素体の端面よりも内側に引き込
まれて形成され、該内部電極端部が引き込んでいる凹部
に外部電極部材が充填されているので、外部電極形成時
に外部電極の収縮によって発生する応力は、前記内部電
極端部において該内部電極の平面方向及び内部電極面に
垂直な方向等に分散される。
According to the multilayer capacitor, the end portion of the internal electrode is formed on the end surface of the element body so as to be drawn inward from the end surface of the element body, and the external electrode member is formed in the recessed portion by the end portion of the internal electrode. Since it is filled, the stress generated by the contraction of the external electrode when the external electrode is formed is dispersed in the plane direction of the internal electrode and the direction perpendicular to the internal electrode surface at the internal electrode end portion.

【0012】また、請求項2では、誘電体層と内部電極
層とを交互に積層してなる略直方体形状の素体と、該素
体の両端部において該端面を覆うように前記内部電極層
に形成された内部電極を交互に並列に接続している一対
の外部電極とからなる積層コンデンサであって、前記素
体の端面において前記内部電極の端部が素体の端面より
も内側に引き込まれて形成されると共に、該内部電極端
部が引き込んでいる複数の凹部のうちの所定の凹部に絶
縁部材が充填され、該絶縁部材が充填された凹部以外の
凹部には外部電極部材が充填されている積層コンデンサ
を提案する。
According to a second aspect of the present invention, a substantially rectangular parallelepiped element body is formed by alternately laminating dielectric layers and internal electrode layers, and the internal electrode layer is formed so as to cover the end faces at both ends of the element body. And a pair of external electrodes in which the internal electrodes are alternately connected in parallel to each other, wherein an end portion of the internal electrode is drawn inward from an end surface of the element body at an end surface of the element body. Of the plurality of recesses formed by the internal electrode end portions are filled with an insulating member, and the recesses other than the recesses filled with the insulating member are filled with the external electrode member. Proposed multilayer capacitors.

【0013】該積層コンデンサによれば、素体の端面に
おいて内部電極の端部が素体の端面よりも内側に引き込
まれて形成され、該内部電極端部が引き込んでいる凹部
に外部電極部材が充填されている箇所においては、外部
電極形成時に外部電極の収縮によって発生する応力は、
前記内部電極端部において該内部電極の平面方向及び内
部電極面に垂直な方向等に分散される。さらに、素体の
端面において内部電極の端部が素体の端面よりも内側に
引き込まれて形成され、該内部電極端部が引き込んでい
る凹部に絶縁部材が充填されている箇所においては、内
部電極と外部電極との間が絶縁される。
According to the multilayer capacitor, the end portion of the internal electrode is formed on the end surface of the element body so as to be pulled inward from the end surface of the element body, and the external electrode member is formed in the recessed portion of the end portion of the internal electrode. In the filled area, the stress generated by the contraction of the external electrode when forming the external electrode is
At the ends of the internal electrodes, they are dispersed in the plane direction of the internal electrodes, the direction perpendicular to the internal electrode surface, and the like. Further, in the end face of the element body, the end portion of the internal electrode is formed to be drawn inward from the end face of the element body, and in the portion where the recessed portion of the end portion of the internal electrode is filled with the insulating member, The electrodes are insulated from the external electrodes.

【0014】[0014]

【発明の実施の形態】以下、図面に基づいて本発明の一
実施形態を説明する。図1は本発明の第1の実施形態の
積層コンデンサを示す側面断面図、図6はその要部拡大
図である。図において、20は積層コンデンサで、誘電
体層21と内部電極22とを交互に積層してなる素体2
3と、素体23の両端部において内部電極22を交互に
並列に接続している一対の外部電極24とから構成され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view showing a multilayer capacitor according to a first embodiment of the present invention, and FIG. 6 is an enlarged view of a main part thereof. In the figure, reference numeral 20 designates a multilayer capacitor, which is an element body 2 in which dielectric layers 21 and internal electrodes 22 are alternately laminated.
3 and a pair of external electrodes 24 in which the internal electrodes 22 are alternately connected in parallel at both ends of the element body 23.

【0015】誘電体層21は、矩形のシート状のセラミ
ック焼結体からなり、焼結体は例えばチタン酸バリウム
を主成分とするグリーンシートを焼成して形成した誘電
体磁器材料からなる。
The dielectric layer 21 is made of a rectangular sheet-shaped ceramic sintered body, and the sintered body is made of a dielectric ceramic material formed by firing a green sheet containing barium titanate as a main component, for example.

【0016】誘電体層21を介して隣り合う一対の内部
電極22のそれぞれは矩形になっており、内部電極22
の長辺は外部電極24に対して略直角になっている。ま
た、各内部電極22の幅は各々等しく形成されている。
Each of the pair of internal electrodes 22 adjacent to each other with the dielectric layer 21 in between has a rectangular shape.
The long side of is substantially perpendicular to the external electrode 24. The width of each internal electrode 22 is formed to be equal.

【0017】さらに、素体23の端面において、図6に
示すように、内部電極22の端部は素体の端面からやや
引き込んだ状態となり、内部電極端部が引き込んだこと
により形成される凹部23aには外部電極24が充填さ
れている。
Further, on the end surface of the element body 23, as shown in FIG. 6, the end portion of the internal electrode 22 is slightly retracted from the end surface of the element body, and a recess formed by the end portion of the inner electrode is retracted. An external electrode 24 is filled in 23a.

【0018】前述の内部電極22は、導電性ペーストの
薄膜を焼結させた金属薄膜からなり、導電性ペーストと
しては、例えばパラジウム粉末を主成分とするものが使
用されている。また、外部電極24も内部電極22と同
様の材料により形成され、表面には半田濡れ性をよくす
るために半田メッキが施されている。
The above-mentioned internal electrode 22 is made of a metal thin film obtained by sintering a thin film of a conductive paste, and as the conductive paste, for example, one containing palladium powder as a main component is used. The external electrode 24 is also made of the same material as the internal electrode 22, and the surface thereof is plated with solder to improve solder wettability.

【0019】この積層コンデンサは次のようにして製造
した。まず、誘電体の原料粉末に有機バインダーを15
重量%添加し、さらに水を50重量%加え、これらをボ
ールミルに入れて十分に混合し、誘電体磁器原料のスラ
リーを作成した。
This multilayer capacitor was manufactured as follows. First, an organic binder was added to the dielectric raw material powder.
% By weight, and further 50% by weight of water, and these were put into a ball mill and mixed well to prepare a slurry of a dielectric ceramic raw material.

【0020】次に、このスラリーを真空脱泡器に入れて
脱泡した後、リバースロールコーターに入れ、ポリエス
テルフィルム上にこのスラリーからなる薄膜を形成し、
この薄膜をポリエステルフィルム上で100℃に加熱し
て乾燥させ、これを打ち抜いて、10cm角、厚さ約2
0μmのグリーンシートを得た。
Next, after putting this slurry in a vacuum defoamer to defoam it, put it in a reverse roll coater to form a thin film of this slurry on a polyester film,
This thin film is dried by heating to 100 ° C. on a polyester film, punched out, and 10 cm square, about 2 mm thick.
A green sheet of 0 μm was obtained.

【0021】一方、平均粒径が1.5μmのパラジウム
粉末10gと、エチルセルロース0.9gをブチルカル
ビトール9.1gに溶解させたものとを攪拌器に入れ、
10時間攪拌することにより内部電極用の導電性ペース
トを得た。
On the other hand, 10 g of palladium powder having an average particle size of 1.5 μm and 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol were placed in a stirrer.
By stirring for 10 hours, a conductive paste for an internal electrode was obtained.

【0022】この後、上述した内部電極のパターンを5
0個有する各スクリーンを用いて、上記グリーンシート
の片面にこの導電性ペーストからなる内部電極のパター
ンを各々印刷し、これを乾燥させた。
After that, the above-mentioned internal electrode pattern is applied to 5
Using each of the screens having zero, a pattern of the internal electrode made of the conductive paste was printed on one surface of the green sheet, and dried.

【0023】次に、上記印刷面を上にしてグリーンシー
トを複数枚積層し、さらにこの積層物の上下両面に印刷
の施されていないグリーンシートを積層した。次いで、
この積層物を約50℃の温度で厚さ方向に約40トンの
圧力を加えて圧着させた。この後、この積層物を格子状
に裁断し、約50個の積層チップを得た。
Next, a plurality of green sheets were laminated with the printed surface facing upward, and further, unprinted green sheets were laminated on the upper and lower surfaces of this laminate. Then
This laminate was pressed at a temperature of about 50 ° C. by applying a pressure of about 40 tons in the thickness direction. Thereafter, the laminate was cut into a lattice to obtain about 50 laminated chips.

【0024】次に、この積層チップを雰囲気焼成可能な
炉に入れ、大気中で600℃まで加熱して、有機バイン
ダーを焼成させ、その後、炉の雰囲気を大気中雰囲気と
し、積層体チップの加熱温度を600℃から焼成温度の
1150℃(最高温度)を3時間保持した。この後、1
00℃/hrの速度で600℃まで降温し、室温まで冷
却して、焼結体チップを得た。
Next, this laminated chip is placed in a furnace capable of firing in an atmosphere and heated to 600 ° C. in the atmosphere to burn the organic binder, and thereafter, the atmosphere of the furnace is set in the atmosphere to heat the laminated chip. The temperature was maintained at 600 ° C. to 1150 ° C. (maximum temperature), which is the firing temperature, for 3 hours. After this, 1
The temperature was lowered to 600 ° C. at a rate of 00 ° C./hr and cooled to room temperature to obtain a sintered body chip.

【0025】この焼成時に、誘電体層と内部電極との収
縮度の違いによって内部電極22の端部が焼結体チップ
(素体23)の端面より内側に引き込まれた状態とする
ことができる。
During this firing, the end portions of the internal electrodes 22 can be pulled inward from the end faces of the sintered body chips (element body 23) due to the difference in shrinkage between the dielectric layer and the internal electrodes. .

【0026】次いで、内部電極が露出する焼結体チップ
の端面に銀とガラスフリットとビヒクルからなる導電性
ペーストを塗布して乾燥させる。このとき、減圧された
雰囲気中で塗布することにより内部電極が引き込まれて
生じた凹部23aに導電性ペーストが充填される。
Next, a conductive paste composed of silver, glass frit and vehicle is applied to the end surface of the sintered body chip where the internal electrodes are exposed and dried. At this time, the conductive paste is filled in the recesses 23a formed by drawing in the internal electrodes by applying in a reduced pressure atmosphere.

【0027】この後、これを大気中で800℃の温度で
15分間焼き付け、銀電極層を形成し、さらにこの上に
銅を無電解メッキで被着させ、この上に電気メッキ法で
Pb−Sn半田層を設けて、一対の外部電極を形成し、
前述した積層コンデンサが得られた。
After that, this is baked in the atmosphere at a temperature of 800 ° C. for 15 minutes to form a silver electrode layer, and copper is deposited thereon by electroless plating, and Pb- is formed on the silver electrode layer by electroplating. Providing a Sn solder layer to form a pair of external electrodes,
The multilayer capacitor described above was obtained.

【0028】前述した積層コンデンサによれば、内部電
極22の端部が素体23の端面よりも内側に引き込まれ
た状態となり、これによって生じた凹部23aに外部電
極24が充填されているので、外部電極24の形成時に
外部電極24の収縮によって発生する応力Pは、図7に
示すように、内部電極22の端部において内部電極22
の平面方向及び内部電極面に垂直な方向等に分散される
ので、内部電極22と外部電極24との接続部分におけ
るデラミネーションの発生が大幅に低減され、信頼性の
向上を図ることができる。
According to the above-mentioned multilayer capacitor, the end portion of the internal electrode 22 is pulled inward from the end surface of the element body 23, and the recess 23a formed by this is filled with the external electrode 24. As shown in FIG. 7, the stress P generated by the contraction of the external electrode 24 when the external electrode 24 is formed is as shown in FIG.
Since it is dispersed in the plane direction of, and in the direction perpendicular to the surface of the internal electrode, the occurrence of delamination in the connection portion between the internal electrode 22 and the external electrode 24 is significantly reduced, and the reliability can be improved.

【0029】次に、本発明の第2の実施形態を説明す
る。図8は第2の実施形態の積層コンデンサを示す側面
断面図、図9はその要部拡大図である。図において前述
した第1の実施形態と同一構成部分は同一符号をもって
表しその説明を省略する。また、第1の実施形態と第2
の実施形態との相違点は、素体23の端面において内部
電極22の端部が端面よりも内側に引き込まれて形成さ
れた凹部23aのうちの所定の凹部23aに絶縁部材3
1を充填して外部電極24との接続を断ち、これによっ
て静電容量を調整できるようにしたことにある。
Next, a second embodiment of the present invention will be described. FIG. 8 is a side sectional view showing the multilayer capacitor of the second embodiment, and FIG. 9 is an enlarged view of the main parts thereof. In the figure, the same components as those of the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted. In addition, the first embodiment and the second
The difference from the first embodiment is that in the end face of the element body 23, the insulating member 3 is provided in a predetermined recess 23a of the recesses 23a formed by pulling the end of the internal electrode 22 inward of the end face.
1 is filled so that the connection with the external electrode 24 is cut off, whereby the capacitance can be adjusted.

【0030】即ち、内部電極22の端部が素体23端面
よりも内側に引き込まれて形成された凹部23aに絶縁
部材31を充填することにより、任意の内部電極22と
外部電極24との接続を断つことができる。これによ
り、例えば図10に示すように、対向する内部電極22
間の間隔を変えずに対向電極の数を減らして静電容量の
設定を行うこともできるし、また図11に示すように対
向する内部電極22間の間隔を変え、さらに対向電極の
数を減らして静電容量の設定を行うこともできる。
That is, the recess 23a formed by drawing the end of the internal electrode 22 inward of the end face of the element body 23 is filled with the insulating member 31 to connect the internal electrode 22 with the external electrode 24. Can be cut off. As a result, for example, as shown in FIG.
The capacitance can be set by reducing the number of opposing electrodes without changing the interval between them, or by changing the interval between the opposing internal electrodes 22 as shown in FIG. It is also possible to reduce and set the capacitance.

【0031】図10及び図11において、図10の
(a)及び図11の(a)は実際の状態を示す側面断面
図であり、図10の(b)及び図11の(b)はこれら
と等価のコンデンサを示す側面断面図である。
In FIGS. 10 and 11, (a) of FIG. 10 and (a) of FIG. 11 are side sectional views showing the actual state, and (b) of FIG. 10 and (b) of FIG. 3 is a side sectional view showing a capacitor equivalent to FIG.

【0032】従って、同一の素体23を用いて任意の静
電容量に設定することができ、複数種の積層コンデンサ
を容易に形成することができるので、製造工程の簡略
化、生産性の向上を図ることができる。
Therefore, it is possible to set an arbitrary capacitance using the same element body 23, and it is possible to easily form a plurality of types of multilayer capacitors, so that the manufacturing process is simplified and the productivity is improved. Can be achieved.

【0033】また、第2の実施形態においても、第1の
実施形態と同様に外部電極24の形成時に外部電極24
の収縮によって発生する応力Pは、図7に示すように、
内部電極22の端部において内部電極22の平面方向及
び内部電極面に垂直な方向等に分散されるので、内部電
極22と外部電極24との接続部分におけるデラミネー
ションの発生が大幅に低減され、信頼性の向上を図るこ
とができる。
Also in the second embodiment, as in the first embodiment, the external electrode 24 is formed when the external electrode 24 is formed.
As shown in FIG. 7, the stress P generated by the contraction of
Since the end portions of the internal electrodes 22 are dispersed in the plane direction of the internal electrodes 22 and in the direction perpendicular to the internal electrode surfaces, the occurrence of delamination at the connection portion between the internal electrodes 22 and the external electrodes 24 is significantly reduced, It is possible to improve reliability.

【0034】尚、これらの実施形態は一例であり本発明
がこれに限定されることはない。
These embodiments are merely examples, and the present invention is not limited to these.

【0035】[0035]

【発明の効果】以上説明したように本発明の請求項1記
載の積層コンデンサによれば、素体の端面において内部
電極の端部が素体の端面よりも内側に引き込まれて形成
され、該内部電極端部が引き込んでいる凹部に外部電極
部材が充填されているため、外部電極形成時に外部電極
の収縮によって発生する応力は、前記内部電極端部にお
いて該内部電極の平面方向及び内部電極面に垂直な方向
等に分散されるので、前記内部電極と外部電極との接続
部分におけるデラミネーションの発生が大幅に低減さ
れ、信頼性の向上を図ることができる。
As described above, according to the multilayer capacitor of the first aspect of the present invention, the end portion of the internal electrode is formed by being drawn inward from the end surface of the element body at the end surface of the element body. Since the external electrode member is filled in the concave portion into which the internal electrode end portion is drawn, the stress generated by the contraction of the external electrode when the external electrode is formed is such that the internal electrode end portion has a planar direction and an internal electrode surface. Since it is dispersed in a direction perpendicular to the direction, the occurrence of delamination at the connection portion between the internal electrode and the external electrode is significantly reduced, and the reliability can be improved.

【0036】また、請求項2記載の積層コンデンサによ
れば、素体の端面において内部電極の端部が素体の端面
よりも内側に引き込まれて形成され、該内部電極端部が
引き込んでいる凹部に外部電極部材が充填されている箇
所においては、外部電極形成時に外部電極の収縮によっ
て発生する応力は、前記内部電極端部において該内部電
極の平面方向及び内部電極面に垂直な方向等に分散され
るので、前記内部電極と外部電極との接続部分における
デラミネーションの発生が大幅に低減され、信頼性の向
上を図ることができる。さらに、素体の端面において内
部電極の端部が素体の端面よりも内側に引き込まれて形
成され、該内部電極端部が引き込んでいる凹部に絶縁部
材が充填されている箇所においては、内部電極と外部電
極との間が絶縁されるので、前記絶縁部材の充填箇所の
設定により、同一の素体を用いて異なる静電容量を持つ
積層コンデンサを製造することができる。
Further, according to the multilayer capacitor of the second aspect, the end portion of the internal electrode is formed by being drawn inward from the end surface of the element body at the end surface of the element body, and the end portion of the internal electrode is drawn in. In the place where the recess is filled with the external electrode member, the stress generated by the contraction of the external electrode during the formation of the external electrode is generated in the plane direction of the internal electrode and the direction perpendicular to the internal electrode surface at the end of the internal electrode. Since they are dispersed, the occurrence of delamination at the connection between the internal electrode and the external electrode is significantly reduced, and the reliability can be improved. Further, in the end face of the element body, the end portion of the internal electrode is formed to be drawn inward from the end face of the element body, and in the portion where the recessed portion of the end portion of the internal electrode is filled with the insulating member, Since the electrodes and the external electrodes are insulated from each other, it is possible to manufacture multilayer capacitors having different electrostatic capacities by using the same element body by setting the filling position of the insulating member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態の積層コンデンサを示
す側面断面図
FIG. 1 is a side sectional view showing a multilayer capacitor according to a first embodiment of the present invention.

【図2】従来例の積層コンデンサを示す分解斜視図FIG. 2 is an exploded perspective view showing a conventional multilayer capacitor.

【図3】従来例の積層コンデンサを示す平断面図FIG. 3 is a cross-sectional plan view showing a conventional multilayer capacitor.

【図4】図3のA−A線矢視方向断面図FIG. 4 is a sectional view taken along line AA of FIG. 3;

【図5】従来例における課題を説明する図FIG. 5 is a diagram illustrating a problem in a conventional example.

【図6】本発明の第1の実施形態の積層コンデンサを示
す要部拡大図
FIG. 6 is an enlarged view of an essential part showing the multilayer capacitor according to the first embodiment of the present invention.

【図7】本発明の第1の実施形態の作用効果を説明する
FIG. 7 is a diagram for explaining the function and effect of the first embodiment of the present invention.

【図8】本発明の第2の実施形態の積層コンデンサを示
す側面断面図
FIG. 8 is a side sectional view showing a multilayer capacitor according to a second embodiment of the present invention.

【図9】本発明の第2の実施形態の積層コンデンサを示
す要部拡大図
FIG. 9 is an enlarged view of essential parts showing a multilayer capacitor according to a second embodiment of the present invention.

【図10】本発明の第2の実施形態における第1の実施
例を示す側面断面図
FIG. 10 is a side sectional view showing a first example of the second embodiment of the present invention.

【図11】本発明の第2の実施形態における第2の実施
例を示す側面断面図
FIG. 11 is a side sectional view showing a second example of the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20…積層コンデンサ、21…誘電体層、22…内部電
極、23…素体、23a…凹部、24…外部電極、31
…絶縁部材。
20 ... Multilayer capacitor, 21 ... Dielectric layer, 22 ... Internal electrode, 23 ... Element body, 23a ... Recess, 24 ... External electrode, 31
... insulating members.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘電体層と内部電極層とを交互に積層し
てなる略直方体形状の素体と、該素体の両端部において
該端面を覆うように前記内部電極層に形成された内部電
極を交互に並列に接続している一対の外部電極とからな
る積層コンデンサであって、 前記素体の端面において前記内部電極の端部が素体の端
面よりも内側に引き込まれて形成されると共に、 該内部電極端部が引き込んでいる凹部に外部電極部材が
充填されていることを特徴とする積層コンデンサ。
1. A substantially rectangular parallelepiped element body in which dielectric layers and internal electrode layers are alternately laminated, and an interior formed in the internal electrode layer so as to cover the end faces at both ends of the element body. A multilayer capacitor comprising a pair of external electrodes having electrodes alternately connected in parallel, wherein an end portion of the internal electrode is formed inside an end surface of the element body by being drawn inward from the end surface of the element body. At the same time, the external electrode member is filled in the concave portion into which the end portion of the internal electrode is drawn, and the multilayer capacitor.
【請求項2】 誘電体層と内部電極層とを交互に積層し
てなる略直方体形状の素体と、該素体の両端部において
該端面を覆うように前記内部電極層に形成された内部電
極を交互に並列に接続している一対の外部電極とからな
る積層コンデンサであって、 前記素体の端面において前記内部電極の端部が素体の端
面よりも内側に引き込まれて形成されると共に、 該内部電極端部が引き込んでいる複数の凹部のうちの所
定の凹部に絶縁部材が充填され、 該絶縁部材が充填された凹部以外の凹部には外部電極部
材が充填されていることを特徴とする積層コンデンサ。
2. A substantially rectangular parallelepiped element body formed by alternately laminating dielectric layers and internal electrode layers, and an interior formed in the internal electrode layer so as to cover the end faces at both ends of the element body. A multilayer capacitor comprising a pair of external electrodes having electrodes alternately connected in parallel, wherein an end portion of the internal electrode is formed inside an end surface of the element body by being drawn inward from the end surface of the element body. At the same time, a predetermined recess of the plurality of recesses drawn in by the inner electrode end is filled with an insulating member, and a recess other than the recess filled with the insulating member is filled with an external electrode member. Characteristic multilayer capacitor.
JP8068582A 1996-03-25 1996-03-25 Multilayer capacitor Pending JPH09260199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8068582A JPH09260199A (en) 1996-03-25 1996-03-25 Multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8068582A JPH09260199A (en) 1996-03-25 1996-03-25 Multilayer capacitor

Publications (1)

Publication Number Publication Date
JPH09260199A true JPH09260199A (en) 1997-10-03

Family

ID=13377931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8068582A Pending JPH09260199A (en) 1996-03-25 1996-03-25 Multilayer capacitor

Country Status (1)

Country Link
JP (1) JPH09260199A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039201A (en) * 2003-06-27 2005-02-10 Kyocera Corp Capacitor and its mounting structure
KR100585549B1 (en) * 1999-03-29 2006-06-01 다이요 유덴 가부시키가이샤 Multi layer electronic part
CN108695067A (en) * 2017-04-04 2018-10-23 三星电机株式会社 Multi-layer capacitor and the method for manufacturing multi-layer capacitor
US20190252123A1 (en) * 2017-04-04 2019-08-15 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100585549B1 (en) * 1999-03-29 2006-06-01 다이요 유덴 가부시키가이샤 Multi layer electronic part
JP2005039201A (en) * 2003-06-27 2005-02-10 Kyocera Corp Capacitor and its mounting structure
JP4623988B2 (en) * 2003-06-27 2011-02-02 京セラ株式会社 Capacitor and its mounting structure
CN108695067A (en) * 2017-04-04 2018-10-23 三星电机株式会社 Multi-layer capacitor and the method for manufacturing multi-layer capacitor
US20190252123A1 (en) * 2017-04-04 2019-08-15 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor
US10770234B2 (en) 2017-04-04 2020-09-08 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor
CN108695067B (en) * 2017-04-04 2022-01-07 三星电机株式会社 Multilayer capacitor and method for manufacturing multilayer capacitor

Similar Documents

Publication Publication Date Title
JPH09266130A (en) Multilayer capacitor
JPH0356003B2 (en)
JPH09260206A (en) Laminated capacitor
JP2003022930A (en) Laminated ceramic capacitor
JPH0613259A (en) Multilayered ceramic capacitor and its manufacture
JP2003022929A (en) Laminated ceramic capacitor
JPH09260201A (en) Laminated capacitor
JPH1167583A (en) Laminated type electronic component
JPH07122457A (en) Manufacture of multilayered ceramic electronic component
JPH09260193A (en) Multilayer capacitor
JPH1126291A (en) Chip capacitor array
JPH09266131A (en) Multilayer electronic part
JPH09260196A (en) Multilayer capacitor
JPH09260192A (en) Multilayer capacitor
JPH1167586A (en) Chip-type network electronic component
JPH09129477A (en) Laminated capacitor
JPH09260199A (en) Multilayer capacitor
JP3292436B2 (en) Multilayer capacitors
JP3445448B2 (en) Multilayer capacitors
JPH09260204A (en) Laminated capacitor
JPH1097947A (en) Laminated capacitor
JP2000269074A (en) Multilayer ceramic capacitor and manufacture thereof
JPH09260194A (en) Laminated electronic part
JPH09260203A (en) Laminated capacitor
JPH08191034A (en) Laminated capacitor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030114