JPH0925289A - Production of 4'-thioarabinopyrimidine nucleoside - Google Patents

Production of 4'-thioarabinopyrimidine nucleoside

Info

Publication number
JPH0925289A
JPH0925289A JP7201578A JP20157895A JPH0925289A JP H0925289 A JPH0925289 A JP H0925289A JP 7201578 A JP7201578 A JP 7201578A JP 20157895 A JP20157895 A JP 20157895A JP H0925289 A JPH0925289 A JP H0925289A
Authority
JP
Japan
Prior art keywords
formula
group
compound
compound represented
thio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7201578A
Other languages
Japanese (ja)
Inventor
Mikatoshi Watanabe
美華理 渡辺
Yuichi Yoshimura
祐一 吉村
Shinji Sakata
紳二 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Shoyu KK
Original Assignee
Yamasa Shoyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Shoyu KK filed Critical Yamasa Shoyu KK
Priority to JP7201578A priority Critical patent/JPH0925289A/en
Publication of JPH0925289A publication Critical patent/JPH0925289A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain 4'-thioarabinopyrimidine nucleoside by introducing sulfonyl groups into a β-D-xylofuranose derivative, reacting the resulting compound with a sulfide and carrying out a hydrolysis, a reduction, a protection of hydroxyl groups, an oxidation, Pummerer transition, an introduction of a glycosyl group and a removal of the protective groups in order. SOLUTION: This production of 4'-thioarabinopyrimidine nucleoside is to introduce sulfonyl groups to hydroxyl groups at 2 and 5 positions in a β-D- xylofuranose expressed by formula I (R<1> is an alkyl; R<2> is a hydroxyl group- protecting group), react the resulting compound with a sulfide, obtain a compound of formula II (R<4> and R<5> are each a hydroxyl group-protective group), hydrolyze the lactol ring of the compound to obtain 4-thio-arabinose derivative of formula III, protect hydroxy groups at 2 and 5 positions of the compound of formula III to lead to a sulfoxide derivative, carry out Pummerer transition to obtain a compound of formula IV (R<3> is a hydroxyl group-protective group; Ac is acetyl), introduce a base at 1 position of a saccharide unit by glycosylation, remove protective groups of the hydroxyl groups on the saccharide unit and obtain the objective compound expressed by formula V (B is a base).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術】本発明は、4’−チオアラビノピ
リミジンヌクレオシドの製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a 4'-thioarabinopyrimidine nucleoside.

【0002】[0002]

【従来の技術】従来、4’−チオアラビノヌクレオシド
の合成としては、いくつかの報告がなされているにすぎ
ない(J.Org.Chem.,33(1),p.189-192,1968、J.Org.Che
m.,36(1),p.108-110,1971、J.Med.Chem.,17(5),p.535-5
37,1974、特表平5−505791号公報など参照)。
これらの論文等で報告されている4’−チオアラビノヌ
クレオシドの合成法は、(1)4−チオアラビノース誘
導体を合成した後、塩基と縮合する方法(J.Org.Chem.,
36(1),p.108-110,1971)、(2)4−チオリボース誘導
体を合成したのちにグリコシル化し、さらに2’位水酸
基の反転する方法(J.Med.Chem.,17(5),p.535-537,197
4、特表平5−505791号公報)、(3)4’−チ
オキシロヌクレオシドから4’−チオアラビノヌクレオ
シドへ変換する方法(J.Org.Chem.,33(1),p.189-192,19
68)である。
2. Description of the Related Art Conventionally, only some reports have been made on the synthesis of 4'-thioarabinonucleosides (J. Org. Chem., 33 (1), p. 189-192, 1968). , J.Org.Che
m., 36 (1), p.108-110,1971, J.Med.Chem., 17 (5), p.535-5
37, 1974, Japanese Patent Publication No. 5-505791, etc.).
The synthesis method of 4′-thioarabinononucleoside reported in these papers is (1) a method of synthesizing a 4-thioarabinose derivative and then condensing it with a base (J.Org.Chem.,
36 (1), p.108-110,1971), (2) A method for synthesizing a 4-thioribose derivative, followed by glycosylation and further inversion of the 2'-hydroxyl group (J. Med. Chem., 17 (5)). , p.535-537,197
4, Tokuhyo 5-505791), (3) Method for converting 4'-thioxylonucleoside to 4'-thioarabinonucleoside (J.Org.Chem., 33 (1), p.189- 192,19
68).

【0003】[0003]

【発明が解決しようとする課題】上記従来法は、いずれ
も非常に多くの工程を必要とし、目的とする4’−チオ
アラビノヌクレオシドを収率よく調製できないという欠
点を有していた。したがって、本発明は、4’−チオア
ラビノヌクレオシドの新規な合成法の提供を目的とする
ものである。
Each of the above-mentioned conventional methods has a drawback that it requires a large number of steps and the desired 4'-thioarabinonucleoside cannot be prepared in high yield. Therefore, the object of the present invention is to provide a novel method for synthesizing a 4′-thioarabinonucleoside.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上述の目
的を達成するために鋭意研究を重ねた結果、下記式[I
I]を出発原料として、式[I]で表される4’−チオ
アラビノピリミジンヌクレオシドを工程数の少ない簡便
な方法で合成できることを見い出し、本発明を完成させ
た。
The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and as a result, the following formula [I
The present invention was completed by finding that 4'-thioarabinopyrimidine nucleosides represented by the formula [I] can be synthesized by a simple method with a small number of steps, using [I] as a starting material.

【0005】すなわち、本発明は、下記の第1工程〜第
4工程よりなる、式[I]で表される4’−チオアラビ
ノピリミジンヌクレオシドの製造方法に関するものであ
る。
That is, the present invention relates to a method for producing a 4'-thioarabinopyrimidine nucleoside represented by the formula [I], which comprises the following first to fourth steps.

【0006】[0006]

【化6】 [Chemical 6]

【0007】(式中、Bはピリミジン塩基を示す。) 第1工程;式[II]で表される化合物の2位および5
位の水酸基にスルホニル基を導入後、硫化物と反応させ
て式[III]で表される化合物を得る工程。
(In the formula, B represents a pyrimidine base.) First step; 2-position and 5-position of the compound represented by the formula [II].
A step of introducing a sulfonyl group into the hydroxyl group at the position and then reacting with a sulfide to obtain a compound represented by the formula [III].

【0008】[0008]

【化7】 Embedded image

【0009】(式中、R1はアルキル基、R2は水酸基の
保護基を示す。) 第2工程;式[III]で表される化合物のラクトール
環を加水分解後、還元して式[IV]で表される化合物
を得る工程。
(In the formula, R 1 represents an alkyl group and R 2 represents a protective group for a hydroxyl group.) Second step: The lactol ring of the compound represented by the formula [III] is hydrolyzed and then reduced to give a compound represented by the formula [ IV] to obtain a compound.

【0010】[0010]

【化8】 Embedded image

【0011】(式中、R1及びR2は前記と同意義。) 第3工程;式[IV]で表される化合物の2位および5
位の水酸基を保護し、酸化剤と反応させてスルホキシド
体へ導いた後、プンメラー(Pummerer)転移を
行い式[V]で表される化合物を得る工程。
(In the formula, R 1 and R 2 have the same meanings as described above.) Third step; 2-position and 5-position of the compound represented by the formula [IV].
A step of protecting the hydroxyl group at the position, reacting with an oxidizing agent to lead to a sulfoxide form, and then performing a Pummerer transfer to obtain a compound represented by the formula [V].

【0012】[0012]

【化9】 Embedded image

【0013】(式中、Acはアセチル基、R2及びR3
水酸基の保護基を示す。) 第4工程;式[V]で表される化合物をグリコシル化反
応に付して糖部1位にBで表される塩基類を導入後、糖
部水酸基の保護基を除去して式[I]で表される化合物
を得る工程。
(In the formula, Ac represents an acetyl group and R 2 and R 3 represent a hydroxyl-protecting group.) Fourth step: The compound represented by the formula [V] is subjected to a glycosylation reaction to form a sugar moiety 1. A step of introducing a base represented by B at the position and then removing the protecting group for the sugar group hydroxyl group to obtain a compound represented by the formula [I].

【0014】[0014]

【化10】 Embedded image

【0015】(式中、Ac、R2、R3およびBは前記と
同意義。)
(In the formulae, Ac, R 2 , R 3 and B are as defined above.)

【0016】[0016]

【発明の実施の形態】以下、本発明について詳述する。
本発明方法で得られる化合物は、前記式[I]で表され
るものであり、式中のBで表されるピリミジン塩基とし
ては、ウラシル、チミン、シトシンなどの通常の核酸塩
基はもとより、アザピリミジン塩基(5−アザピリミジ
ン、6−アザピリミジンなど)およびデアザピリミジン
塩基(3−デアザピリミジンなど)も包含するものであ
る。さらに、これら各種塩基の任意の箇所に1つまたは
複数個の置換基〔低級アルキル(炭素数1〜5)、ハロ
ゲン、アルケニル、ハロゲン化低級アルケニル、アルキ
ニル、アミノなど〕が導入されたものであってもよい。
そのような置換基を有するピリミジン塩基としては、5
−エチルウラシル、5−プロピルウラシル、5−ヨード
ウラシル、5−フルオロウラシル、5−ビニルウラシ
ル、5−ブロモビニルウラシル、5−クロロビニルウラ
シル、5−プロピニルウラシルなどを例示することがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The compound obtained by the method of the present invention is represented by the above formula [I], and the pyrimidine base represented by B in the formula includes not only ordinary nucleobases such as uracil, thymine and cytosine but also aza It also includes pyrimidine bases (5-azapyrimidine, 6-azapyrimidine, etc.) and deazapyrimidine bases (3-deazapyrimidine, etc.). Furthermore, one or a plurality of substituents (lower alkyl (having 1 to 5 carbon atoms), halogen, alkenyl, halogenated lower alkenyl, alkynyl, amino, etc.) are introduced into any of these various bases. May be.
The pyrimidine base having such a substituent is 5
-Ethyluracil, 5-propyluracil, 5-iodouracil, 5-fluorouracil, 5-vinyluracil, 5-bromovinyluracil, 5-chlorovinyluracil, 5-propynyluracil and the like can be exemplified.

【0017】本発明方法で得られる代表的な化合物とし
ては、以下のようなものを例示することができる。 1−(4−チオ−D−アラビノフラノシル)ウラシル 1−(4−チオ−D−アラビノフラノシル)シチジン 1−(4−チオ−D−アラビノフラノシル)チミン 5−エチル−1−(4−チオ−D−アラビノフラノシ
ル)ウラシル 5−ヨード−1−(4−チオ−D−アラビノフラノシ
ル)ウラシル 5−フルオロ−1−(4−チオ−D−アラビノフラノシ
ル)ウラシル 5−ビニル−1−(4−チオ−D−アラビノフラノシ
ル)ウラシル E−5−(2−クロロビニル)−1−(4−チオ−D−
アラビノフラノシル)ウラシル E−5−(2−ブロモビニル)−1−(4−チオ−D−
アラビノフラノシル)ウラシル 5−プロピニル−1−(4−チオ−D−アラビノフラノ
シル)ウラシル
The following compounds can be exemplified as typical compounds obtained by the method of the present invention. 1- (4-thio-D-arabinofuranosyl) uracil 1- (4-thio-D-arabinofuranosyl) cytidine 1- (4-thio-D-arabinofuranosyl) thymine 5-ethyl-1 -(4-Thio-D-arabinofuranosyl) uracil 5-iodo-1- (4-thio-D-arabinofuranosyl) uracil 5-fluoro-1- (4-thio-D-arabinofuranosyl) ) Uracil 5-vinyl-1- (4-thio-D-arabinofuranosyl) uracil E-5- (2-chlorovinyl) -1- (4-thio-D-
Arabinofuranosyl) uracil E-5- (2-bromovinyl) -1- (4-thio-D-
Arabinofuranosyl) uracil 5-propynyl-1- (4-thio-D-arabinofuranosyl) uracil

【0018】本発明方法は、以下に説明する4つの工程
より構成される。 第1工程;本発明の第1工程は、式[II]で表される
化合物の2位および5位の水酸基にスルホニル基を導入
後、硫化物と反応させて式[III]で表される化合物
を得る工程である。
The method of the present invention comprises the following four steps. First step: The first step of the present invention is represented by the formula [III] by introducing a sulfonyl group into the 2- and 5-position hydroxyl groups of the compound represented by the formula [II] and then reacting with a sulfide. This is a step of obtaining a compound.

【0019】[0019]

【化11】 Embedded image

【0020】(式中、R1はアルキル基、R2は水酸基の
保護基を示す。) 本発明方法における原料化合物は、式[II]で表され
るキシロース誘導体(以下、原料化合物と称することも
ある)である。R1で表されるアルキル基としては、メ
チル、エチルなどの炭素数1〜3程度の低級アルキル基
およびベンジル、メトキシベンジルなどの置換もしくは
非置換のベンジル基を挙げることができる。R2で表さ
れる水酸基の保護基としては、通常使用されるものであ
ればよく、アルキル基、シリル基、アシル基などを例示
することができる。より具体的に、アルキル基としては
1と同様なものを挙げることができる。また、シリル
基としてはt−ブチルジメチルシリル、t−ブチルジフ
ェニルシリルなどを、アシル基としてはアセチル、ベン
ゾイル、ピバロイルなどをそれぞれ例示することができ
る。このような原料化合物は、公知の方法(Tetrahedro
n,37,2379-2382(1981)など)により調製することができ
る。
(In the formula, R 1 represents an alkyl group and R 2 represents a protective group for a hydroxyl group.) The starting compound in the method of the present invention is a xylose derivative represented by the formula [II] (hereinafter referred to as starting compound). There is also). Examples of the alkyl group represented by R 1 include a lower alkyl group having about 1 to 3 carbon atoms such as methyl and ethyl, and a substituted or unsubstituted benzyl group such as benzyl and methoxybenzyl. The protective group for the hydroxyl group represented by R 2 may be any one commonly used, and examples thereof include an alkyl group, a silyl group and an acyl group. More specifically, examples of the alkyl group include those similar to R 1 . Examples of the silyl group include t-butyldimethylsilyl, t-butyldiphenylsilyl, and the like, and examples of the acyl group include acetyl, benzoyl, pivaloyl, and the like. Such raw material compounds can be prepared by known methods (Tetrahedro
n, 37, 2379-2382 (1981)).

【0021】式[II]で表される化合物の2位および
5位の水酸基に導入するスルホニル基としては、メシル
基またはトシル基を例示することができる。メシル化お
よびトシル化反応は、常法に従って行えばよい。たとえ
ば、メシル化反応は、トリエチルアミンなどの塩基存在
下、塩化メチレン、アセトニトリル、ジメチルホルムア
ミド、ピリジンなどの有機溶媒中(ただし、ピリジンを
使用する場合には、必ずしもトリエチルアミンなどの塩
基を共存させなくてもよい。)、原料化合物1モルに対
して2〜10モル、好ましくは2〜4モルのハロゲン化
メシル(たとえば、塩化メシルなど)を用い、原料化合
物とハロゲン化メシルとを0〜100℃で0.5〜5時
間程度攪拌反応させることにより実施することができ
る。また、反応は、アルゴン、窒素などの不活性ガス雰
囲気下で行うのが好ましい。
Examples of the sulfonyl group introduced into the 2- and 5-position hydroxyl groups of the compound represented by the formula [II] include a mesyl group and a tosyl group. The mesylation and tosylation reaction may be performed according to a conventional method. For example, the mesylation reaction is carried out in the presence of a base such as triethylamine in an organic solvent such as methylene chloride, acetonitrile, dimethylformamide, pyridine (however, when pyridine is used, a base such as triethylamine does not necessarily have to be present together. 2 to 10 mol, preferably 2 to 4 mol of mesyl halide (for example, mesyl chloride) is used with respect to 1 mol of the raw material compound, and the raw material compound and the mesyl halide are 0 to 100 ° C. The reaction can be carried out by stirring for about 5 to 5 hours. Further, the reaction is preferably carried out in an atmosphere of an inert gas such as argon or nitrogen.

【0022】引き続き、このようにして得られた化合物
と硫化物とを反応させ、式[III]で表される化合物
を得る。反応に使用する硫化物としては、硫化ナトリウ
ム、硫化カリウム等の硫化金属(好ましくは、硫化アル
カリ金属)であれば特に限定されない。反応は、必要に
応じてアルゴンまたは窒素などの不活性ガス雰囲気下、
ジメチルホルムアミド、ジメチルスルホキシドなどの有
機溶媒中、原料化合物1モルに対して1〜20モルの硫
化物を使用し、室温〜150℃で0.5〜5時間程度攪
拌反応させることにより実施することができる。このよ
うにして得られた式[III]の化合物の単離精製は、
通常の保護された糖類の分離精製手段を適宜選択して用
いればよく、たとえば酢酸エチルと水で分配後、シリカ
ゲルカラムクロマトグラフィーに付し、n−ヘキサン−
酢酸エチルなどの混合有機溶媒で溶出することにより単
離精製することができる。
Subsequently, the compound thus obtained is reacted with a sulfide to obtain a compound represented by the formula [III]. The sulfide used in the reaction is not particularly limited as long as it is a metal sulfide such as sodium sulfide or potassium sulfide (preferably an alkali metal sulfide). The reaction is carried out under an atmosphere of an inert gas such as argon or nitrogen, if necessary,
It can be carried out by using 1 to 20 mol of sulfide per 1 mol of the raw material compound in an organic solvent such as dimethylformamide or dimethylsulfoxide, and stirring and reacting at room temperature to 150 ° C. for about 0.5 to 5 hours. it can. The isolation and purification of the compound of formula [III] thus obtained is
A usual means for separating and purifying protected saccharides may be appropriately selected and used, for example, after partitioning with ethyl acetate and water, silica gel column chromatography is carried out, and n-hexane-
It can be isolated and purified by eluting with a mixed organic solvent such as ethyl acetate.

【0023】第2工程;本発明の第2工程は、式[II
I]で表される化合物のラクトール環を加水分解後、還
元して式[IV]で表される化合物を得る工程である。
Second step: The second step of the present invention is the formula [II
In this step, the lactol ring of the compound represented by I] is hydrolyzed and then reduced to obtain the compound represented by the formula [IV].

【0024】[0024]

【化12】 Embedded image

【0025】(式中、R1及びR2は前記と同意義。) 加水分解法としては、式[III]で表される化合物の
ラクトール環を加水分解できる方法であれば特に制限さ
れるものではないが、特に、酸触媒を用いる加水分解法
が好ましい。酸触媒としては、塩酸、硫酸等の無機酸、
酢酸、トリフルオロ酢酸等の有機酸を使用することがで
きる。加水分解反応は、テトラヒドロフラン、ジオキサ
ンなどの水溶性エーテル系溶媒中、上記酸触媒存在下、
室温〜100℃で0.5〜5時間程度攪拌反応させるこ
とにより実施することができる。
(In the formula, R 1 and R 2 have the same meanings as above.) The hydrolysis method is not particularly limited as long as it can hydrolyze the lactol ring of the compound represented by the formula [III]. However, the hydrolysis method using an acid catalyst is particularly preferable. As the acid catalyst, inorganic acids such as hydrochloric acid and sulfuric acid,
Organic acids such as acetic acid and trifluoroacetic acid can be used. The hydrolysis reaction is carried out in a water-soluble ether solvent such as tetrahydrofuran or dioxane in the presence of the above acid catalyst,
It can be carried out by stirring and reacting at room temperature to 100 ° C. for about 0.5 to 5 hours.

【0026】次に、このようにして得られた化合物を還
元反応に付して式[IV]で表される化合物を得る。還
元剤としては、テトラヒドロホウ酸ナトリウム(水素化
ホウ素ナトリウム)、テトラヒドロホウ酸カリウムなど
のテトラヒドロホウ酸塩を使用することができる。還元
反応は、メタノールなどのアルコール溶媒中、式[II
I]で表される化合物1モルに対し、還元剤0.2〜1
0モルを用い、0〜100℃で0.5〜3時間程度攪拌
反応させることにより実施できる。このようにして得ら
れた式[IV]の化合物の単離精製は、通常の保護され
た糖の単離精製手段を適宜応用すればよく、たとえば反
応終了後の反応液を中和し、有機溶媒を留去後、クロロ
ホルムで抽出し、シリカゲルカラムクロマトグラフィー
で処理することにより目的化合物を単離精製することが
できる。
Next, the compound thus obtained is subjected to a reduction reaction to obtain a compound represented by the formula [IV]. As the reducing agent, tetrahydroborate salts such as sodium tetrahydroborate (sodium borohydride) and potassium tetrahydroborate can be used. The reduction reaction is performed by the reaction of the formula [II] in an alcohol solvent such as methanol.
I]] with respect to 1 mol of the compound represented by the formula [I].
It can be carried out by using 0 mol and stirring reaction at 0 to 100 ° C. for about 0.5 to 3 hours. Isolation and purification of the compound of the formula [IV] thus obtained may be carried out by appropriately applying the usual means for isolation and purification of protected sugars. For example, the reaction solution after completion of the reaction may be neutralized and After distilling off the solvent, the target compound can be isolated and purified by extraction with chloroform and treatment with silica gel column chromatography.

【0027】第3工程;本発明の第3工程は、式[I
V]で表される化合物の2位および5位の水酸基を保護
し、酸化剤と反応させてスルホキシド体へ導いた後、プ
ンメラー(Pummerer)転移を行って式[V]で
表される化合物を得る工程である。
Third step: The third step of the present invention is the formula [I
V] of the compound represented by the formula [V] is protected by hydroxyl groups at the 2- and 5-positions, reacted with an oxidizing agent to lead to a sulfoxide form, and then subjected to a Pummerer transition to give the compound represented by the formula [V]. It is a process of obtaining.

【0028】[0028]

【化13】 Embedded image

【0029】(式中、Acはアセチル基、R2およびR3
は水酸基の保護基を示す。) 式[IV]で表される化合物の2位および5位の水酸基
に導入するR3で表される保護基としては、メチル、エ
チルなどの低級アルキル基、ベンジル、ジメトキシベン
ジルなどの置換または非置換のベンジル基、t−ブチル
ジメチルシリル、t−ブチルジフェニルシリルなどのシ
リル基、あるいはアセチル、ベンゾイル、ピバロイルな
どのアシル基などを例示することができる。保護基を導
入する方法は、常法に従って行えばよい。例えば、ジメ
チルホルムアミド、ジメチルスルホキシドなどの単一有
機溶媒あるいはテトラヒドロフラン−ジメチルスルホキ
シドなどの混合有機溶媒中、水素化ナトリウムなどの塩
基存在下、ベンジルクロリド、ベンジルブロミド、p−
メトキシベンジルクロリドなどのアルキル化剤を式[I
V]化合物1モルに対して2〜10モル、好ましくは3
〜8モル用い、アルゴン、窒素などの不活性ガス雰囲気
下、0〜50℃で一晩程度攪拌することによって実施す
ることができる。
(Wherein Ac represents an acetyl group, R 2 and R 3
Represents a hydroxyl-protecting group. ) The protecting group represented by R 3 which is introduced into the 2- and 5-position hydroxyl groups of the compound represented by the formula [IV] includes a lower alkyl group such as methyl and ethyl, a substituted or non-substituted group such as benzyl and dimethoxybenzyl. Examples thereof include a substituted benzyl group, a silyl group such as t-butyldimethylsilyl and t-butyldiphenylsilyl, and an acyl group such as acetyl, benzoyl and pivaloyl. The protecting group may be introduced by a conventional method. For example, in a single organic solvent such as dimethylformamide or dimethylsulfoxide or a mixed organic solvent such as tetrahydrofuran-dimethylsulfoxide in the presence of a base such as sodium hydride, benzyl chloride, benzyl bromide, p-
Alkylating agents such as methoxybenzyl chloride can be prepared according to the formula [I
V] 2 to 10 mol, preferably 3 to 1 mol of the compound
It can be carried out by stirring at 0 to 50 ° C. for about overnight under an inert gas atmosphere such as argon or nitrogen.

【0030】次に、酸化反応に使用する酸化剤として
は、m−クロロ過安息香酸、メタ過ヨウ素酸ナトリウム
などを挙げることができる。酸化反応は、塩化メチレ
ン、アルコール(例えばメタノールなど)などの有機溶
媒中、必要に応じアルゴン、窒素などの不活性ガス気流
下、2位および5位の水酸基が保護された上記式[I
V]化合物1モルに対して0.5〜5モルの酸化剤(例
えばm−クロロ過安息香酸、メタ過ヨウ素酸ナトリウム
など)を用い、−100〜0℃で10分〜2時間程度処
理することにより実施できる。このようにして得られた
スルホキシド体をプンメラー転移反応に付し、式[V]
で表される化合物を得る。プンメラー転移反応は、通常
使用されている方法を用いれば良く、たとえば、無水酢
酸などの酸無水物中、60℃〜還流温度で1〜5時間攪
拌することによって実施できる。
Next, examples of the oxidizing agent used in the oxidation reaction include m-chloroperbenzoic acid and sodium metaperiodate. The oxidation reaction is carried out in the organic solvent such as methylene chloride or alcohol (for example, methanol) under an inert gas flow such as argon or nitrogen, if necessary, by the above formula [I
V] Using 0.5 to 5 mol of an oxidizing agent (for example, m-chloroperbenzoic acid, sodium metaperiodate, etc.) with respect to 1 mol of the compound, the treatment is performed at -100 to 0 ° C. for about 10 minutes to 2 hours. It can be implemented by The sulfoxide form thus obtained was subjected to a Pummerer rearrangement reaction to give a compound of the formula [V]
Is obtained. The Pummerer rearrangement reaction may be carried out by a commonly used method, for example, by stirring in an acid anhydride such as acetic anhydride at 60 ° C. to reflux temperature for 1 to 5 hours.

【0031】このようにして得られた式[V]で表され
る化合物の単離精製は、通常の単離精製手段を用いれば
よく、例えば、中和、有機溶媒を留去後、クロロホルム
により水層より抽出し、シリカゲルカラムクロマトグラ
フィーにより単離精製することができる。また、酸化反
応の前に化合物の精製を行う必要がある場合には、例え
ば、酢酸エチルと水で分配後、シリカゲルカラムクロマ
トグラフィーに付し、n−ヘキサン−酢酸エチルなどの
混合有機溶媒で溶出することにより精製することができ
る。
Isolation and purification of the compound of the formula [V] thus obtained may be carried out by the usual isolation and purification means. For example, neutralization, the organic solvent is distilled off, and then chloroform is used. It can be extracted from the aqueous layer and isolated and purified by silica gel column chromatography. When it is necessary to purify the compound before the oxidation reaction, for example, after partitioning with ethyl acetate and water, silica gel column chromatography is performed and elution is performed with a mixed organic solvent such as n-hexane-ethyl acetate. By doing so, it can be purified.

【0032】第4工程;本発明の第4工程は、式[V]
で表される化合物をグリコシル化反応に付して糖部1位
にBで表される塩基類を導入後、糖部水酸基の保護基を
除去して式[I]で表される化合物を得る工程である。
Fourth step: The fourth step of the present invention is the formula [V]
The compound represented by formula (I) is subjected to a glycosylation reaction to introduce a base represented by B at the 1-position of the sugar moiety, and then the protecting group for the hydroxyl group of the sugar moiety is removed to obtain the compound represented by the formula [I]. It is a process.

【0033】[0033]

【化14】 Embedded image

【0034】(式中、R2、R3およびBは前記と同意
義。) グリコシル化反応に使用するルイス酸としては、トリメ
チルシリルトリフルオロメタンスルホネート、四塩化す
ず、四塩化チタン、塩化亜鉛、ヨウ化亜鉛、三フッ化ホ
ウ素などが例示される。グリコシル化反応は、アルゴ
ン、窒素などの不活性ガス気流下、塩化メチレン、クロ
ロホルム、ジクロロエタン、アセトニトリル、ジメチル
ホルムアミドなどの有機溶媒中、式[IV]の化合物1
モルに対してシリル化した塩基1〜10モル及び上記ル
イス酸0.1〜10モルを用い、−50〜100℃で1
〜3時間攪拌処理することにより実施できる。
(In the formula, R 2 , R 3 and B have the same meanings as above.) Examples of the Lewis acid used in the glycosylation reaction include trimethylsilyl trifluoromethanesulfonate, tin tetrachloride, titanium tetrachloride, zinc chloride and iodide. Examples include zinc and boron trifluoride. The glycosylation reaction is carried out in the presence of an inert gas stream such as argon or nitrogen in an organic solvent such as methylene chloride, chloroform, dichloroethane, acetonitrile or dimethylformamide.
1 to 10 mol of the silylated base and 0.1 to 10 mol of the above Lewis acid are used at 1 to 50 mol.
It can be carried out by stirring for 3 hours.

【0035】このようにして得られた化合物の糖部水酸
基の保護基を脱保護して式[I]で表される化合物を得
る。水酸基の保護基の脱保護は、使用した保護基に応じ
て加水分解、接触還元など通常の処理方法から適宜選択
して行えばよい。たとえば、ベンジル系保護基の場合に
は、塩化メチレン中、アルゴン、窒素などの不活性ガス
気流下、−100℃〜50℃で10分〜6時間程度三塩
化ホウ素と反応させることにより除去することができ
る。このようにして得られた化合物[I]は、ヌクレオ
シドの通常の単離精製法(再結晶法、各種カラムクロマ
トグラフィーなど)を適宜組み合せることにより分離精
製することができる。
The protecting group of the sugar group hydroxyl group of the compound thus obtained is deprotected to obtain the compound of the formula [I]. Deprotection of the hydroxyl-protecting group may be appropriately selected from ordinary treatment methods such as hydrolysis and catalytic reduction depending on the protecting group used. For example, in the case of a benzyl-based protecting group, it should be removed by reacting with boron trichloride for about 10 minutes to 6 hours at −100 ° C. to 50 ° C. in an atmosphere of an inert gas such as argon or nitrogen in methylene chloride. You can The compound [I] thus obtained can be separated and purified by an appropriate combination of usual nucleoside isolation and purification methods (recrystallization method, various column chromatography, etc.).

【0036】[0036]

【発明の効果】本発明方法は、安価な物質を原料とし、
工程数が少なく、簡単な操作で行うことができる方法で
あるため、4’−チオアラビノピリミジンヌクレオシド
の製造方法として極めて実用的なものである。
The method of the present invention uses an inexpensive substance as a raw material,
Since the method has a small number of steps and can be performed by a simple operation, it is extremely practical as a method for producing a 4'-thioarabinopyrimidine nucleoside.

【0037】[0037]

【実施例】以下、本発明を実施例をあげて具体的に説明
するが、本発明はこれらによって何等限定されるもので
はない。 実施例1;[Ia−α]E−5−(2−ブロモビニル)
−1−(4−チオ−α−D−アラビノフラノシル)ウラ
シルおよび[Ia−β]E−5−(2−ブロモビニル)
−1−(4−チオ−β−D−アラビノフラノシル)ウラ
シル[式[I]、B=E−5−(2−ブロモビニル)ウ
ラシル]の合成
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited thereto. Example 1; [Ia-α] E-5- (2-bromovinyl)
-1- (4-thio-α-D-arabinofuranosyl) uracil and [Ia-β] E-5- (2-bromovinyl)
Synthesis of -1- (4-thio-β-D-arabinofuranosyl) uracil [formula [I], B = E-5- (2-bromovinyl) uracil]

【0038】1)2,5−アンヒドロ−3−O−ベンジ
ル−1−O−メチル−2−チオ−β−D−アラビノフラ
ノース[式[III]、R1=Me、R2=Bn]の合成 3−O−ベンジル−1−O−メチル−β−D−キシロフ
ラノース[式[II]、R1=Me、R2=Bn]6.9
3gを溶解したピリジン溶液80mlに、氷冷下、塩化
メタンスルホニル6.33mlを加え、アルゴン気流
下、室温で1時間攪拌した。氷水を加えて反応を停止
後、溶媒を留去した。残渣を酢酸エチル−水により分配
後、有機層を乾燥した。溶媒を留去後、残渣をジメチル
ホルムアミド(DMF)100mlに溶解し、硫化ナト
リウム9.84gを加え、アルゴン気流下、100℃で
1時間攪拌した。溶媒を留去後、残渣を酢酸エチル−水
で分配し、有機層を更に水で洗浄した後、乾燥した。溶
媒を留去後、残渣をシリカゲルカラムクロマトグラフィ
ーにより精製し、5〜10%酢酸エチル−n−ヘキサン
で溶出された部分を集めて濃縮し、目的物5.05g
(収率73%)を得た。
1) 2,5-anhydro-3-O-benzyl-1-O-methyl-2-thio-β-D-arabinofuranose [formula [III], R 1 = Me, R 2 = Bn] Synthesis of 3-O-benzyl-1-O-methyl-β-D-xylofuranose [Formula [II], R 1 = Me, R 2 = Bn] 6.9
To 80 ml of a pyridine solution in which 3 g was dissolved, 6.33 ml of methanesulfonyl chloride was added under ice cooling, and the mixture was stirred at room temperature for 1 hour under an argon stream. After ice water was added to stop the reaction, the solvent was distilled off. After partitioning the residue with ethyl acetate-water, the organic layer was dried. After the solvent was distilled off, the residue was dissolved in 100 ml of dimethylformamide (DMF), 9.84 g of sodium sulfide was added, and the mixture was stirred at 100 ° C. for 1 hour under an argon stream. After the solvent was distilled off, the residue was partitioned with ethyl acetate-water, the organic layer was further washed with water, and then dried. After distilling off the solvent, the residue was purified by silica gel column chromatography, and the portion eluted with 5 to 10% ethyl acetate-n-hexane was collected and concentrated to obtain 5.05 g of the desired product.
(73% yield).

【0039】1H−NMR(CDCl3)δ 7.36−
7.29(5H,m,65 CH2),4.89(1
H,s,H1),4.62(1H,d,C65 CH2 ,J
=11.7Hz),4.52−4.48(2H,m,C
65 CH2 and H3),4.37−4.36(1
H,m,H4),3.34(4H,s,OMe and
2),3.04(1H,dd,H5a,J=10.3,
2.0Hz),2.77(1H,dd,H5b,J=1
0.3,1.5Hz)
1 H-NMR (CDCl 3 ) δ 7.36-
7.29 (5H, m, C 6 H 5 CH 2), 4.89 (1
H, s, H 1 ), 4.62 (1H, d, C 6 H 5 CH 2 , J
= 11.7 Hz), 4.52-4.48 (2H, m, C
6 H 5 CH 2 and H 3 ), 4.37-4.36 (1
H, m, H 4 ), 3.34 (4H, s, OMe and
H 2 ), 3.04 (1H, dd, H 5a , J = 10.3,
2.0 Hz), 2.77 (1H, dd, H 5b , J = 1
0.3, 1.5Hz)

【0040】2)2,5−アンヒドロ−3−O−ベンジ
ル−1−O−メチル−2−チオ−α−D−アラビノフラ
ノース[式[III]、R1=Me、R2=Bn]の合成 3−O−ベンジル−1−O−メチル−α−D−キシロフ
ラノース[式[II]、R1=Me、R2=Bn]6.1
3gを上記1)と同様の操作を行ない、目的物4.75
g(収率42%)を得た。1 H−NMR(CDCl3)δ7.39−7.30(5
H,m,6 5CH2),5.13(1H,d,H1,J
=2.4Hz),4.66(1H,d,C65 CH 2
J=11.7Hz),4.53(1H,d,C65 CH
2 ),4.36−4.35(1H,brm,H4),4.
29(1H,t,H3,J=2.4Hz),3.51
(1H,t,H2,J=2.4Hz),3.47(3
H,s,OMe),3.04(1H,dd,H5a,J=
10.5,2.2Hz),2.95(1H,dd,
5b,J=10.5,1.2Hz)
2) 2,5-anhydro-3-O-benzyl-1-O-methyl-2-thio-α-D-arabinofuranose [formula [III], R 1 = Me, R 2 = Bn] Synthesis of 3-O-benzyl-1-O-methyl-α-D-xylofuranose [Formula [II], R 1 = Me, R 2 = Bn] 6.1
3 g was subjected to the same operation as in 1) above to obtain the desired product 4.75.
g (yield 42%) was obtained. 1 H-NMR (CDCl 3 ) δ 7.39-7.30 (5
H, m, C 6 H 5 CH 2 ), 5.13 (1H, d, H 1 , J
= 2.4 Hz), 4.66 (1 H, d, C 6 H 5 CH 2 ,
J = 11.7 Hz), 4.53 (1H, d, C 6 H 5 CH
2), 4.36-4.35 (1H, brm , H 4), 4.
29 (1H, t, H 3 , J = 2.4Hz), 3.51
(1H, t, H 2 , J = 2.4Hz), 3.47 (3
H, s, OMe), 3.04 (1H, dd, H 5a , J =
10.5, 2.2Hz), 2.95 (1H, dd,
H 5b, J = 10.5,1.2Hz)

【0041】3)3−O−ベンジル−1−デオキシ−4
−チオ−D−アラビノフラノース[式[IV]、R2
Bn]の合成 2,5−アンヒドロ−3−O−ベンジル−1−O−メチ
ル−2−チオ−D−アラビノフラノース9.50g
(α:β=1:1)をテトラヒドロフラン(THF)2
00mlに溶解し、これに4N塩酸100mlを加え、
室温で1時間攪拌した。固体の炭酸水素ナトリウムを用
いて反応液を中和し、不溶物をろ去した後、減圧下TH
Fを留去した。クロロホルムで3回抽出操作を行ない、
有機層を乾燥した。溶媒を留去した後、残渣をメタノー
ル150mlに溶解し、氷冷下、水素化ホウ素ナトリウ
ム1.43gを含むメタノール溶液を滴下、滴下後氷冷
下45分攪拌した。反応液を酢酸により中和した後、溶
媒を留去し、クロロホルム−水で分配した。水層をクロ
ロホルムで2回抽出し、有機層を乾燥した。溶媒を留去
した後、得られた残渣をシリカゲルカラムクロマトグラ
フィーに付し、33〜50%酢酸エチル−n−ヘキサン
により溶出された部分を濃縮し、3−O−ベンジル−1
−デオキシ−4−チオ−D−アラビノフラノース8.1
8g(収率90%)を得た。
3) 3-O-benzyl-1-deoxy-4
-Thio-D-arabinofuranose [formula [IV], R 2 =
Synthesis of Bn] 2,5-anhydro-3-O-benzyl-1-O-methyl-2-thio-D-arabinofuranose 9.50 g
Tetrahydrofuran (THF) 2 with (α: β = 1: 1)
Dissolve in 00 ml, add 100 ml of 4N hydrochloric acid,
Stirred at room temperature for 1 hour. The reaction solution was neutralized with solid sodium hydrogencarbonate, the insoluble material was filtered off, and TH was removed under reduced pressure.
F was distilled off. Extract with chloroform three times,
The organic layer was dried. After the solvent was distilled off, the residue was dissolved in 150 ml of methanol, a methanol solution containing 1.43 g of sodium borohydride was added dropwise under ice cooling, and the mixture was stirred for 45 minutes under ice cooling. The reaction solution was neutralized with acetic acid, the solvent was evaporated, and the residue was partitioned with chloroform-water. The aqueous layer was extracted twice with chloroform, and the organic layer was dried. After evaporating the solvent, the obtained residue was subjected to silica gel column chromatography, and the portion eluted with 33 to 50% ethyl acetate-n-hexane was concentrated to give 3-O-benzyl-1.
-Deoxy-4-thio-D-arabinofuranose 8.1
8 g (yield 90%) was obtained.

【0042】1H−NMR(CDCl3−D2O)δ7.
38−7.27(5H,m,65 CH2),4.64
(2H,s,C65 CH 2),4.38(1H,dt,
2,J=2.9,4.4Hz),3.96(1H,
t,H3,J=2.9Hz),3.78(1H,dd,
5a,J=2.9,11.7Hz),3.66(1H,
dd,H5b,J=3.9,11.7Hz),3.60
(1H,dt,H4,J=2.9,3.9Hz),3.
21(1H,dd,H1a,J=4.4,11.2H
z),2.90(1H,dd,H1b,J=2.9,1
1.2Hz)
1 H-NMR (CDCl 3 -D 2 O) δ7.
38-7.27 (5H, m, C 6 H 5 CH 2), 4.64
(2H, s, C 6 H 5 CH 2), 4.38 (1H, dt,
H 2 , J = 2.9, 4.4 Hz), 3.96 (1H,
t, H 3 , J = 2.9 Hz), 3.78 (1H, dd,
H 5a , J = 2.9, 11.7 Hz), 3.66 (1H,
dd, H 5b , J = 3.9, 11.7 Hz), 3.60
(1H, dt, H 4, J = 2.9,3.9Hz), 3.
21 (1H, dd, H 1a , J = 4.4, 11.2H
z), 2.90 (1H, dd, H 1b , J = 2.9, 1
1.2Hz)

【0043】4)1−O−アセチル−2,3,5−トリ
−O−ベンジル−4−チオ−D−アラビノフラノース
[式[V]R1、R2=Bn]の合成 3−O−ベンジル−1−デオキシ−4−チオ−D−アラ
ビノフラノース5.0g(20.8mmol)をジメチ
ルホルムアミド100mlに溶解し、これに60%水素
化ナトリウム4.16g(104mmol)をアルゴン
気流下、0℃で加えて1時間攪拌した。1時間攪拌後、
ジメチルホルムアミド52mlに溶解させたベンジルク
ロリド16.8ml(145.64mmol)を0℃で
滴下した。これを室温で一晩攪拌した後、氷水中に注液
し、反応を停止した。酢酸エチルで分液し、有機層を飽
和食塩水で洗い、硫酸ナトリウムで乾燥した。溶液を濃
縮した後、シリカゲルカラムクロマトグラフィー(Ac
OEt:Hex=1:6)で精製し、1−O−デオキシ
−2,3,5−トリ−O−ベンジル−4−チオ−D−ア
ラビノフラノース5.54g(63.3%)を得た。
4) Synthesis of 1-O-acetyl-2,3,5-tri-O-benzyl-4-thio-D-arabinofuranose [formula [V] R 1 , R 2 = Bn] 3-O 5.0 g (20.8 mmol) of -benzyl-1-deoxy-4-thio-D-arabinofuranose was dissolved in 100 ml of dimethylformamide, and 4.16 g (104 mmol) of 60% sodium hydride was added thereto under an argon stream. The mixture was added at 0 ° C. and stirred for 1 hour. After stirring for 1 hour,
16.8 ml (145.64 mmol) of benzyl chloride dissolved in 52 ml of dimethylformamide was added dropwise at 0 ° C. This was stirred overnight at room temperature and then poured into ice water to stop the reaction. The mixture was partitioned with ethyl acetate, the organic layer was washed with saturated brine and dried over sodium sulfate. After concentrating the solution, silica gel column chromatography (Ac
OEt: Hex = 1: 6) to give 1-O-deoxy-2,3,5-tri-O-benzyl-4-thio-D-arabinofuranose (5.54 g, 63.3%). It was

【0044】元素分析:C26283S 計算値 C:74.25 H:6.71 実測値 C:74.28 H:6.821 H−NMR(CDCl3)δ7.35−7.25(15
H,m,芳香環),δ4.72−4.45(6H,m,
PhC 2),δ4.9(1H,m,H2),δ4.11
(1H,m,H3),δ3.69(1H,dd,H5b
5b5a=8.8Hz,J5b4=7.3Hz),δ3.5
6(1H,dt,H4,J43=3.4Hz,J45a=6.
4Hz,J45b=7.3Hz),δ3.50(1H,d
d,H5a,J5a5b=8.8Hz,J5a4=6.4H
z),δ3.08(1H,dd,H1b,J1 b1a=11.
2Hz,J1b2=4.9Hz),δ2.90(1H,d
d,H1 a,J1a1b=11.2Hz,J1a2=4.4H
z)
Elemental analysis: C 26 H 28 O 3 S calculated value C: 74.25 H: 6.71 measured value C: 74.28 H: 6.821 1 H-NMR (CDCl 3 ) δ7.35-7 .25 (15
H, m, aromatic ring), δ 4.72-4.45 (6H, m,
PhC H 2 ), δ 4.9 (1H, m, H 2 ), δ 4.11
(1H, m, H 3 ), δ3.69 (1H, dd, H 5b ,
J 5b5a = 8.8Hz , J 5b4 = 7.3Hz), δ3.5
6 (1H, dt, H 4 , J 43 = 3.4 Hz, J 45a = 6.
4 Hz, J 45b = 7.3 Hz, δ3.50 (1H, d
d, H 5a , J 5a5b = 8.8Hz , J 5a4 = 6.4H
z), δ3.08 (1H, dd, H 1b , J 1 b1a = 11.
2 Hz, J 1b2 = 4.9 Hz), δ2.90 (1H, d
d, H 1 a , J 1a1b = 11.2 Hz, J 1a2 = 4.4H
z)

【0045】このトリベンジル体2.88g(6.85
mmol)を蒸留した塩化メチレン40mlに溶解し、
これに蒸留した塩化メチレン40mlに溶かした80%
のm−クロロ過安息香酸1.48g(6.85mmo
l)をアルゴン気流下、−78℃で滴下した。30分攪
拌した後、飽和炭酸水素ナトリウム水溶液で反応を停止
した。続いて、塩化メチルで抽出し、有機層を10%チ
オ硫酸ナトリウム溶液で1回、飽和炭酸水素ナトリウム
水溶液で2回洗浄し、さらに飽和食塩水で1回洗浄後、
硫酸ナトリウムで乾燥した。溶液を濃縮し、スルホキシ
ド体を定量的に得た。スルホキシド体6.85mmol
に34.2mlの無水酢酸を加え、100℃で3時間加
熱攪拌させた。放冷した後、減圧乾固しシリカゲルカラ
ムクロマトグラフィー(AcOEt:Hex=1:1
0)で精製し、1−O−アセチル−2,3,5−トリ−
O−ベンジル−4−チオ−D−アラビノフラノース1.
79g(56.5%)を得た。
2.88 g (6.85 g) of this tribenzyl derivative was obtained.
mmol) in 40 ml of distilled methylene chloride,
80% dissolved in 40 ml of distilled methylene chloride
1.48 g (6.85 mmo) of m-chloroperbenzoic acid
1) was added dropwise at -78 ° C under a stream of argon. After stirring for 30 minutes, the reaction was stopped with a saturated sodium hydrogen carbonate aqueous solution. Then, the mixture was extracted with methyl chloride, the organic layer was washed once with a 10% sodium thiosulfate solution, twice with a saturated aqueous sodium hydrogen carbonate solution, and further washed once with a saturated saline solution.
Dried over sodium sulfate. The solution was concentrated to quantitatively obtain a sulfoxide form. 6.85 mmol of sulfoxide compound
34.2 ml of acetic anhydride was added to and the mixture was heated and stirred at 100 ° C. for 3 hours. After allowing to cool, it was dried under reduced pressure and subjected to silica gel column chromatography (AcOEt: Hex = 1: 1).
0) and 1-O-acetyl-2,3,5-tri-
O-benzyl-4-thio-D-arabinofuranose 1.
79 g (56.5%) were obtained.

【0046】元素分析値:C28304S・3/4H2
として 計算値 C:70.63, H6.67, 実測値 C:70.37, H6.241 H−NMR(CDCl3)δ7.35−7.24(15
H,m,芳香環),δ6.07(1H,d,H1β,J
12β=3.9Hz),δ5.98(1H,d,H1α,
12α=2.9Hz),δ4.83−4.48(6H,
m,PhC 2),δ4.26(1H,dd,H2α,J
2α3α=4.9Hz,J2α1α=2.9Hz),δ4.
18(1H,dd,H2β,J2β3β=8.8Hz,J
21β=3.9Hz),δ4.12(1H,dd,H
3β,J3β4β=6.8Hz,J3β2β=8.8H
z),δ4.03(1H,dd,H3α,J3α4α=
6.4Hz,J3α2α=4.9Hz),δ3.76(1
H,m,H4α),δ3.73−3.44(2H,m,
5a,H5b),δ3.40(1H,m,H4β),δ
2.04(3H,s,アセトキシHα,β
Elemental analysis value: C 28 H 30 O 4 S.3 / 4H 2 O
Calculated C: 70.63, H6.67, Found C: 70.37, H6.24 1 H- NMR (CDCl 3) δ7.35-7.24 (15
H, m, aromatic ring), δ 6.07 (1H, d, H 1 β, J
12 β = 3.9 Hz), δ5.98 (1H, d, H 1 α,
J 12 α = 2.9 Hz), δ4.83-4.48 (6H,
m, PhC H 2 ), δ4.26 (1H, dd, H 2 α, J
2 α 3 α = 4.9 Hz, J 2 α 1 α = 2.9 Hz), δ 4.
18 (1H, dd, H 2 β, J 2 β 3 β = 8.8 Hz, J
21 β = 3.9 Hz, δ 4.12 (1H, dd, H
3 β, J 3 β 4 β = 6.8 Hz, J 3 β 2 β = 8.8H
z), δ 4.03 (1H, dd, H 3 α, J 3 α 4 α =
6.4 Hz, J 3 α 2 α = 4.9 Hz), δ 3.76 (1
H, m, H 4 α), δ 3.73-3.44 (2H, m,
H 5a , H 5b ), δ 3.40 (1H, m, H 4 β), δ
2.04 (3H, s, acetoxy Hα, β )

【0047】5)[Ia−α]E−5−(2−ブロモビ
ニル)−1−(4−チオ−α−D−アラビノフラノシ
ル)ウラシルおよび[Ia−β]E−5−(2−ブロモ
ビニル)−1−(4−チオ−β−D−アラビノフラノシ
ル)ウラシル[式[I]、B=E−5−(2−ブロモビ
ニル)ウラシル]の合成 ブロモビニルウラシル282mg(1.30mmol)
をアセトニトリル6mlに溶かし、これにN,O−ビス
(トリメチルシリル)アセトアミド1.28mlをアル
ゴン気流下、室温で溶かした後、30分還流させた。こ
れに5mlのシアン化メチルに溶かした1−O−アセチ
ル−2,3,5−トリ−O−ベンジル−4−チオ−D−
アラビノフラノース463mg(1.0mmol)をア
ルゴン気流下、室温で滴下していき、続いてトリメチル
シリルトリフレート0.31ml(1.50mmol)
を加えて2.5時間攪拌し、0℃へ冷やしてから飽和炭
酸水素ナトリウム水溶液で反応を停止した。エバポレー
トでシアン化メチルを留去後、塩化メチレンで抽出し、
有機層を水で2回洗い、硫酸ナトリウムで乾燥させた
後、濃縮した。これを蒸留した塩化メチレン8.0ml
に溶かし、三臭化ホウ素0.541ml(5.72mm
ol)をアルゴン気流下、−78℃で加え30分攪拌し
た。メタノール、ピリミジンで反応を停止し、これを濃
縮した後シリカゲルカラムクロマトグラフィー(10%
MeOH/CHCl3)で分離し、結晶化を行い、[I
a−α] 33.6mg、[Ia−β]46.2mgを
得た。
5) [Ia-α] E-5- (2-bromovinyl) -1- (4-thio-α-D-arabinofuranosyl) uracil and [Ia-β] E-5- (2- Synthesis of bromovinyl) -1- (4-thio-β-D-arabinofuranosyl) uracil [formula [I], B = E-5- (2-bromovinyl) uracil] 282 mg (1.30 mmol) of bromovinyluracil
Was dissolved in 6 ml of acetonitrile, and 1.28 ml of N, O-bis (trimethylsilyl) acetamide was dissolved in this at room temperature under an argon stream, and the mixture was refluxed for 30 minutes. 1-O-acetyl-2,3,5-tri-O-benzyl-4-thio-D-dissolved in 5 ml of methyl cyanide.
Arabinofuranose (463 mg, 1.0 mmol) was added dropwise at room temperature under an argon stream, followed by trimethylsilyl triflate (0.31 ml, 1.50 mmol).
Was added and the mixture was stirred for 2.5 hours, cooled to 0 ° C., and then the reaction was stopped with a saturated aqueous sodium hydrogen carbonate solution. After evaporating the methyl cyanide by evaporation, it was extracted with methylene chloride,
The organic layer was washed twice with water, dried over sodium sulfate, and then concentrated. Distilled methylene chloride 8.0 ml
Dissolved in 0.54 ml of boron tribromide (5.72 mm
ol) was added at −78 ° C. under an argon stream and stirred for 30 minutes. The reaction was stopped with methanol and pyrimidine, and this was concentrated and then silica gel column chromatography (10%
Separated with MeOH / CHCl 3 ) and crystallized, [I
a-α] 33.6 mg and [Ia-β] 46.2 mg were obtained.

【0048】[Ia−α]元素分析値:C111325
SBr 1/2H2Oとして 計算値 C:35.31 H:3.77 N:7.49 実測値 C:35.55 H:3.70 N:7.221 H−NMR(DMSOd6) δ11.61(1H,
s,N),δ8.28(1H,s,H6),δ7.3
3(1H,d,ビニル性H,J=13.7Hz),δ
6.99(1H,d,ビニル性H,J=13.7H
z),δ5.77(1H,d,H1',J1'2'=7.3H
z),δ5.74(1H,d,OH2',J=3.4H
z),δ5.60(1H,d,OH3',J=4.4H
z),δ4.95(1H,t,OH5',J=5.1H
z),δ4.01(1H,dt,H2',J2'3'=7.8
Hz,J2'1'=7.3Hz),δ3.86(1H,d
t,H5b',J5b'4'=3.9Hz,J5a'5b'=11.2
Hz),δ3.68(1H,dt,H3',J3'4'=8.
3Hz,J3'2'=7.8Hz),δ3.61(1H,d
t,H4',J4'5a'=J4'5b'=8.3Hz,J4'3'
8.3Hz),δ3.43(1H,dd,H5a',J
5a'4'=8.3Hz,J5a'5b'=11.2Hz)
[Ia-α] Elemental analysis value: C 11 H 13 N 2 O 5
SBr Calculated 1 / 2H 2 O C: 35.31 H: 3.77 N: 7.49 Found C: 35.55 H: 3.70 N: 7.22 1 H-NMR (DMSOd 6) δ11 .61 (1H,
s, N H ), δ8.28 (1H, s, H 6 ), δ7.3
3 (1H, d, vinylic H, J = 13.7Hz), δ
6.99 (1H, d, vinylic H, J = 13.7H
z), δ 5.77 (1H, d, H 1 ' , J 1'2' = 7.3H
z), δ5.74 (1H, d, OH 2 ′ , J = 3.4H
z), δ5.60 (1H, d, OH 3 ′ , J = 4.4H
z), δ 4.95 (1H, t, OH 5 ′ , J = 5.1H
z), δ4.01 (1H, dt, H 2 ' , J 2'3' = 7.8)
Hz, J 2 '1' = 7.3 Hz), δ 3.86 (1H, d
t, H 5b ' , J 5b'4' = 3.9 Hz, J 5a'5b ' = 11.2
Hz), δ3.68 (1H, dt, H3 ' , J3'4' = 8.
3 Hz, J 3'2 ' = 7.8 Hz), δ 3.61 (1H, d
t, H 4 ' , J 4'5a' = J 4'5b ' = 8.3 Hz, J 4'3' =
8.3 Hz), δ3.43 (1H, dd, H 5a ' , J
5a'4 ' = 8.3Hz , J 5a'5b' = 11.2Hz)

【0049】 [Ia−β]元素分析値:C111325SBr 計算値 C:36.18 H:3.59 N:7.67 実測値 C:36.29 H:3.69 N:7.411 H−NMR(DMSOd6) δ11.58(1H,
s,N),δ8.36(1H,s,H6),δ7.2
5(1H,d,ビニル性H,J=13.7Hz),δ
6.89(1H,d,ビニル性H,J=13.2H
z),δ6.06(1H,d,H1',J1'2'=5.9H
z),δ5.75(1H,d,OH2',J=5.9H
z),δ5.45(1H,d,OH3',J=4.9H
z),δ5.34(1H,t,OH5',J=5.1H
z),δ4.02(1H,dt,H2',J2'3'=6.8
Hz,J2'1'=5.9Hz),δ3.94(1H,d
t,H3',J3'2'=6.8Hz,J3'4'=3.4H
z),δ3.78−3.72(2H,dd×2,
5a ',H5b',J5a'4'=5.6Hz,J5b'4'=3.4
Hz,J5a'5b'=11.2Hz),δ3.15(1H,
dt,H4',J4'5a'=4.9Hz,J4'3'=3.4H
z)
[Ia-β] Elemental analysis value: C 11 H 13 N 2 O 5 SBr Calculated value C: 36.18 H: 3.59 N: 7.67 Measured value C: 36.29 H: 3.69 N: 7.41 1 H-NMR (DMSOd 6 ) δ11.58 (1H,
s, N H ), δ 8.36 (1H, s, H 6 ), δ 7.2
5 (1 H, d, vinylic H, J = 13.7 Hz), δ
6.89 (1H, d, vinylic H, J = 13.2H
z), δ6.06 (1H, d, H 1 ' , J 1'2' = 5.9H
z), δ 5.75 (1H, d, OH 2 ′ , J = 5.9H
z), δ 5.45 (1H, d, OH 3 ′ , J = 4.9H
z), δ5.34 (1H, t, OH 5 ′ , J = 5.1H
z), δ4.02 (1H, dt, H 2 ' , J 2'3' = 6.8)
Hz, J 2'1 ' = 5.9 Hz), δ3.94 (1H, d
t, H 3 ' , J 3'2' = 6.8 Hz, J 3'4 ' = 3.4H
z), δ3.78-3.72 (2H, dd × 2,
H 5a ', H 5b', J 5a'4 '= 5.6Hz, J 5b'4' = 3.4
Hz, J 5a'5b ' = 11.2 Hz), δ 3.15 (1H,
dt, H 4 ' , J 4'5a' = 4.9 Hz, J 4'3 ' = 3.4H
z)

【0050】実施例2;[Ib−α]5−エチル−1−
(4−チオ−α−D−アラビノフラノシル)ウラシルお
よび[Ib−β]5−エチル−1−(4−チオ−β−D
−アラビノフラノシル)ウラシル[式[I]、B=5−
エチルウラシル]の合成 5−エチルウラシル420mg(3.0mmol)に触
媒量の硫酸アンモニウムとヘキサメチルジシラサン4.
2mlを加え、140℃で一晩還流した。還流後減圧乾
固し、残渣を5mlのジクロロエタンに溶かした。この
溶液に13mlのジクロロエタンで溶かした1−O−ア
セチル−2,3,5−トリ−O−ベンジル−4−チオ−
D−アラビノフラノース463mg(1.0mmol)
を加え、続いてトリメチルシリルトリフレート0.31
mlを加え、1.5時間攪拌した後飽和炭酸水素ナトリ
ウム水溶液で反応を停止した。塩化メチルで抽出後、有
機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水とで
洗い、硫酸ナトリウムで乾燥した。乾燥後濃縮したもの
を塩化メチレン3mlに溶かし、これに1.0Mの三塩
化ホウ素2.14mlを−78℃で加えた。−78℃で
30分攪拌した後、−20℃まで徐々に昇温させこの温
度でさらに2時間攪拌した。硫酸水素ナトリウム溶液で
反応を停止し、セライトろ過後、塩化メチルで分液し、
水層を濃縮した。これをシリカゲルカラムクロマトグラ
フィー(10〜20%MeOH/CHCl3)に付し、
さらに順相HPLC(2%MeOH/CHCl3)に付
して分取した。それぞれを濃縮し、[Ib−α]34.
0mg、[Ib−β]12.0mgを得た。
Example 2; [Ib-α] 5-ethyl-1-
(4-Thio-α-D-arabinofuranosyl) uracil and [Ib-β] 5-ethyl-1- (4-thio-β-D
-Arabinofuranosyl) uracil [formula [I], B = 5-
Synthesis of ethyl uracil] 420 mg (3.0 mmol) of 5-ethyl uracil to catalytic amount of ammonium sulfate and hexamethyldisilazane 4.
2 ml was added and the mixture was refluxed at 140 ° C. overnight. After refluxing, the mixture was dried under reduced pressure and the residue was dissolved in 5 ml of dichloroethane. 1-O-acetyl-2,3,5-tri-O-benzyl-4-thio-dissolved in 13 ml of dichloroethane in this solution.
D-arabinofuranose 463 mg (1.0 mmol)
Was added, followed by trimethylsilyl triflate 0.31
After adding ml and stirring for 1.5 hours, the reaction was stopped with a saturated aqueous solution of sodium hydrogen carbonate. After extraction with methyl chloride, the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over sodium sulfate. What was concentrated after drying was dissolved in 3 ml of methylene chloride, and 2.14 ml of 1.0 M boron trichloride was added thereto at -78 ° C. After stirring at −78 ° C. for 30 minutes, the temperature was gradually raised to −20 ° C. and stirring was continued for another 2 hours at this temperature. Stop the reaction with sodium hydrogensulfate solution, filter through Celite, and then separate with methyl chloride.
The aqueous layer was concentrated. This was subjected to silica gel column chromatography (10-20% MeOH / CHCl 3 ),
Further, it was fractionated by subjecting to normal phase HPLC (2% MeOH / CHCl 3 ). Each was concentrated and [Ib-α] 34.
0 mg and 12.0 mg of [Ib-β] were obtained.

【0051】[Ib−α] 元素分析値:C1116
25S 1/2H2Oとして 計算値 C:44.44 H:5.76 N:9.42 実測値 C:44.76 H:5.64 N:9.031 H−NMR(DMSOd6) δ11.25(1H,b
s,N),δ7.78(1H,s,H6),δ5.7
7(1H,d,H1',J1'2'=7.3Hz),δ5.6
9(1H,d,OH2',J=5.4Hz),δ5.52
(1H,d,OH3',J=4.9Hz),δ4.91
(1H,m,H2'),δ3.85(1H,dt,
5b',J5b'4'=3.9Hz,J5b'5a'=10.7H
z),δ3.68(1H,m,H3'),δ3.56(1
H,dt,H4',J4'5a'=7.8Hz,J4'5 b'=3.
9Hz,J4'3'=3.4Hz),δ3.44(1H,d
t,H5a',J5 a'4'=7.8Hz,J5a'5b'=10.7
Hz),δ2.27(2H,dd,エチルH,J=7.
6Hz),δ1.05(3H,t,エチルH,J=7.
3Hz)
[Ib-α] Elemental analysis value: C 11 H 16 N
Calculated value as 2 O 5 S 1 / 2H 2 O C: 44.44 H: 5.76 N: 9.42 Measured value C: 44.76 H: 5.64 N: 9.03 1 H-NMR (DMSOd 6 ) δ11.25 (1H, b
s, N H ), δ 7.78 (1H, s, H 6 ), δ 5.7
7 (1H, d, H 1 ' , J 1'2' = 7.3 Hz), δ 5.6
9 (1H, d, OH 2 ' , J = 5.4 Hz), δ 5.52
(1H, d, OH 3 ′ , J = 4.9 Hz), δ4.91
(1H, m, H 2 ' ), δ3.85 (1H, dt,
H5b ' , J5b'4' = 3.9Hz, J5b'5a ' = 10.7H
z), δ3.68 (1H, m, H 3 ′ ), δ3.56 (1
H, dt, H4 ' , J4'5a' = 7.8Hz, J4'5b ' = 3.
9 Hz, J 4'3 ' = 3.4 Hz), δ 3.44 (1H, d
t, H 5a ', J 5 a'4' = 7.8Hz, J 5a'5b '= 10.7
Hz), δ 2.27 (2H, dd, ethyl H, J = 7.
6 Hz), δ1.05 (3H, t, ethyl H, J = 7.
3Hz)

【0052】[Ib−β]元素分析値:C111625
S 1/2H2Oとして 計算値 C:44.44 H:5.76 N:9.42 実測値 C:44.81 H:5.71 N:9.421 H−NMR(DMSOd6) δ11.25(1H,
s,N),δ7.91(1H,s,H6),δ6.0
8(1H,d,H1',J1'2'=5.9Hz),δ5.7
3(1H,d,OH2',J=5.4Hz),δ5.44
(1H,d,OH3',J=4.9Hz),δ5.24
(1H,t,OH5',4),δ3.99(1H,m,H
2'),δ3.94(1H,m,H3'),δ3.73(2
H,ddd,H5a ',H5b',J5a'5b'=4.4Hz,J
5a'4'=4.4Hz,J5b'4'=5.4Hz,J4'3'
5.4Hz),δ2.21(2H,dd,エチルH,J
=7.3Hz),δ1.04(3H,t,エチルH,J
=7.3Hz)
[Ib-β] Elemental analysis value: C 11 H 16 N 2 O 5
Calculated S 1 / 2H 2 O C: 44.44 H: 5.76 N: 9.42 Found C: 44.81 H: 5.71 N: 9.42 1 H-NMR (DMSOd 6) δ11 0.25 (1H,
s, N H ), δ 7.91 (1H, s, H 6 ), δ 6.0
8 (1H, d, H 1 ' , J 1'2' = 5.9 Hz), δ 5.7
3 (1H, d, OH 2 ' , J = 5.4 Hz), δ5.44
(1H, d, OH 3 ′ , J = 4.9 Hz), δ5.24
(1H, t, OH 5 ′ , 4), δ3.99 (1H, m, H
2 ' ), δ3.94 (1H, m, H3 ' ), δ3.73 (2
H, ddd, H 5a ', H 5b', J 5a'5b '= 4.4Hz, J
5a'4 ' = 4.4 Hz, J 5b'4' = 5.4 Hz, J 4'3 ' =
5.4 Hz), δ2.21 (2H, dd, ethyl H, J
= 7.3 Hz), δ1.04 (3H, t, ethyl H, J
= 7.3 Hz)

【0053】実施例3;[Ic−α]1−(4−チオ−
α−D−アラビノフラノシル)チミンおよび[Ic−
β]1−(4−チオ−β−D−アラビノフラノシル)チ
ミン[式[I]、B=チミン]の合成 1−O−アセチル−2,3,5−トリ−O−ベンジル−
4−チオ−D−アラビノフラノース925mg(1.5
3mmol)とシリル化したチミン4.59mmolを
用いて実施例2と同様の操作を行い、順相HPLC(1
5%MeOHin CHCl3)で分取して、[Ic−
α]136.5mg、[Ic−β]52.7mgを得
た。[Ic−β]のみ結晶化でき、8.9mg得られ
た。
Example 3; [Ic-α] 1- (4-thio-
α-D-arabinofuranosyl) thymine and [Ic-
Synthesis of β] 1- (4-thio-β-D-arabinofuranosyl) thymine [formula [I], B = thymine] 1-O-acetyl-2,3,5-tri-O-benzyl-
4-thio-D-arabinofuranose 925 mg (1.5
3 mmol) and silylated thymine (4.59 mmol) were used to carry out the same operation as in Example 2 to carry out normal phase HPLC (1
5% MeOH in CHCl 3 ) was added, and [Ic-
α] 136.5 mg and [Ic-β] 52.7 mg were obtained. Only [Ic-β] could be crystallized to obtain 8.9 mg.

【0054】[Ic−α]元素分析値:C101425
S 1/2H2Oとして 計算値 C:42.40 H:5.34 N:9.89 実測値 C:42.49 H:5.15 N:9.721 H−NMR(DMSOd6) δ11.29(1H,
s,N),δ7.83(1H,s,H6),δ5.7
6(1H,d,H1',J1'2'=7.8Hz),δ5.6
9(1H,d,OH2',J=5.9Hz),δ5.54
(1H,d,OH3',J=4.9Hz),δ4.91
(1H,t,OH5',J=5.1Hz),δ4.01
(1H,dt,H2',J2'3'=8.3Hz,J2'1'
7.8Hz),δ3.86(1H,m,H5b'),δ
3.65(1H,dt,H3',J3'4'=8.3Hz,J
3'2'=8.3Hz),δ3.56(1H,dt,H4'
4'5a'=8.3Hz,J4'5b'=3.4Hz,J4'3'
8.3Hz),δ3.42(1H,m,H5a'),δ
1.84(3H,s,メチルH)
[Ic-α] Elemental analysis value: C 10 H 14 N 2 O 5
Calculated S 1 / 2H 2 O C: 42.40 H: 5.34 N: 9.89 Found C: 42.49 H: 5.15 N: 9.72 1 H-NMR (DMSOd 6) δ11 .29 (1H,
s, N H ), δ 7.83 (1H, s, H 6 ), δ 5.7
6 (1H, d, H 1 ' , J 1'2' = 7.8 Hz), δ 5.6
9 (1H, d, OH 2 ' , J = 5.9 Hz), δ 5.54
(1H, d, OH 3 ′ , J = 4.9 Hz), δ4.91
(1H, t, OH 5 ′ , J = 5.1 Hz), δ 4.01
(1H, dt, H 2 ' , J 2'3' = 8.3Hz, J 2'1 '=
7.8 Hz), δ 3.86 (1H, m, H 5b ′ ), δ
3.65 (1H, dt, H3 ' , J3'4' = 8.3Hz, J
3'2 ' = 8.3 Hz), δ3.56 (1H, dt, H4 ' ,
J 4'5a ' = 8.3Hz , J 4'5b' = 3.4Hz, J 4'3 ' =
8.3 Hz), δ3.42 (1H, m, H 5a ' ), δ
1.84 (3H, s, methyl H)

【0055】[Ic−β]元素分析値:C101425
S 3/4H2Oとして 計算値 C:41.73 H:5.43 N:9.73 実測値 C:41.62 H:5.28 N:9.391 H−NMR(DMSOd6) δ11.27(1H,
s,N),δ7.95(1H,s,H6),δ6.0
9(1H,d,H1',J1'2'=5.4Hz),δ5.7
3(1H,d,OH2',J=5.4Hz),δ5.44
(1H,d,OH3',J=4.4Hz),δ4.02
(1H,dd,H2',J2'3'=6.4Hz,J2' 1'
5.4Hz),δ3.95(1H,d,H3',J3'4'
5.9Hz,J3'2'=6.4Hz),δ3.78(1
H,dd,H5b',J5b'5'a=11.2Hz,J5b'4'
4.9Hz),δ3.70(1H,dd,H5a',J
5a'5b'=11.2Hz,J5a'4'=5.9Hz),δ
3.15(1H,m,H4'),δ1.78(3H,s,
H)
[Ic-β] elemental analysis value: C 10 H 14 N 2 O 5
Calculated S 3 / 4H 2 O C: 41.73 H: 5.43 N: 9.73 Found C: 41.62 H: 5.28 N: 9.39 1 H-NMR (DMSOd 6) δ11 .27 (1H,
s, N H ), δ 7.95 (1H, s, H 6 ), δ 6.0
9 (1H, d, H 1 ' , J 1'2' = 5.4 Hz), δ 5.7
3 (1H, d, OH 2 ' , J = 5.4 Hz), δ5.44
(1H, d, OH 3 ′ , J = 4.4 Hz), δ4.02
(1H, dd, H 2 ' , J 2'3' = 6.4Hz, J 2 '1' =
5.4 Hz), δ3.95 (1H, d, H 3 ' , J 3'4' =
5.9 Hz, J 3'2 ' = 6.4 Hz), δ 3.78 (1
H, dd, H 5b ' , J 5b'5'a = 11.2 Hz, J 5b'4' =
4.9 Hz), δ3.70 (1H, dd, H 5a ' , J
5a'5b ' = 11.2 Hz, J 5a'4' = 5.9 Hz), δ
3.15 (1H, m, H 4 ' ), δ 1.78 (3H, s,
H)

【0056】実施例4;[Id−α]5−ヨード−1−
(4−チオ−α−D−アラビノフラノシル)ウラシルお
よび[Id−β]5−ヨード−1−(4−チオ−β−D
−アラビノフラノシル)ウラシル[式[I]、B=5−
ヨードウラシル]の合成 1−O−アセチル−2,3,5−トリ−O−ベンジル−
4−チオ−D−アラビノフラノース503mg(1.0
9mmol)とシリル化した5−ヨードウラシル3.2
6mmolを用いて実施例2と同様の操作を行い、逆相
HPLC(7%CH3CN in H2O)で分取し、
[Id−α]91.7mg、[Id−β]86.9mg
を得た。それぞれ結晶化を行い、α50.9mg、β2
2.4mgが得られた。
Example 4; [Id-α] 5-iodo-1-
(4-Thio-α-D-arabinofuranosyl) uracil and [Id-β] 5-iodo-1- (4-thio-β-D
-Arabinofuranosyl) uracil [formula [I], B = 5-
Synthesis of iodouracil] 1-O-acetyl-2,3,5-tri-O-benzyl-
4-thio-D-arabinofuranose 503 mg (1.0
9 mmol) and silylated 5-iodouracil 3.2
The same operation as in Example 2 was performed using 6 mmol, and fractionated by reverse phase HPLC (7% CH 3 CN in H 2 O).
[Id-α] 91.7 mg, [Id-β] 86.9 mg
I got Crystallization is performed to obtain α50.9mg and β2
2.4 mg was obtained.

【0057】[Id−α]元素分析値:C91125
IS 1H2Oとして 計算値 C:26.75 H:3.24 N:6.93 実測値 C:26.70 H:3.05 N:6.631 H−NMR(DMSOd6) δ11.69(1H,
s,N),δ8.42(1H,s,H6),δ5.7
4−5.72(2H,m,H1',OH2',J1'2'=6.
8Hz),δ5.50(1H,d,OH3',J=4.9
Hz),δ4.93(1H,t,OH5',J=4.9H
z),δ4.05(1H,dt,H2',J2' 1'=6.8
Hz,J2'3'=6.4Hz),δ3.84(1H,d
t,H5b',J5 b'4'=4.2Hz,J5b'5a'=11.2
Hz),δ3.72(1H,dt,H3',J3'4'=7.
3Hz,J3'2'=6.4Hz),δ3.47(1H,d
t,H4',J4'5a'=7.8Hz,J4'5b'=4.2H
z,J4'3'=7.3Hz),δ3.43(1H,d,H
5a',J5a'5b'=11.2Hz,J5a'4'=7.8Hz)
[Id-α] Elemental analysis value: C 9 H 11 N 2 O 5
Calculated value for IS 1H 2 O C: 26.75 H: 3.24 N: 6.93 Measured value C: 26.70 H: 3.05 N: 6.63 1 H-NMR (DMSOd 6 ) δ 11.69 (1H,
s, N H ), δ8.42 (1H, s, H 6 ), δ 5.7
4-5.72 (2H, m, H 1 ', OH 2', J 1'2 '= 6.
8 Hz), δ5.50 (1H, d, OH 3 ′ , J = 4.9)
Hz), δ4.93 (1H, t, OH 5 ' , J = 4.9H
z), δ 4.05 (1H, dt, H 2 ′ , J 2 ′ 1 ′ = 6.8)
Hz, J 2 '3' = 6.4 Hz), δ 3.84 (1H, d
t, H 5b ', J 5 b'4' = 4.2Hz, J 5b'5a '= 11.2
Hz), δ 3.72 (1H, dt, H 3 ' , J 3'4' = 7.
3 Hz, J 3'2 ' = 6.4 Hz), δ 3.47 (1H, d
t, H 4 ' , J 4'5a' = 7.8 Hz, J 4'5b ' = 4.2H
z, J 4'3 ' = 7.3 Hz, δ 3.43 (1H, d, H
5a ' , J5a'5b' = 11.2Hz, J5a'4 ' = 7.8Hz)

【0058】 [Id−β]元素分析値:C91125IS 計算値 C:27.99 H:2.87 N:7.25 実測値 C:27.95 H:2.89 N:7.051 H−NMR(DMSOd6) δ11.67(1H,
s,N),δ8.55(1H,s,H6),δ6.3
4(1H,d,H1',J1'2'=5.9Hz),δ5.7
9(1H,d,OH2',J=5.4Hz),δ4.97
(1H,d,OH3',J=4.4Hz),δ4.32
(1H,t,OH5',J=4.9Hz),δ3.99
(1H,d,H2',J2'3'=5.9Hz,J2'1'=5.
9Hz),δ3.94(1H,m,H3'),δ3.69
(2H,dd×2,H5a',H5b',J5a '5b'=11.2
Hz,J5a'4'=J5b'4'=5.4Hz),δ3.18
(1H,m,H4'
[Id-β] Elemental analysis value: C 9 H 11 N 2 O 5 IS calculated value C: 27.99 H: 2.87 N: 7.25 measured value C: 27.95 H: 2.89 N: 7.05 1 H-NMR (DMSOd 6 ) δ 11.67 (1H,
s, N H ), δ 8.55 (1H, s, H 6 ), δ 6.3
4 (1H, d, H 1 ' , J 1'2' = 5.9 Hz), δ 5.7
9 (1H, d, OH 2 ′ , J = 5.4 Hz), δ 4.97
(1H, d, OH 3 ′ , J = 4.4 Hz), δ 4.32
(1H, t, OH 5 ′ , J = 4.9 Hz), δ3.99
(1H, d, H 2 ' , J 2'3' = 5.9 Hz, J 2'1 ' = 5.
9 Hz), δ3.94 (1H, m, H 3 ′ ), δ3.69
(2H, dd × 2, H 5a ' , H 5b' , J 5a '5b' = 11.2
Hz, J 5a'4 ' = J 5b'4' = 5.4 Hz), δ 3.18
(1H, m, H 4 ' )

【0059】実施例5;[Ie−α]E−5−(2−ク
ロロビニル)−1−(4−チオ−α−D−アラビノフラ
ノシル)ウラシルおよび[Ie−β]E−5−(2−ク
ロロビニル)−1−(4−チオ−β−D−アラビノフラ
ノシル)ウラシル[式[I]、B=E−5−(2−クロ
ロビニル)ウラシル]の合成 1−O−アセチル−2,3,5−トリ−O−ベンジル−
4−チオ−D−アラビノフラノース463mg(1.0
mmol)とシリル化したクロロビニルウラシル3.0
mmolを用いて実施例2と同様の操作を行い、逆相H
PLC(15%CH3CN in H2O)で分取し、減
圧乾固したところ、[Ie−α]80.0mg、[Ie
−β]33.9mgを得た。それぞれ結晶化により、α
49.2mg、β23.5mgが得られた。
Example 5; [Ie-α] E-5- (2-chlorovinyl) -1- (4-thio-α-D-arabinofuranosyl) uracil and [Ie-β] E-5- Synthesis of (2-chlorovinyl) -1- (4-thio-β-D-arabinofuranosyl) uracil [formula [I], B = E-5- (2-chlorovinyl) uracil] 1-O- Acetyl-2,3,5-tri-O-benzyl-
4-thio-D-arabinofuranose 463 mg (1.0
mmol) and silylated chlorovinyl uracil 3.0
Using the mmol, the same operation as in Example 2 was carried out to obtain the reverse phase H
When it was fractionated by PLC (15% CH 3 CN in H 2 O) and dried under reduced pressure, [Ie-α] 80.0 mg, [Ie
-Β] 33.9 mg was obtained. Depending on the crystallization, α
49.2 mg and β23.5 mg were obtained.

【0060】 [Ie−α]元素分析値:C111325ClS 計算値 C:41.19 H:4.09 N:8.73 実測値 C:41.23 H:4.00 N:8.671 H−NMR(DMSOd6) δ11.60(1H,
s,N),δ8.25(1H,s,H6),δ7.2
6(1H,d,ビニル性H,J=13.2Hz),δ
6.73(1H,d,ビニル性H,J=13.7H
z),δ5.76(1H,d,H1',J1'2'=7.8H
z),δ5.74(1H,d,OH2',J=5.9H
z),δ5.59(1H,d,OH3',J=4.4H
z),δ4.94(1H,t,OH5',J=5.4H
z),δ4.04(1H,dt,H2',J2'3'=7.8
Hz,J2'1'=7.8Hz),δ3.87(1H,d
t,H5b',J5b'4'=3.9Hz,J5b'5a'=11.2
Hz),δ3.68(1H,dt,H3',J3'4'=8.
3Hz,J3'2'=7.8Hz),δ3.61(1H,d
t,H4',J4'5a'=8.3Hz,J4'5b'=3.9H
z,J4'3'=8.3Hz),δ3.43(1H,m,H
5a',J5a'4'=8.3Hz,J5a'5b'=11.2Hz)
[Ie-α] Elemental analysis value: C 11 H 13 N 2 O 5 ClS Calculated value C: 41.19 H: 4.09 N: 8.73 Measured value C: 41.23 H: 4.00 N: 8.67 1 H-NMR (DMSOd 6 ) δ 11.60 (1H,
s, N H ), δ8.25 (1H, s, H 6 ), δ7.2
6 (1H, d, vinylic H, J = 13.2Hz), δ
6.73 (1H, d, vinylic H, J = 13.7H
z), δ 5.76 (1H, d, H 1 ' , J 1'2' = 7.8H
z), δ5.74 (1H, d, OH 2 ′ , J = 5.9H
z), δ5.59 (1H, d, OH 3 ′ , J = 4.4H
z), δ4.94 (1H, t, OH 5 ′ , J = 5.4H
z), δ 4.04 (1H, dt, H 2 ′ , J 2 ′ 3 = 7.8)
Hz, J 2 '1' = 7.8 Hz), δ 3.87 (1H, d
t, H 5b ' , J 5b'4' = 3.9 Hz, J 5b'5a ' = 11.2
Hz), δ3.68 (1H, dt, H3 ' , J3'4' = 8.
3 Hz, J 3'2 ' = 7.8 Hz), δ 3.61 (1H, d
t, H 4 ' , J 4'5a' = 8.3 Hz, J 4'5b ' = 3.9H
z, J 4'3 ' = 8.3 Hz), δ 3.43 (1H, m, H
5a ', J 5a'4' = 8.3Hz , J 5a'5b '= 11.2Hz)

【0061】[Ie−β]元素分析値:C111325
ClS 1/2H2Oとして 計算値 C:10.07 H:4.28 N:8.50 実測値 C:39.95 H:4.26 N:8.481 H−NMR(DMSOd6) δ11.56(1H,
s,N),δ8.34(1H,s,H6),δ7.1
8(1H,d,ビニル性H,J=13.2Hz),δ
6.62(1H,d,ビニル性H,J=13.7H
z),δ6.07(1H,d,H1',J1'2'=5.9H
z),δ5.74(1H,d,OH2',J=5.9H
z),δ5.44(1H,d,OH3',J=4.9H
z),δ5.33(1H,t,OH5',J=5.1H
z),δ4.01(1H,dt,H2',J2'3'=5.9
Hz,J2'1'=5.9Hz),δ3.95(1H,d
t,H3',J3'4'=5.9Hz,J3'2'=5.9H
z),δ3.75(2H,dd×2,H5a',H5 b'),
δ3.15(1H,m,H4'
[Ie-β] elemental analysis value: C 11 H 13 N 2 O 5
Calculated as ClS 1 / 2H 2 O C: 10.07 H: 4.28 N: 8.50 Found C: 39.95 H: 4.26 N: 8.48 1 H-NMR (DMSOd 6 ) δ11 .56 (1H,
s, N H ), δ 8.34 (1H, s, H 6 ), δ 7.1
8 (1 H, d, vinylic H, J = 13.2 Hz), δ
6.62 (1H, d, vinylic H, J = 13.7H
z), δ6.07 (1H, d, H 1 ' , J 1'2' = 5.9H
z), δ5.74 (1H, d, OH 2 ′ , J = 5.9H
z), δ5.44 (1H, d, OH 3 ′ , J = 4.9H
z), δ5.33 (1H, t, OH 5 ′ , J = 5.1H
z), δ4.01 (1H, dt, H 2 ' , J 2'3' = 5.9)
Hz, J 2'1 ' = 5.9 Hz), δ3.95 (1H, d
t, H 3 ', J 3'4 ' = 5.9Hz, J 3'2 '= 5.9H
z), δ3.75 (2H, dd × 2, H 5a ′ , H 5 b ′ ),
δ 3.15 (1H, m, H 4 ' )

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記の第1工程〜第4工程よりなる、式
[I]で表される4’−チオアラビノピリミジンヌクレ
オシドの製造方法。 【化1】 (式中、Bはピリミジン塩基を示す。) 第1工程;式[II]で表される化合物の2位および5
位の水酸基にスルホニル基を導入後、硫化物と反応させ
て式[III]で表される化合物を得る工程。 【化2】 (式中、R1はアルキル基、R2は水酸基の保護基を示
す。) 第2工程;式[III]で表される化合物のラクトール
環を加水分解後、還元して式[IV]で表される化合物
を得る工程。 【化3】 (式中、R1及びR2は前記と同意義。) 第3工程;式[IV]で表される化合物の2位および5
位の水酸基を保護し、酸化剤と反応させてスルホキシド
体へ導いた後、プンメラー(Pummerer)転移を
行い式[V]で表される化合物を得る工程。 【化4】 (式中、Acはアセチル基、R2及びR3は水酸基の保護
基を示す。) 第4工程;式[V]で表される化合物をグリコシル化反
応に付して糖部1位にBで表される塩基類を導入後、糖
部水酸基の保護基を除去して式[I]で表される化合物
を得る工程。 【化5】 (式中、Ac、R2、R3およびBは前記と同意義。)
1. A method for producing a 4′-thioarabinopyrimidine nucleoside represented by the formula [I], which comprises the following first to fourth steps. Embedded image (In the formula, B represents a pyrimidine base.) First step; 2-position and 5 of the compound represented by the formula [II].
A step of introducing a sulfonyl group into the hydroxyl group at the position and then reacting with a sulfide to obtain a compound represented by the formula [III]. Embedded image (In the formula, R 1 represents an alkyl group and R 2 represents a protective group for a hydroxyl group.) Second step; after hydrolysis of the lactol ring of the compound represented by the formula [III], reduction is performed with the formula [IV]. Obtaining the represented compound. Embedded image (In the formula, R 1 and R 2 have the same meanings as described above.) Third step; 2-position and 5-position of the compound represented by the formula [IV]
A step of protecting the hydroxyl group at the position, reacting with an oxidizing agent to lead to a sulfoxide form, and then performing a Pummerer transfer to obtain a compound represented by the formula [V]. Embedded image (In the formula, Ac represents an acetyl group and R 2 and R 3 represent a protective group for a hydroxyl group.) Fourth step; the compound represented by the formula [V] is subjected to a glycosylation reaction to give B at the 1-position of the sugar moiety. A step of introducing a base represented by the formula (1) and then removing a protecting group for a sugar group hydroxyl group to obtain a compound represented by the formula [I]. Embedded image (In the formula, Ac, R 2 , R 3 and B have the same meanings as described above.)
JP7201578A 1995-07-14 1995-07-14 Production of 4'-thioarabinopyrimidine nucleoside Pending JPH0925289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7201578A JPH0925289A (en) 1995-07-14 1995-07-14 Production of 4'-thioarabinopyrimidine nucleoside

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7201578A JPH0925289A (en) 1995-07-14 1995-07-14 Production of 4'-thioarabinopyrimidine nucleoside

Publications (1)

Publication Number Publication Date
JPH0925289A true JPH0925289A (en) 1997-01-28

Family

ID=16443386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7201578A Pending JPH0925289A (en) 1995-07-14 1995-07-14 Production of 4'-thioarabinopyrimidine nucleoside

Country Status (1)

Country Link
JP (1) JPH0925289A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043690A1 (en) * 1998-02-25 1999-09-02 Rational Drug Design Laboratories L-4'-arabinofuranonucleoside compound and medicine composition comprising the same
US6576621B1 (en) 1998-07-23 2003-06-10 Southern Research Institute Preparation of thioarabinofuranosyl compounds and use thereof
JP5258798B2 (en) * 2008-02-15 2013-08-07 学校法人関西学院 Method for producing 3,6-O-bridged inverted pyranose compound and β-O-pyranoside
WO2015125782A1 (en) * 2014-02-18 2015-08-27 富士フイルム株式会社 Method for producing thiolane-skeleton glycoconjugate, and thiolane-skeleton glycoconjugate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043690A1 (en) * 1998-02-25 1999-09-02 Rational Drug Design Laboratories L-4'-arabinofuranonucleoside compound and medicine composition comprising the same
US6576621B1 (en) 1998-07-23 2003-06-10 Southern Research Institute Preparation of thioarabinofuranosyl compounds and use thereof
US6870052B2 (en) 1998-07-23 2005-03-22 Southern Research Institute Preparation of thioarabinofuranosyl compounds and use thereof
US7138385B2 (en) 1998-07-23 2006-11-21 Southern Research Institute Thioarabinofuranosyl compounds and use thereof
US7691820B2 (en) 1998-07-23 2010-04-06 Southern Research Institute Preparation of thioarabinofuranosyl compounds and use thereof
US8178510B2 (en) 1998-07-23 2012-05-15 Southern Research Institute Preparation of thioarabinofuranosyl compounds and use thereof
JP5258798B2 (en) * 2008-02-15 2013-08-07 学校法人関西学院 Method for producing 3,6-O-bridged inverted pyranose compound and β-O-pyranoside
WO2015125782A1 (en) * 2014-02-18 2015-08-27 富士フイルム株式会社 Method for producing thiolane-skeleton glycoconjugate, and thiolane-skeleton glycoconjugate
JP2015172033A (en) * 2014-02-18 2015-10-01 富士フイルム株式会社 Method for producing thiolane skeleton-type glycoconjugate, and thiolane skeleton-type glycoconjugate

Similar Documents

Publication Publication Date Title
US5401838A (en) Stereoselective fusion glycosylation process for preparing 2&#39;-deoxy-2&#39;,2&#39;-difluoronucleosides and 2&#39;-deoxy-2&#39;-fluoronucleosides
EP2277878B1 (en) Process for production of ethynylthymidine compound using 5-methyluridine as starting raw material
HU199499B (en) Process for producing 2&#39;,3&#39;-dideoxy-2&#39;-fluoronucleosides and pharmaceutical compositions comprising such active ingredient
US4689404A (en) Production of cytosine nucleosides
KR970002659B1 (en) PROCESS AND INTERMEDIATES OF 2óÑ,2óÑ-DIFLUORONUCLEOSIDES
JP2005139197A (en) METHOD FOR PRODUCING 2&#39;,3&#39;-DIDEHYDRO-3&#39;-DEOXYTHYMIDINE (d4T) BY USING 5-METHYLURIDINE
EP0638586B1 (en) Nucleoside derivatives and methods for producing them
US20030060622A1 (en) Process for the preparation of 2&#39;-halo-beta-L-arabinofuranosyl nucleosides
JPH0925289A (en) Production of 4&#39;-thioarabinopyrimidine nucleoside
JP4691101B2 (en) 1-α-halo-2,2-difluoro-2-deoxy-D-ribofuranose derivative and method for producing the same
US5466787A (en) Process for preparing AZT
JPH02289595A (en) Production of 2&#39;-deoxy-5-trifluoromethyl-uridine
JPH075626B2 (en) Method for producing 2′-anhydro-1- (β-D-arabinofuranosyl) thymine
JPH09328497A (en) 4&#39;-fluoromethylnucleoside
JP3046359B2 (en) D-pentofuranose derivative and method for producing the same
JP3165420B2 (en) D-pentofuranose derivative and method for producing the same
JPH0454193A (en) Production of 2&#39;, 3&#39;-dideoxy-2&#39;,3&#39;-didehydro-beta-ribonucleoside
JPH04368382A (en) Production of 2&#39;,3&#39;-dideoxy-beta-nucleoside
JPH07165785A (en) Preparation of 3&#39;-fluoropyrimidine nucleoside
JPH07157496A (en) Production of deoxynucleotide
JPH0446244B2 (en)
JPH11217396A (en) Production of nucleoside derivative
JPH05170760A (en) Production of thionucleo- side
JPH05230058A (en) 4&#39;-carbon substituted pyrimidine nucleoside and its production
JPH08134065A (en) Production of 3&#39;-amino-3&#39;-deoxynucleoside and intermediate for synthesizing the same