JPH09249824A - Air-purifying coating material using photocatalyst - Google Patents

Air-purifying coating material using photocatalyst

Info

Publication number
JPH09249824A
JPH09249824A JP8060800A JP6080096A JPH09249824A JP H09249824 A JPH09249824 A JP H09249824A JP 8060800 A JP8060800 A JP 8060800A JP 6080096 A JP6080096 A JP 6080096A JP H09249824 A JPH09249824 A JP H09249824A
Authority
JP
Japan
Prior art keywords
photocatalyst
synthetic zeolite
air
zsm5
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8060800A
Other languages
Japanese (ja)
Other versions
JP3227373B2 (en
Inventor
Yasuaki Sakane
安昭 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP06080096A priority Critical patent/JP3227373B2/en
Publication of JPH09249824A publication Critical patent/JPH09249824A/en
Application granted granted Critical
Publication of JP3227373B2 publication Critical patent/JP3227373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject coating little in the deterioration of the purification performance even in a high humidity atmosphere, free from the danger of ignition, high in the degree of freedom on employment and capable of being very easily handled by processing a photopolymerization initiator and a specific adsorbent with a binder into a coating material. SOLUTION: (A) photopolymerization catalyst and (B) high silica synthetic zeolite H type ZSM5 having a silica/alumina ratio of 56-912 as an adsorbent are processed with (C) a binder into a coating material. The component B preferably contains one or more kinds of high silica synthetic zeolite H type ZSM5 in which a central hydrogen ion is exchanged with the ion of copper, silver, platinum or palladium, and has an ion exchange degree of >=1wt.% based on the whole amount of the ZSM5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光触媒を用いた空気
浄化塗料に関するものである。
TECHNICAL FIELD The present invention relates to an air purifying coating material using a photocatalyst.

【0002】[0002]

【従来の技術】空気の浄化物としては、一般的には活性
炭が知られている。活性炭は多数の細孔を有しており、
その細孔内に臭気等の汚れ成分を吸着させて空気を浄化
するものである。
2. Description of the Related Art Activated carbon is generally known as a purified product of air. Activated carbon has a large number of pores,
The air is purified by adsorbing contaminants such as odor into the pores.

【0003】また、特開平5−293165号公報に
は、活性炭と光触媒を複合化したものが提案されてい
る。これは、活性炭の表面に光触媒を担持させることに
より、紫外線ランプ等を用いて光触媒を励起させ、活性
炭を再生させるとともに、臭気成分を分解するようにし
たものである。
Further, JP-A-5-293165 proposes a composite of activated carbon and a photocatalyst. In this method, a photocatalyst is supported on the surface of activated carbon to excite the photocatalyst using an ultraviolet lamp or the like to regenerate the activated carbon and decompose odorous components.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来の空気浄化物のうち、前者の活性炭単独のものの
場合には、臭気を吸着するうちに吸着量が飽和状態に達
し、浄化性能が無くなってきて、いずれ交換しなければ
ならなくなるという問題がある。
However, in the case of the former activated carbon alone among the above-mentioned conventional air purifiers, the adsorbed amount reaches the saturated state while adsorbing the odor, and the purifying performance is lost. Then, there is a problem that it will eventually have to be replaced.

【0005】一方、後者の活性炭と光触媒を複合したも
のの場合においては、脱臭性能は活性炭の吸着性能によ
って決まり、活性炭で吸着困難なアンモニア、硫化水
素、アセトアルデヒド等の浄化性能が良くないという問
題がある。また、高湿度雰囲気下では吸湿して脱臭性能
が低下してしまうという問題がある。さらに、光触媒と
活性炭は塗料化できないため、光触媒はハニカム状等に
成形した活性炭に焼き付けられるが、焼き付け条件によ
っては活性炭が発火するという問題や、光触媒による活
性炭の分解が起こり得るという問題もある。
On the other hand, in the latter case of a composite of activated carbon and a photocatalyst, the deodorizing performance is determined by the adsorption performance of the activated carbon, and there is a problem that the purification performance of ammonia, hydrogen sulfide, acetaldehyde, etc., which is difficult to adsorb on the activated carbon, is not good. . Further, there is a problem that the deodorizing performance is deteriorated by absorbing moisture in a high humidity atmosphere. Further, since the photocatalyst and the activated carbon cannot be made into a paint, the photocatalyst is baked on the activated carbon formed into a honeycomb shape or the like, but there is a problem that the activated carbon is ignited depending on the baking conditions and the activated carbon may be decomposed by the photocatalyst.

【0006】本発明は、上記のような問題点を解決する
ためになされたもので、その目的は、紫外線の照射によ
って浄化性能を再生することができ、高湿度雰囲気下で
も十分な浄化性能を有し、紫外線に対して安定してお
り、かつ発火の危険性がない空気浄化塗料を提供するこ
とにある。
The present invention has been made to solve the above problems, and its purpose is to be able to regenerate the purification performance by irradiation of ultraviolet rays, and to achieve sufficient purification performance even in a high humidity atmosphere. An object of the present invention is to provide an air-purifying paint that has the characteristics of being stable against ultraviolet rays and not having a risk of ignition.

【0007】また、本発明の他の目的は、どのような種
類の臭気成分も吸着可能な空気浄化塗料を提供すること
にある。
Another object of the present invention is to provide an air purification paint capable of adsorbing any kind of odorous components.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、光触媒と吸着剤をバインダーを用いて塗
料化した空気浄化塗料であって、前記吸着剤としてシリ
カ/アルミナ比が56以上92以下のハイシリカ合成ゼ
オライトH型ZSM5を用いたことを特徴とするもので
ある。
In order to achieve the above object, the present invention is an air-purifying paint in which a photocatalyst and an adsorbent are made into a paint by using a binder, and the adsorbent has a silica / alumina ratio of 56. It is characterized by using the high silica synthetic zeolite H type ZSM5 of 92 or more.

【0009】本発明の空気浄化塗料を各種材料のシート
またはハニカム等の通気性担体または容器壁等に塗布
し、乾燥・焼き付けを行って空気浄化皮膜を形成させる
と、この皮膜付近を通過する空気の臭気成分が皮膜に吸
着されて空気が浄化される。吸着された臭気成分は紫外
線照射によって分解され、これによって塗料の浄化性能
が再生される。本発明の空気浄化塗料は、吸着剤が疎水
性であるため、高湿度雰囲気下でも吸湿による浄化性能
の低下が少ない。また、吸着剤が活性炭よりも化学的に
安定しており、光触媒で分解されることがなく、発火す
る危険性もない。
When the air-purifying coating material of the present invention is applied to a sheet of various materials, a permeable carrier such as a honeycomb or the wall of a container, and dried and baked to form an air-purifying film, the air passing near this film is formed. The odor component of is adsorbed on the film and the air is purified. The adsorbed odor component is decomposed by ultraviolet irradiation, and the purification performance of the paint is regenerated. Since the adsorbent of the air-purifying coating material of the present invention is hydrophobic, the purification performance is not significantly deteriorated due to moisture absorption even in a high humidity atmosphere. Further, the adsorbent is more chemically stable than activated carbon, is not decomposed by the photocatalyst, and has no risk of ignition.

【0010】なお、どのような臭気成分も吸着可能にす
るために、前記ハイシリカ合成ゼオライトH型ZSM5
は、中心イオンである水素イオンが銅または銀または白
金またはパラジウムのイオンでイオン交換されたハイシ
リカ合成ゼオライトH型ZSM5を一種類以上含むこと
が好ましい。
In order to adsorb any odorous component, the high silica synthetic zeolite H type ZSM5 is used.
Preferably contains at least one high-silica synthetic zeolite H-type ZSM5 in which hydrogen ions, which are central ions, are ion-exchanged with copper, silver, platinum, or palladium ions.

【0011】また、前記ハイシリカ合成ゼオライトH型
ZSM5のイオン交換率を前記ハイシリカ合成ゼオライ
トH型ZSM5全体の1重量%以上にすると、活性炭以
上の浄化性能が得られるようになる。
Further, when the ion exchange rate of the high silica synthetic zeolite H type ZSM5 is 1% by weight or more of the whole high silica synthetic zeolite H type ZSM5, a purification performance higher than that of activated carbon can be obtained.

【0012】また、皮膜形成時における前記光触媒の配
合比率を15重量%以上にすると、市販のブラックライ
トでも十分な再生能力が得られるようになり、再生効率
が十分なものとなる。
Further, if the blending ratio of the photocatalyst at the time of forming the film is set to 15% by weight or more, a sufficient reproducing ability can be obtained even with a commercially available black light, and the reproducing efficiency becomes sufficient.

【0013】また、前記バインダーをコロイダルシリカ
を主成分とするものにした場合には、紫外線がバインダ
ーを透過しやすくなるため、紫外線が光触媒に吸収され
やすくなるとともに、多孔質であるため、皮膜を厚くし
ても紫外線が内部まで浸透するようになる。
Further, when the binder is mainly composed of colloidal silica, ultraviolet rays easily pass through the binder, so that the ultraviolet rays are easily absorbed by the photocatalyst and the coating is porous. Even if it is thick, ultraviolet rays will penetrate to the inside.

【0014】また、前記バインダーを、マイカを8重量
%以上含むものにすると、皮膜がひび割れしにくくな
り、厚く塗布することができるため、単位面積当りの吸
着量を多くすることができる。
When the binder contains 8% by weight or more of mica, the coating is less likely to crack and can be applied thickly, so that the amount of adsorption per unit area can be increased.

【0015】[0015]

【発明の実施の形態】以下、本発明の具体的な実施形態
を図面を参照しながら説明する。疎水性合成ゼオライト
であるH型ZSM5を用いてシリカ/アルミナ比が5
6、92、430となるように粉を作成し、この粉4g
について27リットルの密閉ボックス内で清浄空気をパ
ージした後、蒸留水を蒸発させて95%RH以上の高湿
度雰囲気とし、中にアンモニアを蒸発させて100pp
mの初期濃度とし、通風して粉を循環させ、濃度の変化
をガスセンサーにて測定することによりこれらの吸着性
能を測定した。図1がその結果を示すグラフである。シ
リカ/アルミナ比が高いほど疎水性が向上するとされて
いるが、430では逆に吸着性能が低下しており、シリ
カ/アルミナ比は92以下で良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. A silica / alumina ratio of 5 was obtained using H type ZSM5, which is a hydrophobic synthetic zeolite.
Make powder so that it becomes 6, 92, 430, and this powder 4g
After purging clean air in a 27 liter closed box, distilled water is evaporated to a high humidity atmosphere of 95% RH or more, and ammonia is evaporated in 100 pp.
These adsorption performances were measured by setting the initial concentration to m, circulating the powder by ventilation, and measuring the change in concentration with a gas sensor. FIG. 1 is a graph showing the result. It is said that the higher the silica / alumina ratio is, the more the hydrophobicity is improved. However, the adsorption performance is conversely deteriorated at 430, and the silica / alumina ratio may be 92 or less.

【0016】さらに、シリカ/アルミナ比が90の合成
ゼオライトH型ZSM5を用い、この中心イオンの水素
イオンを粉の重量比で1%を白金、パラジウム、銅、銀
等のイオンでイオン交換させた。これらの各種臭気成分
に対する吸着性能を見るために同上の方法により乾燥雰
囲気のなかで各種ガスを発生させて、吸着性能を測定し
た。図2はアンモニア(初期濃度170ppm)、図3
はトリメチルアミン(初期濃度90ppm)、図4は硫
化水素、図5はエチルメルカプタン(初期濃度80pp
m)、図6は硫化メチル(初期濃度100ppm)、図
7は酢酸(初期濃度140ppm)、図8はアセトアル
デヒド(初期濃度65ppm)、図9はエチレン(初期
濃度1400ppm)に対するものである。なお、各図
において、ブランクとは、密閉ボックス内に吸着剤を入
れないときのガスセンサー値である。
Further, a synthetic zeolite H type ZSM5 having a silica / alumina ratio of 90 was used, and 1% by weight of the central ion of the hydrogen ion of the powder was ion-exchanged with ions of platinum, palladium, copper, silver and the like. . In order to see the adsorption performance for these various odorous components, various gases were generated in a dry atmosphere by the same method as above, and the adsorption performance was measured. Fig. 2 shows ammonia (initial concentration 170ppm), Fig. 3
Is trimethylamine (initial concentration 90 ppm), FIG. 4 is hydrogen sulfide, and FIG. 5 is ethyl mercaptan (initial concentration 80 pp
m), FIG. 6 is for methyl sulfide (initial concentration 100 ppm), FIG. 7 is for acetic acid (initial concentration 140 ppm), FIG. 8 is for acetaldehyde (initial concentration 65 ppm), and FIG. 9 is for ethylene (initial concentration 1400 ppm). In each figure, the blank is a gas sensor value when the adsorbent is not placed in the closed box.

【0017】これらのグラフより、銅イオン交換ZSM
5、パラジウムイオン交換ZSM5は大抵の臭気に対し
て吸着性能が優れていることがわかる。なお、イオン交
換率を重量比で1%以上にすれば、吸着性能がいずれの
臭気に対しても活性炭と同等またはこれを凌賀するよう
になる。図5において、銅イオン交換ZSM5の重量比
を0.5%から1%にすると、吸着性能が向上して活性
炭とほぼ同等になることが判る。
From these graphs, copper ion exchange ZSM
5. Palladium ion exchange ZSM5 has excellent adsorption performance for most odors. If the ion exchange rate is 1% or more by weight, the adsorption performance will be equal to or superior to that of activated carbon for any odor. In FIG. 5, it can be seen that when the weight ratio of the copper ion-exchange ZSM5 is changed from 0.5% to 1%, the adsorption performance is improved and becomes almost equal to that of activated carbon.

【0018】光触媒として石原作業株式会社製の酸化チ
タンST−01(商品名)を用い、吸着剤として、シリ
カ/アルミナ比が90で、1重量%を銅イオン交換した
ハイシリカ合成ゼオライトH型ZSM5を用い、バイン
ダーとしてテルニック工業株式会社製のコロイダルシリ
カ系バインダーベタック970GD(商品名)を用い
て、これらの配合比を種々変更して、60×80(m
m)のガラス基材板の片面に、いずれも12(mg/c
2)となるように塗布し、380℃で1時間焼き付け
を行ってサンプルを作成した。
As a photocatalyst, titanium oxide ST-01 (trade name) manufactured by Ishihara Shugo Co., Ltd. was used, and as an adsorbent, high silica synthetic zeolite H type ZSM5 having a silica / alumina ratio of 90 and 1% by weight of copper ion exchanged was used. By using a colloidal silica-based binder Betac 970GD (trade name) manufactured by Telnic Industries Co., Ltd. as a binder, various mixing ratios thereof are used to obtain 60 × 80 (m
12 (mg / c) on one side of the glass substrate plate of (m)
m 2 ), and was baked at 380 ° C. for 1 hour to prepare a sample.

【0019】このサンプル4枚ずつを27リットルのボ
ックス内に設置し、乾燥した清浄空気をパージした後、
アセトアルデヒドを注入して初期濃度100ppmと
し、送風して循環させながら6Wブラックライト1本の
照射がある場合とない場合についてガスセンサーにより
脱臭性能を測定した。その結果が図10である。吸着量
が飽和するまでは、光触媒だけよりも光触媒とゼオライ
トを混合した方が脱臭速度は速い。また、吸着飽和後の
脱臭性能において、皮膜形成時における光触媒の配合重
量比が15%より少ないと、分解速度が極端に遅くな
り、十分な脱臭性能が得られない。15%以上であれ
ば、吸着飽和後においても分解しており、十分な脱臭性
能は得られる。
Four samples each were placed in a 27 liter box and purged with dry clean air.
Acetaldehyde was injected to make the initial concentration 100 ppm, and the deodorizing performance was measured by a gas sensor with and without irradiation of one 6W black light while circulating by blowing air. FIG. 10 shows the result. Until the adsorbed amount is saturated, the deodorization rate is faster when the photocatalyst and zeolite are mixed than when the photocatalyst is used alone. Further, in the deodorizing performance after adsorption saturation, if the blending weight ratio of the photocatalyst during film formation is less than 15%, the decomposition rate becomes extremely slow and sufficient deodorizing performance cannot be obtained. If it is 15% or more, it is decomposed even after adsorption saturation, and sufficient deodorizing performance is obtained.

【0020】なお、用いたバインダーの中にはマイカ粉
を添加しているが、このマイカの添加量がバインダー重
量に対して8%以下であれば焼き付け後にひび割れが生
じるが、8%以上であれば12(mg/cm2)以上に
厚く塗布してもひび割れしにくい結果となった。
Although mica powder is added to the binder used, if the amount of this mica added is 8% or less based on the binder weight, cracking will occur after baking, but if it is 8% or more. For example, even if it was applied thicker than 12 (mg / cm 2 ), it was difficult to crack.

【0021】バインダー成分としてコロイダルシリカを
主成分とするものの代わりにシリコン樹脂、フッ素樹
脂、リン酸アルミニウムを主成分とするものを用いて同
様に塗料化したが、本発明のものと比べて十分な脱臭性
能が得られず、塗布量も12(mg/cm2)以上厚く
塗ることができなかった。
[0021] Instead of a binder component containing colloidal silica as a main component, a silicone resin, a fluororesin, and an aluminum phosphate as a main component were used to form a paint. The deodorizing performance was not obtained, and the coating amount could not be applied thicker than 12 (mg / cm 2 ).

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
吸着剤としてシリカ/アルミナ比が56以上92以下の
ハイシリカ合成ゼオライトH型ZSM5を用いたことに
より、吸着剤が疎水性であるため高湿度雰囲気でも浄化
性能の低下が少ない。また、ハイシリカ合成ゼオライト
H型ZSM5は活性炭よりも化学的に安定しており、光
触媒で分解されることがなく、発火する危険性もない。
また、塗料化したことにより、使用時の自由度が高く、
非常に扱い易い。
As described above, according to the present invention,
By using the high silica synthetic zeolite H-type ZSM5 having a silica / alumina ratio of 56 or more and 92 or less as the adsorbent, the adsorbent is hydrophobic, so that the purification performance is less deteriorated even in a high humidity atmosphere. Further, the high-silica synthetic zeolite H type ZSM5 is chemically more stable than activated carbon, is not decomposed by a photocatalyst, and has no risk of ignition.
Also, because it is made into a paint, it has a high degree of freedom in use,
Very easy to handle.

【0023】請求項2によるときは、ハイシリカ合成ゼ
オライトH型ZSM5を、中心イオンである水素イオン
が銅または銀または白金またはパラジウムのイオンでイ
オン交換されたハイシリカ合成ゼオライトH型ZSM5
を一種類以上含むものにしたことにより、どのような種
類の臭気成分も吸着可能であり、かつ吸着量も多い。
According to claim 2, the high-silica synthetic zeolite H-type ZSM5 is obtained by subjecting the high-silica synthetic zeolite H-type ZSM5 to ion exchange of the central hydrogen ion with copper, silver, platinum or palladium ions.
By including at least one type of odor component, any type of odorous component can be adsorbed, and the adsorption amount is large.

【0024】請求項3によるときは、合成ゼオライトの
イオン交換率を合成ゼオライト全体の1重量%以上にし
たことにより、活性炭以上の浄化性能が得られる。
According to the third aspect of the present invention, the ion exchange rate of the synthetic zeolite is set to 1% by weight or more based on the total weight of the synthetic zeolite, so that a purification performance higher than that of activated carbon can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 シリカ/アルミナ比の違いによる高湿状態で
のアンモニアの吸着性能の違いを比較したグラフ。
FIG. 1 is a graph comparing the difference in the adsorption performance of ammonia in a high humidity state due to the difference in silica / alumina ratio.

【図2】 乾燥状態でのアンモニアの吸着性能を比較し
たグラフ。
FIG. 2 is a graph comparing the adsorption performance of ammonia in a dry state.

【図3】 乾燥状態でのトリメチルアミンの吸着性能を
比較したグラフ。
FIG. 3 is a graph comparing the adsorption performance of trimethylamine in a dry state.

【図4】 乾燥状態での硫化水素の吸着性能を比較した
グラフ。
FIG. 4 is a graph comparing hydrogen sulfide adsorption performances in a dry state.

【図5】 乾燥状態でのエチルメチレンカプタンの吸着
性能を比較したグラフ。
FIG. 5 is a graph comparing the adsorption performance of ethylmethylenecaptan in a dry state.

【図6】 乾燥状態での硫化メチルの吸着性能を比較し
たグラフ。
FIG. 6 is a graph comparing the adsorption performance of methyl sulfide in a dry state.

【図7】 乾燥状態での酢酸の吸着性能を比較したグラ
フ。
FIG. 7 is a graph comparing acetic acid adsorption performances in a dry state.

【図8】 乾燥状態でのアセトアルデヒドの吸着性能を
比較したグラフ。
FIG. 8 is a graph comparing acetaldehyde adsorption performances in a dry state.

【図9】 乾燥状態でのエチレンの吸着性能を比較した
グラフ。
FIG. 9 is a graph comparing the adsorption performance of ethylene in a dry state.

【図10】 光触媒と吸着剤の配合比の違いと紫外線照
射の有無によるアセトアルデヒドの吸着性能の違いを比
較したグラフ。
FIG. 10 is a graph comparing the difference in the compounding ratio of the photocatalyst and the adsorbent with the difference in the acetaldehyde adsorption performance depending on the presence or absence of ultraviolet irradiation.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 35/02 C09C 3/00 PBS C01B 39/38 B01D 53/36 J C09C 3/00 PBS ZABH ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 35/02 C09C 3/00 PBS C01B 39/38 B01D 53/36 J C09C 3/00 PBS ZABH

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光触媒と吸着剤をバインダーを用いて塗
料化した空気浄化塗料であって、前記吸着剤としてシリ
カ/アルミナ比が56以上92以下のハイシリカ合成ゼ
オライトH型ZSM5を用いたことを特徴とする光触媒
を用いた空気浄化塗料。
1. An air-purifying paint in which a photocatalyst and an adsorbent are made into a paint by using a binder, and high silica synthetic zeolite H type ZSM5 having a silica / alumina ratio of 56 or more and 92 or less is used as the adsorbent. Air purification paint using photocatalyst.
【請求項2】 前記ハイシリカ合成ゼオライトH型ZS
M5は、中心イオンである水素イオンを銅または銀また
は白金またはパラジウムのイオンでイオン交換したハイ
シリカ合成ゼオライトH型ZSM5を一種類以上含むこ
とを特徴とする請求項1に記載の光触媒を用いた空気浄
化塗料。
2. The high silica synthetic zeolite H type ZS
The air using the photocatalyst according to claim 1, wherein M5 contains one or more kinds of high-silica synthetic zeolite H type ZSM5 in which hydrogen ions, which are central ions, are ion-exchanged with ions of copper, silver, platinum, or palladium. Purifying paint.
【請求項3】 前記ハイシリカ合成ゼオライトH型ZS
M5のイオン交換率は、前記ハイシリカ合成ゼオライト
H型ZSM5全体の1重量%以上であることを特徴とす
る請求項2に記載の光触媒を用いた空気浄化塗料。
3. The high silica synthetic zeolite H type ZS
The air purification paint using a photocatalyst according to claim 2, wherein the ion exchange rate of M5 is 1% by weight or more based on the total amount of the high silica synthetic zeolite H type ZSM5.
JP06080096A 1996-03-18 1996-03-18 Air purification paint using photocatalyst Expired - Fee Related JP3227373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06080096A JP3227373B2 (en) 1996-03-18 1996-03-18 Air purification paint using photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06080096A JP3227373B2 (en) 1996-03-18 1996-03-18 Air purification paint using photocatalyst

Publications (2)

Publication Number Publication Date
JPH09249824A true JPH09249824A (en) 1997-09-22
JP3227373B2 JP3227373B2 (en) 2001-11-12

Family

ID=13152770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06080096A Expired - Fee Related JP3227373B2 (en) 1996-03-18 1996-03-18 Air purification paint using photocatalyst

Country Status (1)

Country Link
JP (1) JP3227373B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006828A1 (en) * 1998-07-29 2000-02-10 Ishihara Sangyo Kaisha, Ltd. Road provided with air cleaning function and method of cleaning polluted air on road
JP2001000814A (en) * 1999-06-21 2001-01-09 Matsushita Electric Ind Co Ltd Air cleaner
JP2001321425A (en) * 2000-05-17 2001-11-20 Osaka Prefecture Adsorbent and adsorbing material for volatile organic compound or the like
JP2006297351A (en) * 2005-04-25 2006-11-02 Showa Denko Kk Photocatalyst film and manufacturing method
JP2006297350A (en) * 2005-04-25 2006-11-02 Showa Denko Kk Photocatalyst film and manufacturing method
JP2008272651A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Photocatalytic member and air quality purification apparatus using this photocatalytic member
JP2011235285A (en) * 2005-11-01 2011-11-24 Johnson Matthey Plc Adsorption of volatile organic compound derived from organic substance
US8900348B2 (en) 2009-07-02 2014-12-02 Johnson Matthey Public Limited Company Adsorption of volatile organic compounds derived from organic matter
CN106345289A (en) * 2016-08-28 2017-01-25 桂林市晶准测控技术有限公司 Harmful gas purifier and preparation method thereof
WO2018008479A1 (en) * 2016-07-05 2018-01-11 日本ペイント株式会社 Coating composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499028B1 (en) * 2013-09-27 2015-03-09 한국생산기술연구원 Adsorbent coating solution containing two binder and a method of manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699577B2 (en) 1998-07-29 2004-03-02 Ishihara Sangyo Kaisha, Ltd. Air purification-functioning road and method for purifying polluted air over road
WO2000006828A1 (en) * 1998-07-29 2000-02-10 Ishihara Sangyo Kaisha, Ltd. Road provided with air cleaning function and method of cleaning polluted air on road
JP2001000814A (en) * 1999-06-21 2001-01-09 Matsushita Electric Ind Co Ltd Air cleaner
JP4513141B2 (en) * 1999-06-21 2010-07-28 パナソニック株式会社 air purifier
JP2001321425A (en) * 2000-05-17 2001-11-20 Osaka Prefecture Adsorbent and adsorbing material for volatile organic compound or the like
JP2006297351A (en) * 2005-04-25 2006-11-02 Showa Denko Kk Photocatalyst film and manufacturing method
JP2006297350A (en) * 2005-04-25 2006-11-02 Showa Denko Kk Photocatalyst film and manufacturing method
US9186649B2 (en) 2005-11-01 2015-11-17 Anglo Platinum Marketing Limited Adsorption of volatile organic compounds derived from organic matter
JP2011235285A (en) * 2005-11-01 2011-11-24 Johnson Matthey Plc Adsorption of volatile organic compound derived from organic substance
JP2015213908A (en) * 2005-11-01 2015-12-03 アングロ プラチナム マーケティング リミテッド Adsorption of volatile organic compound derived from organic substance
JP2008272651A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Photocatalytic member and air quality purification apparatus using this photocatalytic member
US8900348B2 (en) 2009-07-02 2014-12-02 Johnson Matthey Public Limited Company Adsorption of volatile organic compounds derived from organic matter
WO2018008479A1 (en) * 2016-07-05 2018-01-11 日本ペイント株式会社 Coating composition
CN106345289A (en) * 2016-08-28 2017-01-25 桂林市晶准测控技术有限公司 Harmful gas purifier and preparation method thereof

Also Published As

Publication number Publication date
JP3227373B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
US6906001B1 (en) Photocatalytic composition
US8980171B2 (en) System and method for purifying air via low-energy, in-situ regenerated silica-titania composites
JPWO2005120686A1 (en) Catalyst for removing carbon monoxide and method for removing carbon monoxide using the catalyst
JP3227373B2 (en) Air purification paint using photocatalyst
JP3488496B2 (en) Poison-resistant deodorizing photocatalyst
CA2267734C (en) Ozone adsorbent, ozone-adsorbing molded product, and method of making same
JPH08296992A (en) Heat exchanger with deodorizing function
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JP3722866B2 (en) Hydrophobic deodorizing material and method for regenerating the same
JPH11137656A (en) Deodorant catalyst element and its production
JP2006217995A (en) Deodorant, method of manufacturing deodorant, and deodorizer using the deodrant
JPH0975434A (en) Deodorant using photocatalyst
JP2000210372A (en) Air cleaning film and deodorant filter
JP4780490B2 (en) Activated carbon filter
JP3521748B2 (en) Air purification filter and air purifier
JP2001090214A (en) Building material having adsorption decomosing power of harmful substance
JPH11511687A (en) Acid contact enhanced adsorbent particles and methods of making and using same
JPH08243383A (en) Hydrphobic deodorant and method for regenerating same
JP3618186B2 (en) Manufacturing method of improved deodorant
JPH09154927A (en) Deodorizing material
JPH11253750A (en) Air cleaner
JPH06327967A (en) Honeycomb adsorbing body
JP2005111355A (en) Photocatalyst, photocatalyst-carried ceramic porous body, decomposition cleaning method for toxic substance and gas cleaning device
JP2001303494A (en) Adsorbing photocatalytic inorganic sheet
JP2827627B2 (en) Deodorizing catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees