JPH09248458A - Catalyst and method for exhaust gas-purifying - Google Patents

Catalyst and method for exhaust gas-purifying

Info

Publication number
JPH09248458A
JPH09248458A JP8060896A JP6089696A JPH09248458A JP H09248458 A JPH09248458 A JP H09248458A JP 8060896 A JP8060896 A JP 8060896A JP 6089696 A JP6089696 A JP 6089696A JP H09248458 A JPH09248458 A JP H09248458A
Authority
JP
Japan
Prior art keywords
exhaust gas
carrier
catalyst
purifying
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8060896A
Other languages
Japanese (ja)
Inventor
Tomoko Mori
朋子 森
直樹 ▲高▼橋
Naoki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP8060896A priority Critical patent/JPH09248458A/en
Publication of JPH09248458A publication Critical patent/JPH09248458A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance NOx purifying capacity in transient combustion by preventing the reaction between an NOx occluding element and a carrier within a high temp. region. SOLUTION: This exhaust gas-purifying catalyst contains a carrier composed of a composite oxide represented by MgO.nAl2 O3 , an NOx occluding element supported on a carrier selected from among an alkali metal, an alkaline earth metal and a rare earth element and a catalyst noble metal supported on the carrier. The composite oxide constituting the carrier is low in the reactivity with the NOx occluding element as compared with alumina and prevents, for example, the formation of BaAl2 O4 within a high temp. region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などの内燃
機関から排出される排ガスを浄化する排ガス浄化用触媒
に関し、さらに詳しくは、酸素過剰の排ガス、すなわち
排ガス中に含まれる一酸化炭素(CO)、水素(H2
及び炭化水素(HC)等の還元性成分を完全に酸化する
のに必要な酸素量より過剰の酸素を含む排ガス中の、窒
素酸化物(NOx )を効率良く還元浄化できる排ガス浄
化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas emitted from an internal combustion engine such as an automobile. More specifically, the present invention relates to exhaust gas with excess oxygen, that is, carbon monoxide (CO) contained in the exhaust gas. ), Hydrogen (H 2 )
And an exhaust gas purifying catalyst capable of efficiently reducing and purifying nitrogen oxides (NO x ) in exhaust gas containing oxygen in excess of the oxygen amount necessary for completely oxidizing reducing components such as hydrocarbons (HC). .

【0002】[0002]

【従来の技術】従来より自動車の排ガス浄化用触媒とし
て、理論空燃比(ストイキ)において排ガス中のCO及
びHCの酸化とNOx の還元とを同時に行って浄化する
三元触媒が用いられている。このような三元触媒として
は、例えばコーディエライトなどからなる耐熱性基材に
γ−アルミナからなる多孔質担体層を形成し、その多孔
質担体層に白金(Pt)、ロジウム(Rh)などの触媒
貴金属を担持させたものが広く知られている。また、酸
素吸蔵能をもつセリア(セリウム酸化物)を併用し、低
温活性を高めた三元触媒も知られている。
2. Description of the Related Art Conventionally, as a catalyst for purifying exhaust gas of automobiles, a three-way catalyst has been used which purifies CO and HC in exhaust gas at the stoichiometric air-fuel ratio by simultaneously oxidizing and reducing NO x . . As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh), or the like is formed on the porous carrier layer. What carried the catalyst noble metal is widely known. Further, a three-way catalyst using ceria (cerium oxide) having an oxygen storage ability and having enhanced low-temperature activity is also known.

【0003】一方、近年、地球環境保護の観点から、自
動車などの内燃機関から排出される排ガス中の二酸化炭
素(CO2 )が問題とされ、その解決策として酸素過剰
雰囲気において希薄燃焼させるいわゆるリーンバーンが
有望視されている。このリーンバーンにおいては、燃費
が向上するために燃料の使用が低減され、その燃焼排ガ
スであるCO2 の発生を抑制することができる。
On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem, and as a solution to this problem, so-called lean combustion in which lean combustion is performed in an oxygen excess atmosphere is performed. Burn is promising. In this lean burn, the use of fuel is reduced to improve fuel efficiency, and the generation of CO 2 , which is the combustion exhaust gas, can be suppressed.

【0004】これに対し、従来の三元触媒は、空燃比が
理論空燃比(ストイキ)において排ガス中のCO,H
C,NOx を同時に酸化・還元し浄化するものであっ
て、リーンバーン時の排ガスの酸素過剰雰囲気下におい
ては、NOx の還元除去に対して充分な浄化性能を示さ
ない。このため、酸素過剰雰囲気下においてもNOx
浄化しうる触媒及び浄化システムの開発が望まれてい
た。
On the other hand, in the conventional three-way catalyst, when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric), CO, H in the exhaust gas
It purifies by oxidizing and reducing C and NO x at the same time, and does not show sufficient purification performance for reducing and removing NO x in an oxygen excess atmosphere of exhaust gas during lean burn. Therefore, it has been desired to develop a catalyst and a purification system that can purify NO x even in an oxygen excess atmosphere.

【0005】そこで本願出願人は、先にBaなどのアル
カリ土類金属とPtをアルミナなどの多孔質担体に担持
した排ガス浄化用触媒(例えば特開平5−168860
号公報)を提案している。この排ガス浄化用触媒を用
い、空燃比をリーン側からパルス状にストイキ又はリッ
チ側となるように制御する(以下、過渡燃焼という)こ
とにより、リーン側ではNOx がアルカリ土類金属(N
x 吸蔵元素)に吸蔵され、それがストイキ又はリッチ
側でHCやCOなどの還元性成分と反応して浄化される
ため、リーンバーンにおいてもNOx を効率良く浄化す
ることができる。
Accordingly, the applicant of the present application has previously proposed an exhaust gas purifying catalyst in which an alkaline earth metal such as Ba and Pt are supported on a porous carrier such as alumina (for example, Japanese Patent Application Laid-Open No. 5-168860).
Issue gazette). By using this exhaust gas purifying catalyst to control the air-fuel ratio from the lean side to the stoichiometric or rich side in a pulse form (hereinafter referred to as transient combustion), NO x on the lean side is alkaline earth metal (N
O x storage element) is inserted in it to be cleaned reacts with the reducing components such as HC and CO in the stoichiometric or rich side, it is possible to efficiently purify NO x even in the lean burn.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記した特
開平5−168860号公報に開示されたような排ガス
浄化用触媒においては、600℃以上、特に700℃以
上の高温に曝された場合には、過渡燃焼におけるNOx
浄化性能が低下するという不具合があることが明らかと
なった。
However, in the exhaust gas purifying catalyst disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-168860, when exposed to a high temperature of 600 ° C. or more, especially 700 ° C. or more, , NO in the transient combustion x
It became clear that there was a problem that the purification performance was reduced.

【0007】この原因は、高温域において例えばBaと
アルミナとの間に固相反応が生じ、BaAl2 4 が生
成することによって、担体の比表面積が低下するととも
にBaのNOx 吸蔵能が低下することに起因すると考え
られている。本発明はこのような事情に鑑みてなされた
ものであり、高温域におけるNOx吸蔵元素と担体との
間の反応を防止することにより、過渡燃焼におけるNO
x 浄化性能を向上させることを目的とする。
The cause of this is that a solid phase reaction occurs between, for example, Ba and alumina in a high temperature range, and BaAl 2 O 4 is produced, whereby the specific surface area of the carrier is reduced and the NO x storage capacity of Ba is reduced. It is believed that this is due to The present invention has been made in view of such circumstances, and by preventing the reaction between the NO x storage element and the carrier in the high temperature range, NO in transient combustion is obtained.
x The purpose is to improve purification performance.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、酸素過剰の雰囲気下で
排ガス中の窒素酸化物(NOx )、一酸化炭素(CO)
及び炭化水素(HC)を浄化する排ガス浄化用触媒であ
って、MgO・nAl2 3 で表される複合酸化物から
なる担体と、アルカリ金属、アルカリ土類金属及び希土
類元素の中から選ばれ担体に担持されたNOx 吸蔵元素
と、担体に担持された触媒貴金属と、を含んでなること
にある。
The features of the exhaust gas-purifying catalyst of the present invention for solving the above-mentioned problems are that nitrogen oxide (NO x ) and carbon monoxide (CO) in exhaust gas in an atmosphere of excess oxygen.
And a catalyst for purifying exhaust gas for purifying hydrocarbons (HC), which is selected from the group consisting of composite oxides represented by MgO.nAl 2 O 3 and alkali metals, alkaline earth metals and rare earth elements. It comprises a NO x storage element carried on a carrier and a catalytic noble metal carried on the carrier.

【0009】また本発明の排ガス浄化方法の特徴は、請
求項3に記載のように、酸素過剰の雰囲気下で排ガス中
の窒素酸化物(NOx )、一酸化炭素(CO)及び炭化
水素(HC)を浄化する排ガス浄化方法であって、Mg
O・nAl2 3 で表される複合酸化物からなる担体
と、アルカリ金属、アルカリ土類金属及び希土類元素の
中から選ばれ担体に担持されたNOx 吸蔵元素と、担体
に担持された触媒貴金属と、を含んでなる排ガス浄化用
触媒に排ガスを接触させることにある。
Further, the feature of the exhaust gas purification method of the present invention is that, as described in claim 3, nitrogen oxide (NO x ), carbon monoxide (CO) and hydrocarbon ( HC) for purification of exhaust gas,
A carrier composed of a composite oxide represented by O.nAl 2 O 3 , a NO x storage element supported on a carrier selected from alkali metals, alkaline earth metals and rare earth elements, and a catalyst supported on the carrier Exhaust gas is brought into contact with an exhaust gas-purifying catalyst containing a noble metal.

【0010】なお本発明においては、請求項2及び請求
項4に記載のように、NOx 吸蔵元素としてBaを用い
た時に最も大きな効果が得られる。
In the present invention, the greatest effect is obtained when Ba is used as the NO x storage element as described in claims 2 and 4.

【0011】[0011]

【発明の実施の形態】本発明の排ガス浄化用触媒では、
担体としてMgO・nAl2 3 で表される複合酸化物
を用いている。この複合酸化物の結晶構造としては、γ
−アルミナと同様のスピネル構造をもつものが知られて
いる。この複合酸化物は、アルミナに比べてNOx 吸蔵
元素との反応性が低い。したがって本発明の排ガス浄化
用触媒では、高温域における例えばBaAl2 4 の生
成が抑制されるので、比表面積の低下やNOx 吸蔵能の
低下が抑制され、過渡燃焼においても高いNOx 浄化能
を有する。
BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst of the present invention,
A composite oxide represented by MgO.nAl 2 O 3 is used as a carrier. The crystal structure of this composite oxide is γ
-It is known that it has a spinel structure similar to that of alumina. This composite oxide has a lower reactivity with the NO x storage element than alumina. Therefore, in the exhaust gas purifying catalyst of the present invention, the production of BaAl 2 O 4 , for example, in the high temperature range is suppressed, so that the reduction of the specific surface area and the reduction of the NO x storage capacity are suppressed, and the high NO x purification capacity is achieved even in the transient combustion. Have.

【0012】さらに、この複合酸化物はそれ自体の耐熱
性が高く、高比表面積のものが比較的得やすいため、触
媒担体としての必要条件を備えている。このMgO・n
Al2 3 からなる複合酸化物において、n=1のとき
MgO・nAl2 3 はMgAl2 4 とも表記され、
一般にスピネルと呼ばれており、状態図からはMgO・
nAl2 3 への固溶限界である。
Further, this composite oxide has a high heat resistance by itself, and it is relatively easy to obtain one having a high specific surface area, and therefore, it has a necessary condition as a catalyst carrier. This MgO · n
In a complex oxide composed of Al 2 O 3 , when n = 1, MgO · nAl 2 O 3 is also expressed as MgAl 2 O 4 ,
It is generally called spinel, and the phase diagram shows MgO.
This is the solid solution limit for nAl 2 O 3 .

【0013】nが1未満のときMgのAl2 3 への固
溶限界を越えるため、熱履歴を受ければMgOとMgA
2 4 との2相系になる。この遊離のMgOが存在す
ると、耐熱性が低下するため好ましくない。nが1を超
えると、MgO・xAl2 3 とyAl2 3 (1<
x,x+y=n)の2相系になる。nが大きくなると、
比表面積は大きくなる傾向があるが、Al2 3 相の割
合が増えるにつれてNOx 吸蔵元素との反応が生じやす
くなる。したがって、nの範囲としては0.5≦n≦
1.5が好ましく、さらに過酷な熱負荷に対してはn=
1近傍が最も好ましい。
When n is less than 1, the solid solubility limit of Mg in Al 2 O 3 is exceeded, so if MgO and MgA are subjected to thermal history.
It becomes a two-phase system with l 2 O 4 . The presence of this free MgO is not preferable because it lowers the heat resistance. When n exceeds 1, MgO.xAl 2 O 3 and yAl 2 O 3 (1 <
It becomes a two-phase system of x, x + y = n). When n becomes large,
Although the specific surface area tends to increase, the reaction with the NO x storage element tends to occur as the proportion of the Al 2 O 3 phase increases. Therefore, the range of n is 0.5 ≦ n ≦
1.5 is preferable, and n = for severe heat load.
The vicinity of 1 is most preferable.

【0014】この複合酸化物は、それ自体で担体を構成
してもよいし、アルミナ粉末などの表面に被覆したもの
を担体とすることもできる。この複合酸化物の製造法と
しては、アルコキシド等を用いるゾルゲル法、硝酸マグ
ネシウムと硝酸アルミニウム等の混合水溶液とアンモニ
ア水を用いる共沈法、水酸化アルミニウムに酢酸マグネ
シウムを含浸し焼成する方法等が例示される。
The composite oxide may form the carrier by itself, or the alumina powder or the like coated on the surface may be used as the carrier. Examples of the method for producing this composite oxide include a sol-gel method using an alkoxide, a coprecipitation method using a mixed aqueous solution of magnesium nitrate and aluminum nitrate and ammonia water, a method of impregnating aluminum hydroxide with magnesium acetate and firing. To be done.

【0015】また担体の形状は、ペレット、ハニカム形
状など従来と同様に構成することができ、コーディエラ
イト担体基材又はメタル担体基材などにコートして用い
ることができる。NOx 吸蔵元素としては、アルカリ金
属、アルカリ土類金属及び希土類元素から選ばれる少な
くとも一種が用いられる。アルカリ金属としてはリチウ
ム(Li)、ナトリウム(Na)、カリウム(K)、セ
シウム(Cs)が挙げられる。また、アルカリ土類金属
とは周期表2A族元素をいい、マグネシウム(Mg)、
カルシウム(Ca)、ストロンチウム(Sr)、バリウ
ム(Ba)が挙げられる。また希土類元素としては、ス
カンジウム(Sc)、イットリウム(Y)、ランタン
(La)、セリウム(Ce)、プラセオジム(Pr)、
ネオジム(Nd)などが例示される。中でもBaが特に
NOx 吸蔵能に優れ、かつMgO・nAl2 3 複合酸
化物を担体とすることによりBaAl2 4 の生成を効
果的に防止することができる。
The shape of the carrier is pellet or honeycomb.
The shape can be configured in the same way as in the past, and the cordiera
It is used by coating it on a metal carrier substrate or a metal carrier substrate.
Can be NOxAlkali gold as an occlusion element
A few selected from genus, alkaline earth metals and rare earth elements
At least one kind is used. Lithium as an alkali metal
(Li), sodium (Na), potassium (K),
Cium (Cs) is mentioned. Also, alkaline earth metal
Is a group 2A element of the periodic table, and magnesium (Mg),
Calcium (Ca), Strontium (Sr), Baliu
(Ba). Moreover, as rare earth elements,
Candium (Sc), Yttrium (Y), Lantern
(La), cerium (Ce), praseodymium (Pr),
Examples include neodymium (Nd). Ba is especially
NOxExcellent storage capacity and MgO / nAlTwoO ThreeComplex acid
By using a compound as a carrierTwoOFourThe generation of
Can be effectively prevented.

【0016】NOx 吸蔵元素の含有量は、担体100g
に対して0.01〜1.0モルの範囲が望ましい。含有
量が0.01モルより少ないとNOx 吸蔵能力が小さく
NO x 浄化性能が低下し、1.0モルを超えて含有して
も、NOx 吸蔵能力が飽和すると同時にHCのエミッシ
ョンが増加するなどの不具合が生じる。触媒貴金属とし
ては、白金(Pt)、ロジウム(Rh)、パラジウム
(Pd)、イリジウム(Ir)、オスミウム(Os)な
どの1種又は複数種を用いることができ、Ptが特に望
ましい。その担持量は、いずれの貴金属でも、担体10
0g(触媒全体の体積1リットル相当)に0.1〜20
gが好ましく、0.5〜10gが特に好ましい。触媒貴
金属の担持量をこれ以上増加させても活性は向上せず、
その有効利用が図れない。また触媒貴金属の担持量がこ
れより少ないと、実用上十分な活性が得られない。
[0016] NOxThe content of occlusion elements is 100 g of carrier
Is preferably in the range of 0.01 to 1.0 mol. Contained
NO when the amount is less than 0.01 molxLow storage capacity
NO xPurification performance decreases, containing more than 1.0 mole
Also NOxEmission of HC at the same time when the storage capacity is saturated
Problems such as increase in the number of devices will occur. As a precious metal catalyst
For, platinum (Pt), rhodium (Rh), palladium
(Pd), iridium (Ir), osmium (Os)
Any one or more can be used, with Pt being particularly desirable
Good. The amount of the carrier is 10 for any precious metal.
0.1 to 20 g (corresponding to 1 liter of the total volume of the catalyst)
g is preferable, and 0.5 to 10 g is particularly preferable. Catalyst
The activity does not improve even if the supported amount of metal is further increased,
It cannot be used effectively. Also, the amount of catalyst precious metal supported is
If it is less than this, sufficient activity cannot be obtained in practical use.

【0017】なお、NOx 吸蔵元素及び触媒貴金属を担
体に担持させるには、その塩化物や硝酸塩等を用いて、
含浸法、噴霧法、スラリー混合法などを利用して従来と
同様に担持させることができる。また本発明の排ガス浄
化用触媒には、セリウム酸化物又はジルコニアで安定化
されたセリウム酸化物を含有することもできる。このよ
うにすればセリウム酸化物による酸素吸蔵・放出作用に
より、過渡燃焼におけるNOx 浄化性能を一層向上させ
ることができる。
In order to support the NO x storage element and the catalytic noble metal on the carrier, its chloride or nitrate is used.
The impregnation method, the spraying method, the slurry mixing method and the like can be used to carry the particles in the same manner as in the past. The exhaust gas purifying catalyst of the present invention may also contain cerium oxide or cerium oxide stabilized with zirconia. This makes it possible to further improve the NO x purification performance in transient combustion by the oxygen storage / release action of the cerium oxide.

【0018】本発明の排ガス浄化方法では、上記した排
ガス浄化用触媒を用い、酸素過剰の雰囲気下の排ガスを
接触させることにより、HC及びCOは触媒貴金属の触
媒作用によって酸化浄化される。またNOx はNOx
蔵元素に吸蔵される。そして過渡燃焼により一時的にス
トイキ又はリッチ雰囲気の排ガスが供給されると、排ガ
ス中のNOx 及び吸蔵されていたNOx は、触媒貴金属
の触媒作用により排ガス中のHC及びCOなどの還元成
分と反応して還元浄化される。
In the exhaust gas purifying method of the present invention, HC and CO are oxidized and purified by the catalytic action of the catalytic noble metal by using the above-mentioned exhaust gas purifying catalyst and contacting the exhaust gas in an atmosphere with excess oxygen. Further, NO x is stored in the NO x storage element. When the exhaust gas temporarily stoichiometric or rich atmosphere by transient combustion is supplied, NO x which had been NO x and storage in the exhaust gas, the reducing components such as HC and CO in the exhaust gas by the catalytic action of the catalyst noble metal It reacts and is reduced and purified.

【0019】そして担体はNOx 吸蔵元素との反応性が
低いため、高温域においてもNOx吸蔵元素との反応が
生じない。したがって本発明の排ガス浄化用触媒では、
NO x 吸蔵元素本来のNOx 吸蔵能が損なわれることが
なく、過渡燃焼においても高いNOx 浄化性能が維持さ
れる。また担体は耐熱性に優れ比表面積の低下もほとん
どないため、この面からも耐熱性に優れている。
The carrier is NOxReactivity with storage element
NO in the high temperature range because it is lowxThe reaction with the occlusion element
Does not occur. Therefore, in the exhaust gas purifying catalyst of the present invention,
NO xOriginal NO of occlusion elementxThe storage capacity may be impaired
High NO even in transient combustionxPurification performance maintained
It is. In addition, the carrier is excellent in heat resistance and has a small specific surface area.
Since it does not come out, it is also excellent in heat resistance from this aspect.

【0020】[0020]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明の請求項は実施例により何ら制限を受ける
ものではない。 (実施例1) <複合酸化物担体の合成・ゾルゲル法>気相法高純度超
微粒子マグネシア粉末(宇部化学工業(株)製・粒子径
10〜14nm)とアルミニウムイソプロポキシド(A
l[OCH(CH3 2 3 )とを、モル比でMg:A
l=1:2となるようにイソプロピルアルコールに加
え、攪拌しながら80℃で約3時間還流した。そこへイ
オン交換水を滴下し、加水分解を完結させ、その後30
分〜1時間還流を続け、その後放冷した。
EXAMPLES The present invention will be described in detail below with reference to examples, but the claims of the present invention are not limited to the examples. (Example 1) <Synthesis of composite oxide carrier / sol-gel method> Gas phase method High-purity ultrafine magnesia powder (manufactured by Ube Chemical Industry Co., Ltd., particle diameter 10-14 nm) and aluminum isopropoxide (A)
1 [OCH (CH 3 ) 2 ] 3 ) in a molar ratio of Mg: A
It was added to isopropyl alcohol so that l = 1: 2, and refluxed at 80 ° C. for about 3 hours with stirring. Ion-exchanged water is added dropwise to complete the hydrolysis, then 30
Reflux was continued for minutes to 1 hour and then allowed to cool.

【0021】次にロータリーエバポレータを用いて溶媒
を除去し、さらに室温で24時間自然乾燥させた後、1
20℃の乾燥機中で24時間乾燥した。最後に大気中8
00℃で3時間焼成し、MgO・nAl2 3 (n=
1.0)の組成の複合酸化物担体粉末を得た。 <触媒の調製>この担体粉末の所定量を、所定濃度のジ
ニトロジアンミン白金水溶液中に浸漬し、5時間攪拌し
た後に蒸発乾固させ、大気中にて300℃で3時間焼成
して白金(Pt)を担持させた。Ptの担持量は、担体
100g(1L相当)に対してPtが2gである。
Next, the solvent was removed by using a rotary evaporator, and the product was naturally dried at room temperature for 24 hours, and then 1
It was dried in a dryer at 20 ° C. for 24 hours. Finally in the atmosphere 8
After firing at 00 ° C. for 3 hours, MgO.nAl 2 O 3 (n =
A composite oxide carrier powder having a composition of 1.0) was obtained. <Preparation of catalyst> A predetermined amount of this carrier powder was immersed in an aqueous dinitrodiammine platinum solution having a predetermined concentration, stirred for 5 hours, evaporated to dryness, and calcined in the atmosphere at 300 ° C for 3 hours to obtain platinum (Pt. ) Was carried. The supported amount of Pt is 2 g of Pt with respect to 100 g of carrier (corresponding to 1 L).

【0022】次に、Ptが担持された担体粉末を、所定
濃度の酢酸バリウム水溶液中に浸漬し、5時間攪拌した
後に蒸発乾固させ、大気中にて300℃で3時間焼成し
てNOx 吸蔵元素としてのバリウム(Ba)を担持させ
た。Baの担持量は、担体100g(1L相当)に対し
てBaが0.3molである。最後に、PtとBaが担
持された担体粉末を水素気流中にて500℃で3時間処
理し、実施例1の排ガス浄化用触媒粉末を調製した。
Next, the carrier powder carrying Pt was dipped in an aqueous barium acetate solution having a predetermined concentration, stirred for 5 hours, evaporated to dryness, and calcined in the atmosphere at 300 ° C. for 3 hours to NO x. Barium (Ba) as an occlusion element was supported. The supported amount of Ba is 0.3 mol of Ba per 100 g of carrier (corresponding to 1 L). Finally, the carrier powder supporting Pt and Ba was treated in a hydrogen stream at 500 ° C. for 3 hours to prepare an exhaust gas purifying catalyst powder of Example 1.

【0023】(実施例2)気相法高純度超微粒子マグネ
シア粉末とアルミニウムイソプロポキシドの混合比をモ
ル比でMg:Al=1:2.8としたこと以外は実施例
1と同様にして、MgO・nAl2 3 (n=1.5)
の組成の複合酸化物担体粉末を調製した。そして同様に
してPtとBaを担持し、同様に水素気流中で処理して
実施例2の排ガス浄化用触媒粉末を得た。
(Example 2) The same as Example 1 except that the mixing ratio of the vapor phase high-purity ultrafine magnesia powder and aluminum isopropoxide was Mg: Al = 1: 2.8. , MgO · nAl 2 O 3 (n = 1.5)
A composite oxide carrier powder having the composition of was prepared. Then, Pt and Ba were similarly loaded, and similarly treated in a hydrogen stream to obtain an exhaust gas-purifying catalyst powder of Example 2.

【0024】(実施例3)気相法高純度超微粒子マグネ
シア粉末とアルミニウムイソプロポキシドの混合比をモ
ル比でMg:Al=1:6としたこと以外は実施例1と
同様にして、MgO・nAl2 3 (n=3.0)の組
成の複合酸化物担体粉末を調製した。そして同様にして
PtとBaを担持し、同様に水素気流中で処理して実施
例3の排ガス浄化用触媒粉末を得た。
Example 3 MgO was prepared in the same manner as in Example 1 except that the mixing ratio of the vapor-phase high-purity ultrafine magnesia powder and aluminum isopropoxide was Mg: Al = 1: 6. A composite oxide carrier powder having a composition of nAl 2 O 3 (n = 3.0) was prepared. Then, Pt and Ba were similarly loaded, and similarly treated in a hydrogen stream to obtain an exhaust gas purifying catalyst powder of Example 3.

【0025】(実施例4)気相法高純度超微粒子マグネ
シア粉末とアルミニウムイソプロポキシドの混合比をモ
ル比でMg:Al=1:1としたこと以外は実施例1と
同様にして、MgO・nAl2 3 (n=0.5)の組
成の複合酸化物担体粉末を調製した。そして同様にして
PtとBaを担持し、同様に水素気流中で処理して実施
例3の排ガス浄化用触媒粉末を得た。
(Example 4) MgO was prepared in the same manner as in Example 1 except that the mixing ratio of the vapor-phase high-purity ultrafine magnesia powder and aluminum isopropoxide was Mg: Al = 1: 1. A composite oxide carrier powder having a composition of nAl 2 O 3 (n = 0.5) was prepared. Then, Pt and Ba were similarly loaded, and similarly treated in a hydrogen stream to obtain an exhaust gas purifying catalyst powder of Example 3.

【0026】(比較例)γ−アルミナ粉末を担体とし、
実施例1と同様にしてPtとBaを担持した後水素気流
中で処理して、比較例の排ガス浄化用触媒粉末を得た。 (試験・評価)上記したそれぞれの触媒粉末を耐久試験
装置に充填し、表1に示すリーン側のモデル排ガスとリ
ッチ側のモデル排ガスを、入りガス温度900℃でリー
ン…リッチを1分…4分で切り替えながら5時間流し
た。
Comparative Example Using γ-alumina powder as a carrier,
In the same manner as in Example 1, Pt and Ba were loaded and then treated in a hydrogen stream to obtain an exhaust gas-purifying catalyst powder of a comparative example. (Test / Evaluation) Each of the above-mentioned catalyst powders was filled in an endurance test apparatus, and the lean side model exhaust gas and the rich side model exhaust gas shown in Table 1 were introduced at a gas temperature of 900 ° C. and lean to rich for 1 minute. Flowed for 5 hours while switching in minutes.

【0027】[0027]

【表1】 そして上記耐久試験後の各触媒粉末について、BET比
表面積を測定するとともに、過渡燃焼を模したモデル排
ガス評価におけるNOx 浄化率と粉末X線回折法による
BaCO3 残存率の測定を実施した。
[Table 1] Then, the BET specific surface area of each catalyst powder after the durability test was measured, and the NO x purification rate in the model exhaust gas evaluation imitating transient combustion and the BaCO 3 residual rate by the powder X-ray diffraction method were measured.

【0028】NOx 浄化率は、耐久試験後のそれぞれの
排ガス浄化用触媒粉末0.5gを評価装置に充填し、表
2に示すリーン側のモデル排ガスとリッチ側のモデル排
ガスを2分毎に交互に繰り返して流速2L/minで流
すことにより測定した。入りガス温度は400℃及び5
00℃の2水準である。結果を表3に示す。なお、NO
x 浄化率は次式で定義される。
Regarding the NO x purification rate, 0.5 g of each exhaust gas purifying catalyst powder after the durability test was filled in the evaluation apparatus, and the lean side model exhaust gas and the rich side model exhaust gas shown in Table 2 were every 2 minutes. The measurement was performed by alternately repeating the flow at a flow rate of 2 L / min. Inlet gas temperature is 400 ° C and 5
There are two levels of 00 ° C. The results are shown in Table 3. Note that NO
x Purification rate is defined by the following equation.

【0029】NOx 浄化率(%)=100×(1−4分
間の出口ガス中のNOx 量/4分間の入りガス中のNO
x 量)
NO x purification rate (%) = 100 × (NO x amount in outlet gas for 1-4 minutes / NO in incoming gas for 4 minutes)
x amount)

【0030】[0030]

【表2】 またBaCO3 残存率は、耐久試験後の各触媒粉末の、
BaCO3 とBaAl 2 4 のXRDスペクトルの最強
ピーク高さより、次式により算出した。結果を表3に示
す。
[Table 2]Also BaCOThreeResidual rate of each catalyst powder after durability test,
BaCOThreeAnd BaAl TwoOFourStrongest XRD spectrum
It was calculated from the peak height by the following formula. The results are shown in Table 3.
You.

【0031】BaCO3 残存率=BaCO3 /(BaC
3 +BaAl2 4
BaCO 3 residual rate = BaCO 3 / (BaC
O 3 + BaAl 2 O 4 )

【0032】[0032]

【表3】 表3より、実施例1〜4の複合酸化物MgO・nAl2
3 を担体に用いた場合には、比較例のγ−アルミナを
担体に用いた場合と比較して高いNOx 浄化率が得ら
れ、耐熱性に優れていることがわかる。
[Table 3] From Table 3, the composite oxides MgO.nAl 2 of Examples 1 to 4
It can be seen that when O 3 is used as the carrier, a higher NO x purification rate is obtained and heat resistance is excellent as compared with the case where γ-alumina of Comparative Example is used as the carrier.

【0033】比較例は実施例1〜4より比表面積が高い
にもかかわらずNOx 浄化率が低下していることから、
上記差異の理由を比表面積の差で説明することは困難で
ある。しかしBaCO3 残存率をみると、実施例1〜4
の値は比較例より高い値を示している。これより、実施
例1〜4の触媒が耐熱性に優れているのは、担持された
Baと担体との反応が抑制されたことによりBaのNO
x 吸蔵能の低下が抑制されたことによるものと考えら
れ、これは担体をMgとAlとの複合酸化物としたこと
に起因していることが明らかである。
In the comparative example, although the specific surface area is higher than those in Examples 1 to 4, the NO x purification rate is lowered,
It is difficult to explain the reason for the above difference by the difference in specific surface area. However, looking at the BaCO 3 residual rate, Examples 1 to 4
The value of is higher than that of the comparative example. From this, the catalysts of Examples 1 to 4 are excellent in heat resistance because the reaction between the carried Ba and the carrier is suppressed, and thus the NO of Ba is
It is considered that the decrease in the x storage capacity was suppressed, and it is clear that this is due to the fact that the carrier was a composite oxide of Mg and Al.

【0034】[0034]

【発明の効果】すなわち本発明の排ガス浄化用触媒及び
排ガス浄化方法によれば、酸素過剰の雰囲気下における
排ガス中のNOx 、CO及びHCを効率良く浄化でき
る。また900℃程度の高温に曝されたとしても、過渡
燃焼において高いNOx 浄化率を維持し、きわめて耐熱
性に優れている。
According to the exhaust gas purifying catalyst and the exhaust gas purifying method of the present invention, it is possible to efficiently purify NO x , CO and HC in exhaust gas in an oxygen-rich atmosphere. Even when it is exposed to a high temperature of about 900 ° C., it maintains a high NO x purification rate in transient combustion and has excellent heat resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸素過剰の雰囲気下で排ガス中の窒素酸
化物(NOx )、一酸化炭素(CO)及び炭化水素(H
C)を浄化する排ガス浄化用触媒であって、 MgO・nAl2 3 で表される複合酸化物からなる担
体と、アルカリ金属、アルカリ土類金属及び希土類元素
の中から選ばれ該担体に担持されたNOx 吸蔵元素と、
該担体に担持された触媒貴金属と、を含んでなることを
特徴とする排ガス浄化用触媒。
An exhaust gas containing nitrogen oxides (NO x ), carbon monoxide (CO) and hydrocarbons (H) in an oxygen-excess atmosphere.
A catalyst for purifying exhaust gas for purifying C), which is a carrier composed of a composite oxide represented by MgO.nAl 2 O 3 and is supported on the carrier selected from alkali metals, alkaline earth metals and rare earth elements The stored NO x storage element,
An exhaust gas-purifying catalyst, comprising a catalyst noble metal supported on the carrier.
【請求項2】 前記NOx 吸蔵元素はバリウムであるこ
とを特徴とする請求項1記載の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the NO x storage element is barium.
【請求項3】 酸素過剰の雰囲気下で排ガス中の窒素酸
化物(NOx )、一酸化炭素(CO)及び炭化水素(H
C)を浄化する排ガス浄化方法であって、 MgO・nAl2 3 で表される複合酸化物からなる担
体と、アルカリ金属、アルカリ土類金属及び希土類元素
の中から選ばれ該担体に担持されたNOx 吸蔵元素と、
該担体に担持された触媒貴金属と、を含んでなる排ガス
浄化用触媒に前記排ガスを接触させることを特徴とする
排ガス浄化方法。
3. Nitrogen oxides (NO x ), carbon monoxide (CO) and hydrocarbons (H) in exhaust gas under an atmosphere of excess oxygen.
An exhaust gas purification method for purifying C), which comprises a carrier composed of a complex oxide represented by MgO.nAl 2 O 3 and a carrier selected from alkali metals, alkaline earth metals and rare earth elements. NO x storage element,
An exhaust gas purifying method, characterized in that the exhaust gas is brought into contact with a catalyst for purifying exhaust gas, which comprises a catalyst noble metal supported on the carrier.
【請求項4】 前記NOx 吸蔵元素はバリウムであるこ
とを特徴とする請求項3記載の排ガス浄化方法。
4. The exhaust gas purification method according to claim 3, wherein the NO x storage element is barium.
JP8060896A 1996-03-18 1996-03-18 Catalyst and method for exhaust gas-purifying Pending JPH09248458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8060896A JPH09248458A (en) 1996-03-18 1996-03-18 Catalyst and method for exhaust gas-purifying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8060896A JPH09248458A (en) 1996-03-18 1996-03-18 Catalyst and method for exhaust gas-purifying

Publications (1)

Publication Number Publication Date
JPH09248458A true JPH09248458A (en) 1997-09-22

Family

ID=13155588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8060896A Pending JPH09248458A (en) 1996-03-18 1996-03-18 Catalyst and method for exhaust gas-purifying

Country Status (1)

Country Link
JP (1) JPH09248458A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084405A (en) * 1998-08-24 2000-03-28 Degussa Huels Ag Nitrogen oxides-accumulating material and nitrogen oxides-accumulating catalyst to be prepared therefrom
JP2000512907A (en) * 1997-06-11 2000-10-03 ダイムラークライスラー アクチエンゲゼルシヤフト Storage catalyst
US6372688B1 (en) 1998-12-28 2002-04-16 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying an exhaust gas and process for producing the same
US6569803B2 (en) 2000-01-19 2003-05-27 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas
JP2006297237A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Catalyst for cleaning exhaust gas and manufacturing method for the same
US7438866B2 (en) 2001-02-02 2008-10-21 Hitachi, Ltd. Emission gas purification catalyst and internal combustion engine provided with the catalyst
JP2012130895A (en) * 2010-12-24 2012-07-12 Daihatsu Motor Co Ltd Catalyst support and catalyst for cleaning exhaust gas
JP2012152720A (en) * 2011-01-28 2012-08-16 Daihatsu Motor Co Ltd Catalyst carrier and exhaust gas-purifying catalyst
US20140331652A1 (en) * 2011-12-07 2014-11-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
JP2015520021A (en) * 2012-04-26 2015-07-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company NOX trap composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512907A (en) * 1997-06-11 2000-10-03 ダイムラークライスラー アクチエンゲゼルシヤフト Storage catalyst
JP2000084405A (en) * 1998-08-24 2000-03-28 Degussa Huels Ag Nitrogen oxides-accumulating material and nitrogen oxides-accumulating catalyst to be prepared therefrom
US6372688B1 (en) 1998-12-28 2002-04-16 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying an exhaust gas and process for producing the same
US6569803B2 (en) 2000-01-19 2003-05-27 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas
US7438866B2 (en) 2001-02-02 2008-10-21 Hitachi, Ltd. Emission gas purification catalyst and internal combustion engine provided with the catalyst
JP2006297237A (en) * 2005-04-18 2006-11-02 Toyota Motor Corp Catalyst for cleaning exhaust gas and manufacturing method for the same
JP4720270B2 (en) * 2005-04-18 2011-07-13 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP2012130895A (en) * 2010-12-24 2012-07-12 Daihatsu Motor Co Ltd Catalyst support and catalyst for cleaning exhaust gas
JP2012152720A (en) * 2011-01-28 2012-08-16 Daihatsu Motor Co Ltd Catalyst carrier and exhaust gas-purifying catalyst
US20140331652A1 (en) * 2011-12-07 2014-11-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
US9097167B2 (en) * 2011-12-07 2015-08-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
JP2015520021A (en) * 2012-04-26 2015-07-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company NOX trap composition

Similar Documents

Publication Publication Date Title
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
KR100858011B1 (en) Exhaust gas purifying catalyst
JP3704279B2 (en) Exhaust gas purification catalyst
JP3741303B2 (en) Exhaust gas purification catalyst
WO2002066155A1 (en) Exhaust gas clarification catalyst
JPH09271672A (en) Exhaust gas purifying catalyst
JP2002177781A (en) Exhaust gas cleaning catalyst
EP1095702A1 (en) Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
JP2002011350A (en) Exhaust gas cleaning catalyst
JPH09248458A (en) Catalyst and method for exhaust gas-purifying
JP3851521B2 (en) Exhaust gas purification catalyst
JP3624277B2 (en) Exhaust gas purification catalyst
JP3446915B2 (en) Exhaust gas purification catalyst
JP2010069380A (en) Catalyst for cleaning exhaust gas
JPH09248462A (en) Exhaust gas-purifying catalyst
JP2010022892A (en) Catalyst for cleaning exhaust gas
JP2003020227A (en) Fine mixed oxide powder, production method thereor and catalyst
JPH08281116A (en) Catalyst for purifying exhaust gas
JP2007301471A (en) Catalyst for cleaning exhaust gas
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP3673816B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3739223B2 (en) Exhaust gas purification catalyst
JP2002239383A (en) NOx SORPTION AND REDUCTION CATALYST AND METHOD FOR USING THE SAME
JP2001046835A (en) NOx ABSORBING AND CLEANING MATERIAL AND EXHAUST GAS CLEANING CATALYST USING THE SAME
JP5051009B2 (en) NOx storage reduction catalyst

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330