JPH0924231A - Gas separation apparatus - Google Patents

Gas separation apparatus

Info

Publication number
JPH0924231A
JPH0924231A JP7179039A JP17903995A JPH0924231A JP H0924231 A JPH0924231 A JP H0924231A JP 7179039 A JP7179039 A JP 7179039A JP 17903995 A JP17903995 A JP 17903995A JP H0924231 A JPH0924231 A JP H0924231A
Authority
JP
Japan
Prior art keywords
adsorption
pressure
tank
compressor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7179039A
Other languages
Japanese (ja)
Other versions
JP3661884B2 (en
Inventor
Hajime Miyazaki
元 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP17903995A priority Critical patent/JP3661884B2/en
Publication of JPH0924231A publication Critical patent/JPH0924231A/en
Application granted granted Critical
Publication of JP3661884B2 publication Critical patent/JP3661884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem as decrease in adsorption efficiency caused by operating condition of a compressor by a gas separation apparatus. SOLUTION: In this gas separation apparatus 11, when either adsorption tank 23 or 24 is under adsorbing process, as a compressor 13 is kept under operating condition, the pressure of raw material air to be fed is kept at least a lower limit pressure being necessary for adsorption and adsorption efficiency is improved thereby to be able to stably separate and form nitrogen gas with a high concn. In addition, when both adsorption tanks 23 and 24 are under equal pressure process, the compressor 13 is operated under unloaded condition by opening an exhaust valve 15 and when the adsorption tanks 23 and 24 enter into adsorption process, as the exhaust valve 15 is closed and the pressure P of an air tank 16 is kept at the upper limit pressure, even when the equal pressure process is switched to the adsorption/removing process, shortage in pressure does not occur and the pressure being necessary for adsorption of oxygen molecules on an adsorbent is ensured in the adsorption tanks 23 and 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はPSA式(Pressure
Swing Adsorption )の気体分離装置に係り、特に吸着
剤が充填された吸着槽にコンプレッサにより圧縮された
圧縮空気を供給して空気を窒素と酸素に分離するよう構
成した気体分離装置に関する。
TECHNICAL FIELD The present invention relates to a PSA type (Pressure
Swing Adsorption) gas separator, and more particularly to a gas separator configured to supply compressed air compressed by a compressor to an adsorption tank filled with an adsorbent to separate air into nitrogen and oxygen.

【0002】[0002]

【従来の技術】一般に、PSA式気体分離装置は、分子
ふるいカーボンやゼオライトなどからなる吸着剤を用い
て空気を窒素と酸素に分離し、いずれか一方を製品ガス
として取出し、使用するものである。
2. Description of the Related Art Generally, a PSA type gas separation apparatus separates air into nitrogen and oxygen using an adsorbent composed of molecular sieve carbon or zeolite, and extracts either one as a product gas for use. .

【0003】例えば窒素ガスを製品ガスとして取り出す
PSA式気体分離装置にあっては、 (a)吸着工程:吸着剤が充填された吸着槽にコンプレ
ッサにより圧縮された圧縮空気を導入して吸着槽内を昇
圧させ圧力を利用して吸着剤に酸素分子を吸着させる工
程、 (b)取出工程:吸着工程の後半で吸着剤により分離生
成された窒素を取出す工程、 (c)均圧工程:取出工程終了後の吸着槽に残存する窒
素濃度の高い残留ガスを吸着工程前の他の吸着槽に供給
して吸着槽間の圧力を均圧化する工程、 (d)再生工程:取出工程及び均圧工程終了後の吸着槽
内を大気解放または真空ポンプで減圧して吸着剤に吸着
された酸素分子を脱着することにより吸着剤を再生する
工程、が順次行われる。
For example, in a PSA type gas separation apparatus for taking out nitrogen gas as a product gas, (a) Adsorption step: In the adsorption tank by introducing compressed air compressed by a compressor into an adsorption tank filled with an adsorbent Of adsorbing oxygen molecules to the adsorbent by increasing the pressure of the adsorbent, (b) taking out step: taking out nitrogen separated and produced by the adsorbent in the latter half of the adsorbing step, (c) equalizing step: taking out step A step of supplying residual gas having a high nitrogen concentration remaining in the adsorption tank after completion to another adsorption tank before the adsorption step to equalize the pressure between the adsorption tanks, (d) a regeneration step: an extraction step and an equalization pressure After the step, the step of regenerating the adsorbent by releasing the atmosphere in the adsorption tank or depressurizing it with a vacuum pump to desorb oxygen molecules adsorbed by the adsorbent is sequentially performed.

【0004】これらの各工程(a)〜(d)は、各吸着
槽毎に繰返し行われ、各吸着槽における工程が連携して
実行されるように各機器が制御される。一対の吸着槽を
有する気体分離装置では、一方の吸着槽で取出工程が完
了し、他方の吸着槽で再生工程が完了した後、均圧工程
を行う。この均圧工程では、両吸着槽間を連通させて取
出工程の後の吸着槽に残留するガスを再生工程後の吸着
槽へ供給して均圧化を図り、次回の吸着工程の吸着効率
を高めてより高純度の製品ガスを生成するようにしてい
る。
Each of these steps (a) to (d) is repeated for each adsorption tank, and each device is controlled so that the steps in each adsorption tank are executed in cooperation with each other. In a gas separation device having a pair of adsorption tanks, the pressure equalization step is performed after the extraction step is completed in one adsorption tank and the regeneration step is completed in the other adsorption tank. In this pressure equalization process, the two adsorption tanks are connected to each other and the gas remaining in the adsorption tank after the extraction process is supplied to the adsorption tank after the regeneration process to equalize pressure and improve the adsorption efficiency of the next adsorption process. It is being raised to produce a higher purity product gas.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記気体分
離装置では、上記各工程(a)〜(d)を繰り返して窒
素を分離生成しているが、吸着槽に圧縮空気を供給する
コンプレッサの駆動制御が吸着槽の各工程の制御と切り
離して行われており、コンプレッサにより生成された圧
縮空気を空気槽に蓄圧し、吸着工程時に空気槽内の圧縮
空気が吸着槽へ供給される。また、コンプレッサは、空
気槽の圧力が所定圧力未満であるときはロード運転(通
常運転)が行われ、空気槽の圧力が所定圧力に達すると
アンロード運転(無負荷運転時)に切り換わる。尚、ア
ンロード運転時はコンプレッサの駆動用モータが駆動さ
れたままであるが、給気弁が開いた状態に保持されて圧
縮空気の生成は行われない。
However, in the above gas separation apparatus, the steps (a) to (d) are repeated to separate and generate nitrogen. However, a compressor for supplying compressed air to the adsorption tank is driven. The control is performed separately from the control of each step of the adsorption tank, the compressed air generated by the compressor is accumulated in the air tank, and the compressed air in the air tank is supplied to the adsorption tank during the adsorption step. Further, the compressor performs a load operation (normal operation) when the pressure in the air tank is less than a predetermined pressure, and switches to an unload operation (during no load operation) when the pressure in the air tank reaches a predetermined pressure. During the unloading operation, the drive motor of the compressor is still driven, but the air supply valve is held open and compressed air is not generated.

【0006】このように従来の気体分離装置では、コン
プレッサが吸着槽に圧縮空気を供給する空気槽の圧力に
よりロード運転あるいはアンロード運転に切り替わるよ
うに動作しているため、吸着槽が吸着工程であるにも拘
わらずコンプレッサがアンロード運転状態であることが
ある。この場合、空気槽に蓄圧された圧縮空気が吸着槽
に供給されるが、コンプレッサがアンロード運転のた
め、空気槽に供給される圧縮空気の供給量が減少して吸
着槽内の圧力が急激に低下してしまい、酸素分子を吸着
剤に十分に吸着させることができず、吸着効率が低下す
るといった問題が生ずる。
As described above, in the conventional gas separation apparatus, the compressor operates so as to switch to the loading operation or the unloading operation depending on the pressure of the air tank for supplying the compressed air to the adsorption tank. In some cases, the compressor may be in an unloading operation state. In this case, the compressed air accumulated in the air tank is supplied to the adsorption tank, but since the compressor is in the unloading operation, the amount of compressed air supplied to the air tank decreases and the pressure in the adsorption tank suddenly increases. Therefore, the oxygen molecules cannot be sufficiently adsorbed by the adsorbent, and the adsorption efficiency is lowered.

【0007】このような状態の圧力変化をグラフに表す
と、図5に示すようになる。このグラフでは、第1の吸
着槽1と第2の吸着槽2が並列に設けられ、第1の吸着
槽1が吸着工程のとき第2の吸着槽2が取出工程とな
り、第1の吸着槽1が取出工程のとき第2の吸着槽2が
吸着工程となるように制御されている。そして、吸着工
程と取出工程との間に均圧工程が行われる。
FIG. 5 is a graph showing the pressure change in such a state. In this graph, the first adsorption tank 1 and the second adsorption tank 2 are provided in parallel, and when the first adsorption tank 1 is in the adsorption step, the second adsorption tank 2 is in the extraction step, and the first adsorption tank 1 is in the extraction step. The second adsorption tank 2 is controlled so as to be in the adsorption step when 1 is the extraction step. Then, a pressure equalization process is performed between the adsorption process and the extraction process.

【0008】図5においては、コンプレッサの空気槽の
圧力変化はグラフI(実線)で示し、第1の吸着槽1の
圧力変化はグラフII(1点鎖線)で示し、第2の吸着槽
2の圧力変化はグラフIII (2点鎖線)で示し、製品ガ
スとしての窒素が貯えられる窒素槽の圧力変化はグラフ
IV(破線)で示す。
In FIG. 5, the pressure change in the air tank of the compressor is shown by a graph I (solid line), the pressure change in the first adsorption tank 1 is shown by a graph II (one-dot chain line), and the second adsorption tank 2 is shown. Graph III (two-dot chain line) shows the pressure change, and the pressure change in the nitrogen tank where nitrogen as product gas is stored is shown in the graph.
It is shown by IV (broken line).

【0009】コンプレッサは、空気槽の圧力が上限圧力
A 以上に上昇した場合にロード運転からアンロード運
転に切り替わり、空気槽の圧力が下限圧力PB 以下に低
下した場合アンロード運転からロード運転に切り替わる
ように動作する。そして、吸着槽1,2の圧力は、吸着
・取出工程で上昇し、再生工程で降下する。
The compressor switches from the load operation to the unload operation when the pressure in the air tank rises above the upper limit pressure P A , and from the unload operation to the load operation when the pressure in the air tank falls below the lower limit pressure P B. It works to switch to. Then, the pressures of the adsorption tanks 1 and 2 increase in the adsorption / extraction process and decrease in the regeneration process.

【0010】ところが、均圧工程だけでなく吸着工程に
なってもコンプレッサがアンロード運転になっているた
め、空気槽の圧力だけでなく吸着槽1,2及び窒素槽の
圧力も低下してしまうことが分かる。そのため、次の吸
着・取出工程で大量の空気を必要とするにも拘わらず圧
力不足により、吸着効率が低下して製品ガスの窒素濃度
が低下することになる。
However, since the compressor is in the unloading operation not only in the pressure equalizing step but also in the adsorption step, not only the pressure in the air tank but also the pressures in the adsorption tanks 1, 2 and the nitrogen tank decrease. I understand. Therefore, although a large amount of air is required in the next adsorption / extraction step, due to insufficient pressure, the adsorption efficiency is reduced and the nitrogen concentration of the product gas is reduced.

【0011】そこで、本発明は上記問題を解決した気体
分離装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a gas separation device which solves the above problems.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するた
め、本発明は以下のような特徴を有する。上記請求項1
の発明は、吸着剤が充填された吸着槽にコンプレッサに
より圧縮された圧縮空気を供給して該吸着槽内を昇圧さ
せる吸着工程を行うと共に、該吸着槽内の吸着剤により
生成された製品ガスを該吸着槽から取り出すよう構成さ
れた気体分離装置において、前記吸着槽が吸着工程に切
り替わる時点で前記吸着槽に供給される圧力が吸着工程
に必要な圧力を維持するように前記コンプレッサの運転
状態を制御する制御手段を備えてなることを特徴とする
ものである。
In order to solve the above problems, the present invention has the following features. Claim 1
According to the invention, an adsorption step of supplying compressed air compressed by a compressor to an adsorption tank filled with an adsorbent to pressurize the inside of the adsorption tank and a product gas generated by the adsorbent in the adsorption tank are carried out. In the gas separation device configured to take out the adsorption tank from the adsorption tank, the operating state of the compressor so that the pressure supplied to the adsorption tank at the time when the adsorption tank is switched to the adsorption step maintains the pressure required for the adsorption step. It is characterized by comprising a control means for controlling.

【0013】従って、請求項1によれば、吸着槽が吸着
工程に切り替わる時点で吸着槽に供給される圧力が吸着
工程に必要な圧力を維持するようにコンプレッサの運転
状態を制御することにより、吸着槽が吸着工程になった
時点で圧力不足となることを防止でき、圧力減少に伴う
吸着槽における吸着効率の低下を防止できる。
Therefore, according to the first aspect, by controlling the operating state of the compressor so that the pressure supplied to the adsorption tank at the time when the adsorption tank is switched to the adsorption step maintains the pressure required for the adsorption step, It is possible to prevent the pressure from becoming insufficient at the time when the adsorption tank enters the adsorption step, and it is possible to prevent the adsorption efficiency from decreasing in the adsorption tank due to the pressure decrease.

【0014】また、請求項2の発明は、前記請求項1記
載の気体分離装置において、前記吸着槽に圧縮空気を供
給する管路に空気を外部に排出させる排気弁を設け、前
記吸着槽が吸着工程以外の工程で前記吸着槽に供給され
る圧縮空気の圧力が所定圧以上であるとき、前記排気弁
を開弁させる弁制御手段を設けたことを特徴とするもの
である。
Further, the invention of claim 2 is the gas separation apparatus according to claim 1, wherein an exhaust valve for discharging air to the outside is provided in a pipe line for supplying compressed air to the adsorption tank, and the adsorption tank is A valve control means for opening the exhaust valve is provided when the pressure of the compressed air supplied to the adsorption tank in a step other than the adsorption step is equal to or higher than a predetermined pressure.

【0015】従って、請求項2によれば、吸着槽が吸着
工程以外の工程で吸着槽に供給される圧縮空気の圧力が
所定圧以上であるとき、吸着槽に圧縮空気を供給する管
路に設けられた排気弁を開弁することにより、吸着槽に
供給される圧力を所定圧に減圧することができるので、
吸着工程に切り替わった時点でコンプレッサがロード運
転からアンロード運転に切り替わることを防止できる。
Therefore, according to the second aspect, when the pressure of the compressed air supplied to the adsorption tank in the steps other than the adsorption step is equal to or higher than the predetermined pressure, the pipe for supplying the compressed air to the adsorption tank is provided. By opening the provided exhaust valve, the pressure supplied to the adsorption tank can be reduced to a predetermined pressure.
It is possible to prevent the compressor from switching from the load operation to the unload operation at the time of switching to the adsorption step.

【0016】[0016]

【発明の実施の形態】図1に本発明になる気体分離装置
の一実施例を示す。尚、図1は気体分離装置のシステム
構成を示す図である。気体分離装置11は圧縮空気から
窒素を製品ガスとして生成するPSA式の窒素発生装置
であり、スタート信号の入来により作動開始する。気体
分離装置11の制御装置12は、コンプレッサ13及び
電磁弁よりなる吸着ユニット14の各バルブV1
7 、排気弁15を制御する。
FIG. 1 shows an embodiment of a gas separation device according to the present invention. 1 is a diagram showing the system configuration of the gas separation device. The gas separation device 11 is a PSA type nitrogen generation device that generates nitrogen as product gas from compressed air, and starts its operation when a start signal comes in. The control device 12 of the gas separation device 11 controls the valves V 1 to V 1 of the adsorption unit 14 including the compressor 13 and the electromagnetic valve.
V 7 and the exhaust valve 15 are controlled.

【0017】コンプレッサ13からの圧縮空気は空気槽
16に貯えられ、空気供給管路17を介して吸着ユニッ
ト14に供給される。また、コンプレッサ13は、空気
槽16の圧力が上限圧力PA 以上に上昇した場合にロー
ド運転からアンロード運転に切り替わり、空気槽16の
圧力が下限圧力PB 以下に低下した場合アンロード運転
からロード運転に切り替わるように制御される。
Compressed air from the compressor 13 is stored in the air tank 16 and supplied to the adsorption unit 14 via the air supply pipe line 17. Further, the compressor 13 switches from the load operation to the unload operation when the pressure in the air tank 16 rises above the upper limit pressure P A , and from the unload operation when the pressure in the air tank 16 falls below the lower limit pressure P B. It is controlled to switch to road operation.

【0018】上記空気供給管路17から分岐した分岐管
路18の途中には、排気弁15が設けられ、分岐管路1
8には排気弁15が開弁されたときに大気中に放出され
る空気の音を緩和するためのサイレンサ19が設けられ
ている。また、空気槽16には、コンプレッサ13によ
り蓄圧された圧縮空気の圧力を計測する圧力計20が設
けられている。この圧力計20は、空気槽16の圧力を
検出し、その検出信号を制御装置12に出力する。そし
て、上記排気弁15は、圧力計20により検出された圧
力値に基づいて開閉制御されており、後述するように空
気槽16の圧力が所定圧力以上(本実施例では、P>8
kgf/cm2 )になったときに開弁されて空気槽16の圧縮
空気を大気中に排気して空気槽16の圧力を減圧する。
An exhaust valve 15 is provided in the middle of a branch pipe 18 branched from the air supply pipe 17, and the branch pipe 1
8 is provided with a silencer 19 for reducing the sound of the air released into the atmosphere when the exhaust valve 15 is opened. Further, the air tank 16 is provided with a pressure gauge 20 for measuring the pressure of the compressed air accumulated by the compressor 13. The pressure gauge 20 detects the pressure in the air tank 16 and outputs the detection signal to the control device 12. The exhaust valve 15 is controlled to open and close based on the pressure value detected by the pressure gauge 20, and the pressure in the air tank 16 is equal to or higher than a predetermined pressure (P> 8 in this embodiment, as will be described later).
When the pressure reaches kgf / cm 2 ), the valve is opened and the compressed air in the air tank 16 is exhausted to the atmosphere to reduce the pressure in the air tank 16.

【0019】吸着ユニット14では、空気供給管路17
に連通された給気管路21,22を介して分子ふるいカ
ーボンよりなる吸着剤(図示せず)が充填された第1,
第2の吸着槽23,24に供給される。多孔質の分子ふ
るいカーボンよりなる吸着剤は、吸着槽23,24内の
圧力上昇により酸素分子を吸着し、減圧されるとその圧
力差により酸素分子を脱着する。
In the adsorption unit 14, the air supply line 17
The first and second parts filled with an adsorbent (not shown) made of molecular sieving carbon via air supply lines 21 and 22 communicated with the first and second parts.
It is supplied to the second adsorption tanks 23 and 24. The adsorbent made of porous molecular sieving carbon adsorbs oxygen molecules by increasing the pressure in the adsorption tanks 23 and 24, and when depressurized, desorbs oxygen molecules due to the pressure difference.

【0020】また、管路21,22には排気管路25,
26が分岐接続されている。吸着槽23,24の上部に
は取出管路27,28が接続されており、両管路27,
28間には両吸着槽23,24を連通するための均圧管
路29が横架されている。また、上記取出管路27,2
8は、取出管路30で合流し、取出管路30を介して窒
素槽31に連通されている。尚、取出管路30には、窒
素槽31の窒素ガスが吸着槽23,24側へ逆流するこ
とを防止するための逆流防止弁32が配設されている。
Further, the exhaust pipes 25,
26 are branched and connected. Extraction pipes 27 and 28 are connected to the upper portions of the adsorption tanks 23 and 24, and both pipes 27 and
A pressure equalizing pipe line 29 for connecting the adsorption tanks 23 and 24 is horizontally provided between the 28. In addition, the extraction pipes 27, 2
8 merge at the take-out pipe line 30 and communicate with the nitrogen tank 31 via the take-out pipe line 30. A backflow prevention valve 32 for preventing the nitrogen gas in the nitrogen tank 31 from flowing back to the adsorption tanks 23 and 24 is disposed in the extraction conduit 30.

【0021】さらに、給気管路21,22との間を連通
する排気管路25,26の端部は、再生工程で排気され
る音を緩和するためのサイレンサ33に連通されてい
る。上記吸着槽23,24から取り出された窒素ガスが
蓄圧される窒素槽31の下流側に設けられた管路34に
は、減圧弁35、圧力計36、電磁弁37、流量を調整
する可変絞り38が配設されている。
Further, the ends of the exhaust pipes 25, 26 which communicate with the air supply pipes 21, 22 are communicated with a silencer 33 for reducing the sound exhausted in the regeneration process. A pressure reducing valve 35, a pressure gauge 36, an electromagnetic valve 37, and a variable throttle for adjusting the flow rate are provided in a pipe line 34 provided on the downstream side of the nitrogen tank 31 in which the nitrogen gas taken out from the adsorption tanks 23 and 24 is accumulated. 38 are provided.

【0022】また、上記吸着ユニット14の各管路に
は、常閉形の電磁弁V1 〜V7 が配設されている。各電
磁弁V1 〜V7 は通常閉弁しているが、制御装置12か
らの制御信号により吸着、取出、再生、均圧の各工程に
応じて選択的に開弁する。吸着ユニット14では第1,
第2の吸着槽23,24内に上記空気槽16から圧縮空
気が供給されて、昇圧、減圧を繰り返しながら原料空気
から窒素と酸素とを分離する。尚、本実施例では、一対
の吸着槽23,24を有するため、第1の吸着槽23が
昇圧されて吸着工程のとき第2の吸着槽24では減圧さ
れて再生工程が行なわれ、第1の吸着槽23が再生工程
のとき第2の吸着槽24は吸着工程となる。
Further, normally-closed solenoid valves V 1 to V 7 are provided in the respective pipes of the adsorption unit 14. Although the solenoid valves V 1 to V 7 are normally closed, they are selectively opened by a control signal from the control device 12 in accordance with each process of adsorption, extraction, regeneration and pressure equalization. In the adsorption unit 14, the first
Compressed air is supplied from the air tank 16 into the second adsorption tanks 23 and 24, and nitrogen and oxygen are separated from the raw material air while repeating pressurization and depressurization. In this embodiment, since the pair of adsorption tanks 23 and 24 are provided, the pressure in the first adsorption tank 23 is increased to the adsorption step, and the pressure in the second adsorption tank 24 is reduced to perform the regeneration step. When the adsorption tank 23 is in the regeneration step, the second adsorption tank 24 is in the adsorption step.

【0023】そして、制御装置12は予め入力されたプ
ログラムに基づいて吸着槽23,24が交互に窒素ガス
を生成するように吸着ユニット14の各バルブV1 〜V
7 を開閉制御する。各バルブV1 〜V7 の開弁状態を各
工程毎に分類すると、以下のようになる。
Then, the control device 12 controls the valves V 1 to V of the adsorption unit 14 so that the adsorption tanks 23 and 24 alternately generate nitrogen gas based on a program inputted in advance.
Open and close 7 is controlled. The valve open states of the valves V 1 to V 7 are classified as follows for each process.

【0024】 第1の吸着槽23は吸着工程:バルブV1 が開弁。 第2の吸着槽24は再生工程:バルブV6 が開弁。 第1の吸着槽23は取出工程:バルブV1 ,V2 が開弁。 第2の吸着槽24は再生工程のまま:バルブV6 が開弁。Adsorption step of the first adsorption tank 23: The valve V 1 is opened. Regeneration process of the second adsorption tank 24: Valve V 6 is opened. The first adsorption tank 23 has a take-out step: valves V 1 and V 2 are opened. The second adsorption tank 24 remains in the regeneration process: the valve V 6 is opened.

【0025】 吸着槽23, 24は均圧工程:バルブV7 が開弁。 第1の吸着槽23は再生工程:バルブV3 が開弁。 第2の吸着槽24は吸着工程:バルブV4 が開弁。 第1の吸着槽23は再生工程のまま:バルブV3 が開弁。The adsorption tanks 23 and 24 have a pressure equalizing step: the valve V 7 is opened. Regeneration process of the first adsorption tank 23: The valve V 3 is opened. The second adsorption tank 24 has an adsorption step: the valve V 4 is opened. The first adsorption tank 23 remains in the regeneration process: the valve V 3 is opened.

【0026】 第2の吸着槽24は取出工程:バルブV4 ,V5 が開弁。 吸着槽23, 24は均圧工程:バルブV7 が開弁。 この〜が順次行われて1サイクルが終了し、この順
番で各工程が繰り返される。尚、各工程の所要時間は、
予めプログラム上に設定されている。
The second adsorption tank 24 is taken out: the valves V 4 and V 5 are opened. The adsorption tanks 23 and 24 have a pressure equalizing step: the valve V 7 is opened. These steps are sequentially performed to complete one cycle, and each step is repeated in this order. The time required for each process is
It is preset in the program.

【0027】次に制御装置12が実行する処理につき説
明する。図2はコンプレッサ13の制御動作を説明する
ためのフローチャートである。制御装置12は、スター
トスイッチ(図示せず)がオンに操作されると、コンプ
レッサ13の駆動モータ(図示せず)を起動させてロー
ド状態に制御する。これと共に、ステップS1(以下
「ステップ」を省略する)において、コンプレッサ13
からの圧縮空気が蓄圧された空気槽16の圧力Pが上限
圧力PA である8.5kgf/cm2 に達したか否かを判定す
る。そして、S1で空気槽16の圧力Pが8.5kgf/cm
2 以上であるときは、S2に進み、コンプレッサ13を
アンロード運転(無負荷運転)に切り替える。
Next, the processing executed by the controller 12 will be described. FIG. 2 is a flow chart for explaining the control operation of the compressor 13. When a start switch (not shown) is turned on, the controller 12 activates a drive motor (not shown) of the compressor 13 to control the load state. At the same time, in step S1 (hereinafter “step” is omitted), the compressor 13
It is determined whether or not the pressure P in the air tank 16 in which the compressed air from is accumulated has reached the upper limit pressure P A of 8.5 kgf / cm 2 . Then, in S1, the pressure P in the air tank 16 is 8.5 kgf / cm.
When it is 2 or more, the process proceeds to S2, and the compressor 13 is switched to the unload operation (no-load operation).

【0028】次のS3では、空気槽16の圧力Pが下限
圧力PB である7kgf/cm2 に達したか否かを判定する。
このS3において、空気槽16の圧力Pが下限圧力PB
以上であるときは、S4に移行して第1の吸着槽23が
均圧工程から吸着工程に切り替わったか否かを判定す
る。
In the next step S3, it is determined whether or not the pressure P in the air tank 16 has reached the lower limit pressure P B of 7 kgf / cm 2 .
At S3, the pressure P in the air tank 16 is the lower limit pressure P B.
When it is above, it transfers to S4 and determines whether the 1st adsorption tank 23 switched from the pressure equalization process to the adsorption process.

【0029】そして、S4において、第1の吸着槽23
が均圧工程から吸着工程に切り替わっていない場合に
は、S5に移行して第2の吸着槽24が均圧工程から吸
着工程に切り替わったか否かを判定する。このS5にお
いても、第2の吸着槽24が均圧工程から吸着工程に切
り替わっていない場合には、上記S3に戻りS3〜S5
の処理を繰り返す。
Then, in S4, the first adsorption tank 23
If the pressure equalization process has not been switched to the adsorption process, the process proceeds to S5, and it is determined whether the second adsorption tank 24 has been switched from the pressure equalization process to the adsorption process. Also in this S5, if the second adsorption tank 24 has not been switched from the pressure equalizing process to the adsorption process, the process returns to S3 and S3 to S5.
Is repeated.

【0030】また、S3において、空気槽16の圧力P
が下限圧力PB 以下に低下したときは、S6に移行して
コンプレッサ13をロード運転(通常運転)に切り替え
る。従って、吸着槽23, 24の状態に拘わらず空気槽
16の圧力Pが下限圧力PB以下に低下した場合には、
コンプレッサ13がロード運転となってコンプレッサ1
3により生成された圧縮空気が空気槽16に供給され
る。これにより、空気槽16の圧力Pが下限圧力PB
上に保たれる。
Further, in S3, the pressure P in the air tank 16
Is lower than the lower limit pressure P B , the process proceeds to S6 and the compressor 13 is switched to the load operation (normal operation). Therefore, regardless of the states of the adsorption tanks 23 and 24, when the pressure P of the air tank 16 drops below the lower limit pressure P B ,
Compressor 13 is in load operation and compressor 1
The compressed air generated by 3 is supplied to the air tank 16. As a result, the pressure P in the air tank 16 is maintained at the lower limit pressure P B or higher.

【0031】また、S4において、第1の吸着槽23が
均圧工程から吸着工程に切り替わった場合には、S6に
移行してコンプレッサ13をロード運転(通常運転)に
切り替える。従って、第1の吸着槽23が吸着工程にな
ったときは、コンプレッサ13がロード運転となってコ
ンプレッサ13により生成された圧縮空気が空気槽16
に供給される。そのため、吸着工程となった第1の吸着
槽23では、多量の空気が必要であるが、コンプレッサ
13がロード運転となって圧縮空気が空気槽16に供給
されているため、空気槽16からの供給圧力により吸着
に必要な圧力が確保され、圧力不足になることが防止さ
れる。
Further, in S4, when the first adsorption tank 23 is switched from the pressure equalizing process to the adsorption process, the process proceeds to S6 and the compressor 13 is switched to the load operation (normal operation). Therefore, when the first adsorption tank 23 is in the adsorption step, the compressor 13 is in the load operation and the compressed air generated by the compressor 13 is in the air tank 16
Is supplied to. Therefore, a large amount of air is required in the first adsorption tank 23 that has been in the adsorption step, but since the compressor 13 is in load operation and compressed air is being supplied to the air tank 16, the air from the air tank 16 is removed. The supply pressure secures the pressure necessary for adsorption and prevents the pressure from becoming insufficient.

【0032】また、S5においても、第2の吸着槽24
が均圧工程から吸着工程に切り替わった場合には、上記
S4の場合と同様にS6に移行してコンプレッサ13を
ロード運転(通常運転)に切り替える。従って、第2の
吸着槽24が吸着工程になったときは、コンプレッサ1
3がロード運転となるため、第2の吸着槽24には空気
槽16からの十分な圧力が供給される。そのため、吸着
工程となった第2の吸着槽24では、吸着に必要な圧力
が確保され、圧力不足になることが防止される。
Also in S5, the second adsorption tank 24
When the pressure equalizing process is switched to the adsorption process, the process proceeds to S6 and the compressor 13 is switched to the load operation (normal operation) as in the case of S4. Therefore, when the second adsorption tank 24 is in the adsorption step, the compressor 1
Since 3 is in the load operation, sufficient pressure from the air tank 16 is supplied to the second adsorption tank 24. Therefore, in the second adsorption tank 24 that has undergone the adsorption step, the pressure required for adsorption is secured and the pressure is prevented from becoming insufficient.

【0033】このように、吸着槽23, 24のいずれか
が吸着工程になった場合には、コンプレッサ13がロー
ド運転状態に維持されるため、供給される原料空気の圧
力が吸着に必要な下限圧力PB 以上に確保され、これに
より吸着効率が高められて高濃度の窒素ガスを安定的に
分離生成することができる。尚、S6の後は再びS1に
戻り、空気槽16の圧力Pが上限圧力PA である8.5
kgf/cm2 に達したか否かを判定し、P≧8.5kgf/cm2
であるときは、コンプレッサ13をアンロード運転に切
り替える。
As described above, when one of the adsorption tanks 23 and 24 is in the adsorption step, the compressor 13 is maintained in the load operation state, so that the pressure of the raw material air supplied is the lower limit required for adsorption. The pressure is secured at P B or higher, whereby the adsorption efficiency is enhanced and a high concentration nitrogen gas can be stably separated and produced. Incidentally, after S6, the process returns to S1 again, and the pressure P of the air tank 16 is the upper limit pressure P A of 8.5.
It is judged whether or not it has reached kgf / cm 2 , and P ≧ 8.5 kgf / cm 2
If so, the compressor 13 is switched to the unload operation.

【0034】次に制御装置12が実行する排気弁15の
制御動作について説明する。図3は排気弁15の制御動
作を説明するためのフローチャートである。制御装置1
2はS11において、吸着槽23又は24が吸着工程又
は取出工程であるか否かを判定する。そして、吸着槽2
, 24が共に吸着工程又は取出工程である場合には、
S12に進み、空気槽16の圧力Pが8kgf/cm2 以上に
上昇したか否かを判定する。尚、S11で吸着槽23又
は24のいずれかが吸着工程又は取出工程でなかった場
合、あるいはS12でP<8kgf/cm2 であるときは、待
機状態となる。
Next, the control operation of the exhaust valve 15 executed by the controller 12 will be described. FIG. 3 is a flow chart for explaining the control operation of the exhaust valve 15. Control device 1
2 determines in S11 whether or not the adsorption tank 23 or 24 is in the adsorption step or the extraction step. And the adsorption tank 2
When both 3 and 24 are adsorption process or extraction process,
In S12, it is determined whether the pressure P in the air tank 16 has risen to 8 kgf / cm 2 or more. If either the adsorption tank 23 or 24 is not in the adsorption step or the extraction step in S11, or if P <8 kgf / cm 2 in S12, the standby state is set.

【0035】しかし、S12において、P>8kgf/cm2
であるときは、S13に進み、排気弁15を開弁させ
る。そのため、空気槽16に蓄圧された圧縮空気が空気
供給管路17、分岐管路18を通過してサイレンサ19
から大気中に放出される。これにより、空気槽16の圧
力Pは減圧される。
However, in S12, P> 8 kgf / cm 2
If so, the process proceeds to S13, and the exhaust valve 15 is opened. Therefore, the compressed air accumulated in the air tank 16 passes through the air supply pipeline 17 and the branch pipeline 18, and passes through the silencer 19.
Is released into the atmosphere. As a result, the pressure P in the air tank 16 is reduced.

【0036】次のS14では、空気槽16の圧力Pが8
kgf/cm2 に達したか否かを判定する。空気槽16の圧力
がP≧8kgf/cm2 であるときはS15に移行して吸着槽
23又は24が吸着工程又は取出工程であるか否かを判
定する。そして、吸着槽23 , 24が共に吸着工程又は
取出工程である場合には、S14,S15の処理を繰り
返す。
In the next step S14, the pressure P in the air tank 16 is set to 8
kgf / cmTwoIt is determined whether or not Pressure of air tank 16
Is P ≧ 8 kgf / cmTwoIf it is, the process proceeds to S15 and the adsorption tank
Determine whether 23 or 24 is the adsorption process or the extraction process
Set. And the adsorption tank 23 ,24 is the adsorption process together
If it is the take-out process, the processes of S14 and S15 are repeated.
return.

【0037】しかし、S14において、空気槽16の圧
力がP≦8kgf/cm2 に減圧された場合には、S16に移
行して排気弁15を閉弁させる。また、S15におい
て、吸着槽23又は24のいずれかが均圧工程である場
合にも、次に実行される吸着工程に備えてS16に移行
して排気弁15を閉弁させる。その後、S11に戻り、
S11以降の処理を繰り返す。
However, in S14, when the pressure in the air tank 16 is reduced to P ≦ 8 kgf / cm 2 , the process proceeds to S16 and the exhaust valve 15 is closed. Further, in S15, even when either the adsorption tank 23 or 24 is in the pressure equalizing step, the process proceeds to S16 in preparation for the adsorption step to be executed next, and the exhaust valve 15 is closed. After that, return to S11,
The processing after S11 is repeated.

【0038】このように、吸着工程又は取出工程以外の
ときに空気槽16の圧力がP>8kgf/cm2 であるとき
は、排気弁15を開弁させて空気槽16の圧力を減圧
し、P≦8kgf/cm2 になった時点で排気弁15を閉弁さ
せるため、空気槽16の圧力をP≒8kgf/cm2 に保つこ
とができる。これにより、コンプレッサ13が空気槽1
6の圧力上昇によりロード運転からアンロード運転に切
り替わることを防止できる。そのため、多量の空気が必
要となる吸着工程のときにコンプレッサ13がアンロー
ド運転になることが防止され、吸着工程で圧力不足にな
ることが防止される。
As described above, when the pressure in the air tank 16 is P> 8 kgf / cm 2 except in the adsorption step or the extraction step, the exhaust valve 15 is opened to reduce the pressure in the air tank 16, Since the exhaust valve 15 is closed when P ≦ 8 kgf / cm 2 , the pressure in the air tank 16 can be maintained at P≈8 kgf / cm 2 . As a result, the compressor 13 moves the air tank 1
It is possible to prevent the load operation from switching to the unload operation due to the pressure increase of 6. Therefore, it is possible to prevent the compressor 13 from performing the unload operation during the adsorption process that requires a large amount of air, and to prevent the pressure from becoming insufficient in the adsorption process.

【0039】また、排気弁15を開弁させた後、空気槽
16の圧力がP≦8kgf/cm2 でない場合でも、均圧工程
になった時点で排気弁15を閉弁させるため、均圧工程
から吸着工程に切り替わったときに空気槽16の圧力が
不足することが防止される。ここで、図4に示された空
気槽16、吸着槽23, 24、窒素槽31の各圧力の変
化を見ながら上記図2、図3の制御処理による排気弁1
5の開閉動作及びコンプレッサ13の運転状態を説明す
る。尚、図4において、コンプレッサ13の空気槽16
の圧力変化はグラフI(実線)で示し、第1の吸着槽2
3の圧力変化はグラフII(1点鎖線)で示し、第2の吸
着槽24の圧力変化はグラフIII (2点鎖線)で示し、
製品ガスとしての窒素が貯えられる窒素槽31の圧力変
化はグラフIV(破線)で示す。
Further, after the exhaust valve 15 is opened, even if the pressure in the air tank 16 is not P ≦ 8 kgf / cm 2 , the exhaust valve 15 is closed at the time of the pressure equalizing step. The pressure in the air tank 16 is prevented from becoming insufficient when the process is switched to the adsorption process. Here, the exhaust valve 1 according to the control process shown in FIGS. 2 and 3 is observed while observing changes in pressures of the air tank 16, the adsorption tanks 23 and 24, and the nitrogen tank 31 shown in FIG.
The opening / closing operation of No. 5 and the operating state of the compressor 13 will be described. In FIG. 4, the air tank 16 of the compressor 13
The pressure change of the first adsorption tank 2 is shown by graph I (solid line).
The pressure change in No. 3 is shown in Graph II (one-dot chain line), the pressure change in the second adsorption tank 24 is shown in Graph III (two-dot chain line),
The pressure change in the nitrogen tank 31 in which nitrogen as the product gas is stored is shown by Graph IV (broken line).

【0040】コンプレッサ13がロード運転されて圧縮
空気が空気槽16に蓄圧され、吸着工程又は取出工程以
外の工程のときに空気槽16の圧力Pが8kgf/cm2 に達
すると、その時点、すなわちA点(図4中に示す)で排
気弁15を開弁させる。これにより、空気槽16に蓄圧
された原料空気が大気中に放出され、コンプレッサ13
から空気槽16に供給される空気量と、大気中に放出さ
れる空気量及び吸着槽23, 24において窒素ガスを分
離生成するために消費される空気量とが略等しくなって
空気槽16の圧力Pが8kgf/cm2 で一定となる。
When the compressor 13 is loaded and the compressed air is accumulated in the air tank 16 and the pressure P of the air tank 16 reaches 8 kgf / cm 2 in a process other than the adsorption process or the extraction process, at that time, that is, The exhaust valve 15 is opened at point A (shown in FIG. 4). As a result, the raw material air accumulated in the air tank 16 is released into the atmosphere, and the compressor 13
The amount of air supplied from the air tank 16 to the air tank 16 is substantially equal to the amount of air released into the atmosphere and the amount of air consumed to separate and generate the nitrogen gas in the adsorption tanks 23 and 24, so that The pressure P becomes constant at 8 kgf / cm 2 .

【0041】その結果、空気槽16、吸着槽23,
4、窒素槽31の各圧力が一定値に保たれる。また、空
気槽16の圧力Pが上限圧力PA 以下に維持されるた
め、コンプレッサ13はアンロード運転に切り替わるこ
とが防止される。そして、A点から次のB(図4中に示
す)点までの間は、排気弁15が開弁状態に維持されて
いるので、空気槽16、吸着槽23, 24、窒素槽31
の各圧力が一定値に保たれたままの状態が維持される。
As a result, the air tank 16 and the adsorption tanks 23 , 2
4. Each pressure in the nitrogen tank 31 is maintained at a constant value. Further, since the pressure P in the air tank 16 is maintained below the upper limit pressure P A , the compressor 13 is prevented from switching to the unloading operation. From the point A to the next point B (shown in FIG. 4), the exhaust valve 15 is maintained in the open state, so the air tank 16, the adsorption tanks 23 and 24, and the nitrogen tank 31.
The state in which each pressure is maintained at a constant value is maintained.

【0042】次のB点においては、吸着槽23の吸着・
取出工程が終了して均圧工程に入っているが、次に行わ
れる吸着槽24の吸着・取出工程に備えるため、排気弁
15を閉弁させる。この時点では、まだ均圧工程であり
空気槽16の圧縮空気が吸着槽24に供給されていない
ので、B点からC点に至る過程で空気槽16の圧力Pは
排気弁15の閉弁と共に急激に上昇する。
At the next point B, the adsorption of the adsorption tank 23
Although the extraction process is completed and the pressure equalization process is started, the exhaust valve 15 is closed in preparation for the next adsorption / extraction process of the adsorption tank 24. At this point in time, the pressure equalization process is still in progress and the compressed air in the air tank 16 is not supplied to the adsorption tank 24. Rises sharply.

【0043】次のC点においては、空気槽16の圧力P
が上限圧力PA (8.5kgf/cm2 )以上に昇圧するた
め、コンプレッサ13がロード運転からアンロード運転
に切り替わる。このアンロード運転への切り替え動作に
より、コンプレッサ13が圧縮空気を生成しない無負荷
運転状態になり、空気槽16への圧縮空気の供給が停止
される。そのため、C点からD点に至る過程では、空気
槽16の圧力Pが上限圧力PA に保たれる。
At the next point C, the pressure P in the air tank 16
Increases above the upper limit pressure P A (8.5 kgf / cm 2 ), the compressor 13 switches from the load operation to the unload operation. Due to this switching operation to the unload operation, the compressor 13 enters a no-load operation state in which compressed air is not generated, and the supply of compressed air to the air tank 16 is stopped. Therefore, in the process from point C to point D, the pressure P of the air tank 16 is kept at the upper limit pressure P A.

【0044】次のD点においては、均圧工程から吸着槽
24の吸着・取出工程に切り替わるため、空気槽16に
蓄圧された圧縮空気が吸着槽24に供給され、空気槽1
6の圧力Pが急激に低下する。そして、空気槽16の圧
力Pが下限圧力PB (7kgf/cm2 )以下に低下すると、
再びコンプレッサ13がアンロード運転からロード運転
に切り替わってコンプレッサ13で生成された圧縮空気
が空気槽16に供給されるため、空気槽16の圧力Pが
上昇する。
At the next point D, since the pressure equalization process is switched to the adsorption / extraction process of the adsorption tank 24, the compressed air accumulated in the air tank 16 is supplied to the adsorption tank 24 and the air tank 1
The pressure P of 6 sharply drops. When the pressure P in the air tank 16 drops below the lower limit pressure P B (7 kgf / cm 2 ),
The compressor 13 switches from the unload operation to the load operation again, and the compressed air generated by the compressor 13 is supplied to the air tank 16, so that the pressure P in the air tank 16 increases.

【0045】このように、吸着槽23, 24が吸着工程
に入る時点では、排気弁15が閉弁されて空気槽16の
圧力Pが上限圧力PA に保たれているので、均圧工程か
ら吸着・取出工程に切り替わっても圧力不足とならず、
吸着槽23, 24に酸素分子が吸着剤に吸着されるのに
必要な圧力が確保される。そのため、吸着工程での吸着
効率が高められ、より高濃度の窒素ガスを生成すること
ができる。
As described above, when the adsorption tanks 23 , 24 enter the adsorption step, the exhaust valve 15 is closed and the pressure P of the air tank 16 is kept at the upper limit pressure P A , so that the pressure equalization step is started. Even if you switch to the adsorption / extraction process, the pressure does not become insufficient,
The pressure required for the oxygen molecules to be adsorbed by the adsorbent is secured in the adsorption tanks 23 and 24. Therefore, the adsorption efficiency in the adsorption step is increased, and a higher concentration of nitrogen gas can be generated.

【0046】尚、上記実施例では、図2に示すコンプレ
ッサ13の制御と図3に示す排気弁15の開閉制御を組
み合わせるようにしたが、これに限らず、コンプレッサ
13の制御のみを行うか、あるいは排気弁15の開閉制
御のみを行うようにしても良い。
In the above embodiment, the control of the compressor 13 shown in FIG. 2 and the opening / closing control of the exhaust valve 15 shown in FIG. 3 are combined. However, the present invention is not limited to this. Alternatively, only the opening / closing control of the exhaust valve 15 may be performed.

【0047】また、上記実施例では、各吸着槽が酸素分
子を吸着する構成であるが、各吸着槽が他の気体分子を
吸着する構成(例えば酸素発生装置等)にも適用できる
のは勿論である。
Further, in the above-mentioned embodiment, each adsorption tank is configured to adsorb oxygen molecules, but it is needless to say that it can be applied to a configuration in which each adsorption tank adsorbs other gas molecules (for example, an oxygen generator). Is.

【0048】[0048]

【発明の効果】上述の如く、上記請求項1の発明によれ
ば、吸着槽が吸着工程に切り替わる時点で吸着槽に供給
される圧力が吸着工程に必要な圧力を維持するようにコ
ンプレッサの運転状態を制御するため、吸着槽が吸着工
程になった時点で圧力不足となることを防止でき、圧力
減少に伴う吸着槽における吸着効率の低下を防止でき
る。しかも、吸着工程に切り替わる時点で吸着槽に供給
される圧力が吸着工程に必要な圧力に維持されているた
め、吸着槽における吸着効率を高めることができ、より
高濃度の製品ガスを生成することができる。
As described above, according to the first aspect of the present invention, the compressor is operated so that the pressure supplied to the adsorption tank at the time when the adsorption tank is switched to the adsorption step is maintained at the pressure required for the adsorption step. Since the state is controlled, it is possible to prevent the pressure from becoming insufficient at the time when the adsorption tank enters the adsorption step, and it is possible to prevent the adsorption efficiency in the adsorption tank from lowering due to the pressure decrease. Moreover, since the pressure supplied to the adsorption tank at the time of switching to the adsorption step is maintained at the pressure required for the adsorption step, the adsorption efficiency in the adsorption tank can be increased, and a higher concentration product gas can be generated. You can

【0049】また、請求項2によれば、吸着槽が吸着工
程以外の工程で吸着槽に供給される圧縮空気の圧力が所
定圧以上であるとき、吸着槽に圧縮空気を供給する管路
に設けられた排気弁を開弁するため、吸着槽に供給され
る圧力を所定圧に減圧することができるので、吸着工程
に切り替わった時点でコンプレッサがロード運転からア
ンロード運転に切り替わることを防止できる。そのた
め、吸着槽が吸着工程になった時点で圧力不足となるこ
とを防止でき、圧力減少に伴う吸着効率の低下を防止で
きる。
According to the second aspect, when the pressure of the compressed air supplied to the adsorption tank in the step other than the adsorption step is equal to or higher than a predetermined pressure, the pipe for supplying the compressed air to the adsorption tank is provided. Since the provided exhaust valve is opened, the pressure supplied to the adsorption tank can be reduced to a predetermined pressure, so that it is possible to prevent the compressor from switching from load operation to unload operation at the time of switching to the adsorption step. . Therefore, it is possible to prevent the pressure from becoming insufficient at the time when the adsorption tank enters the adsorption step, and it is possible to prevent the adsorption efficiency from decreasing due to the pressure decrease.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる気体分離装置の一実施例の概略構
成図である。
FIG. 1 is a schematic configuration diagram of an embodiment of a gas separation device according to the present invention.

【図2】コンプレッサの制御動作を説明するためのフロ
ーチャートである。
FIG. 2 is a flowchart for explaining a control operation of the compressor.

【図3】排気弁の制御動作を説明するためのフローチャ
ートである。
FIG. 3 is a flowchart for explaining an exhaust valve control operation.

【図4】空気槽、吸着槽、窒素槽の各圧力の変化を示す
グラフである。
FIG. 4 is a graph showing changes in pressures in an air tank, an adsorption tank, and a nitrogen tank.

【図5】従来の気体分離装置における空気槽、吸着槽、
窒素槽の各圧力の変化を示すグラフである。
FIG. 5 is an air tank, an adsorption tank, and the like in a conventional gas separation device.
It is a graph which shows the change of each pressure of a nitrogen tank.

【符号の説明】[Explanation of symbols]

11 気体分離装置 12 制御装置 13 コンプレッサ 14 吸着ユニット 15 排気弁 16 空気槽 17 空気供給管路 20 圧力計 23,24 吸着槽 31 窒素槽 11 Gas Separation Device 12 Control Device 13 Compressor 14 Adsorption Unit 15 Exhaust Valve 16 Air Tank 17 Air Supply Pipeline 20 Pressure Gauge 23, 24 Adsorption Tank 31 Nitrogen Tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸着剤が充填された吸着槽にコンプレッ
サにより圧縮された圧縮空気を供給して該吸着槽内を昇
圧させる吸着工程を行うと共に、該吸着槽内の吸着剤に
より生成された製品ガスを該吸着槽から取り出すよう構
成された気体分離装置において、 前記吸着槽が吸着工程に切り替わる時点で前記吸着槽に
供給される圧力が吸着工程に必要な圧力を維持するよう
に前記コンプレッサの運転状態を制御する制御手段を備
えてなることを特徴とする気体分離装置。
1. A product produced by the adsorbent in the adsorption tank while performing an adsorption step of supplying compressed air compressed by a compressor to the adsorption tank filled with the adsorbent to increase the pressure in the adsorption tank. In a gas separation device configured to take out gas from the adsorption tank, operation of the compressor so that the pressure supplied to the adsorption tank at the time when the adsorption tank switches to the adsorption step maintains the pressure required for the adsorption step. A gas separation device comprising a control means for controlling the state.
【請求項2】 前記請求項1記載の気体分離装置におい
て、 前記吸着槽に圧縮空気を供給する管路に空気を外部に排
出させる排気弁を設け、 前記吸着槽が吸着工程以外の工程で前記吸着槽に供給さ
れる圧縮空気の圧力が所定圧以上であるとき、前記排気
弁を開弁させる弁制御手段を設けたことを特徴とする気
体分離装置。
2. The gas separation device according to claim 1, wherein an exhaust valve for discharging air to the outside is provided in a pipe line that supplies compressed air to the adsorption tank, and the adsorption tank is used in a step other than an adsorption step. A gas separation device comprising valve control means for opening the exhaust valve when the pressure of the compressed air supplied to the adsorption tank is equal to or higher than a predetermined pressure.
JP17903995A 1995-07-14 1995-07-14 Gas separation device Expired - Fee Related JP3661884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17903995A JP3661884B2 (en) 1995-07-14 1995-07-14 Gas separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17903995A JP3661884B2 (en) 1995-07-14 1995-07-14 Gas separation device

Publications (2)

Publication Number Publication Date
JPH0924231A true JPH0924231A (en) 1997-01-28
JP3661884B2 JP3661884B2 (en) 2005-06-22

Family

ID=16059054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17903995A Expired - Fee Related JP3661884B2 (en) 1995-07-14 1995-07-14 Gas separation device

Country Status (1)

Country Link
JP (1) JP3661884B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207750A (en) * 2009-03-11 2010-09-24 Advan Riken:Kk Pressure-swing adsorption type gas generation apparatus
JP2014030776A (en) * 2012-08-01 2014-02-20 Hitachi Industrial Equipment Systems Co Ltd Gas separation apparatus
JP2018043186A (en) * 2016-09-14 2018-03-22 株式会社日立産機システム Gas separation equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207750A (en) * 2009-03-11 2010-09-24 Advan Riken:Kk Pressure-swing adsorption type gas generation apparatus
TWI401113B (en) * 2009-03-11 2013-07-11 Advance Riken Co Ltd Pressure swing adsorption gas generating device
JP2014030776A (en) * 2012-08-01 2014-02-20 Hitachi Industrial Equipment Systems Co Ltd Gas separation apparatus
JP2018043186A (en) * 2016-09-14 2018-03-22 株式会社日立産機システム Gas separation equipment

Also Published As

Publication number Publication date
JP3661884B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
KR100288568B1 (en) Single Bed Pressure Cyclic Adsorption Method for Recovery of Oxygen from Air
JPH0929044A (en) Reflux in pressure swing type suction method
JPH07745A (en) Gas separation
JPH0924231A (en) Gas separation apparatus
JP5814145B2 (en) Gas separation device
JP2872678B2 (en) Reduction operation control method in pressure swing adsorption system
JP3867229B2 (en) Gas separation device
JP7064835B2 (en) Gas separator
JP5864994B2 (en) Gas separation apparatus and method
JP4203716B2 (en) Gas separation device
JP2004148258A (en) Gas separation equipment
JP3565246B2 (en) Gas separation device
JPH0938443A (en) Gas separator
JP2653698B2 (en) Gas separation device
JP3138067B2 (en) Gas separation device
JPH0731825A (en) Gas separator
JPH09141038A (en) Gas separator
JP4685662B2 (en) Gas separation method and apparatus used therefor
JP3073061B2 (en) Gas separation device
EP0512780A1 (en) Method and apparatus for continuously separating nitrogen
JPH04371210A (en) Gas separation equipment
JPH0857241A (en) Gas separation apparatus and method therefor
JPH04131117A (en) Gas separation apparatus
JP6823979B2 (en) Gas separator
JPH062731Y2 (en) Gas separation device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050317

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees