JPH09239272A - Production of ammonia synthesis catalyst - Google Patents

Production of ammonia synthesis catalyst

Info

Publication number
JPH09239272A
JPH09239272A JP8047583A JP4758396A JPH09239272A JP H09239272 A JPH09239272 A JP H09239272A JP 8047583 A JP8047583 A JP 8047583A JP 4758396 A JP4758396 A JP 4758396A JP H09239272 A JPH09239272 A JP H09239272A
Authority
JP
Japan
Prior art keywords
ruthenium
catalyst
hydrogen
ammonia synthesis
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8047583A
Other languages
Japanese (ja)
Other versions
JP3773293B2 (en
Inventor
Kenichi Akishika
研一 秋鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP04758396A priority Critical patent/JP3773293B2/en
Publication of JPH09239272A publication Critical patent/JPH09239272A/en
Application granted granted Critical
Publication of JP3773293B2 publication Critical patent/JP3773293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain a highly active catalyst by using a complex of ruthenium and a chemical compound expressed by a specific formula as a raw material for ruthenium when manufacturing an ammonium synthesis catalyst consisting of ruthenium and an alkali earth metal element carried by an active carbon. SOLUTION: This catalyst is best suited for the synthesis of ammonia started from nitrogen and hydrogen and is composed of ruthenium and an alkali earth metal element carried by an active carbon. When manufacturing this catalyst, a complex of ruthenium with chemical compound X, RuX3 wherein X is expressed by the formula R1 -CO-CH2 -CO-R2 (in the formula, R1 and R2 are a 1-20C alkyl group and may be same or different from each other) is used as a raw material for ruthenium. The chemical compound X expressed by the formula is acetylacetone, or barium as an alkali earth metal element. Further, prior to the process to set the complex RuX3 to be carried by the active carbon, the active carbon is catalytically treated with hydrogen at temperatures of 700 deg.C or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は窒素と水素からアン
モニアを合成するのに適した触媒に関するものである。
TECHNICAL FIELD The present invention relates to a catalyst suitable for synthesizing ammonia from nitrogen and hydrogen.

【0002】[0002]

【従来の技術】従来、アンモニアを合成するには鉄を主
成分とし、アルミナ、酸化カリウム等を助触媒として添
加した鉄触媒系が採用されているが、この触媒のアンモ
ニア合成活性は低温では発揮されず、そのために工業装
置における操業反応温度は平衡論上の不利にもかかわら
ず400〜500℃の高温を利用せざるを得ない。その
ため鉄系触媒を用いる現存のアンモニア製造法において
は反応器でのワンパス転化率が低く、反応ガスの再循環
比を大きくとることが必要であり、これに伴う動力、熱
伝達等の運転経費の増大は著しい。
2. Description of the Related Art Conventionally, an iron catalyst system in which iron is the main component and alumina, potassium oxide, etc. are added as co-catalysts is used for synthesizing ammonia, but the ammonia synthesizing activity of this catalyst is exhibited at low temperatures. Therefore, the operating reaction temperature in the industrial equipment must use a high temperature of 400 to 500 ° C. despite the disadvantage in equilibrium theory. Therefore, in the existing ammonia production method using an iron-based catalyst, the one-pass conversion rate in the reactor is low, and it is necessary to take a large recirculation ratio of the reaction gas, which results in a reduction in operating costs such as power and heat transfer. The increase is significant.

【0003】本発明者らは、さきに鉄、ルテニウム、オ
スミウム、およびコバルトからなる8族ないし9族遷移
金属のいずれかと、アルカリ金属とを活性炭、あるいは
多孔質炭素に担持させたアンモニア合成触媒を発明した
(特公昭54−37592号公報)。このアンモニア合
成触媒は、活性炭に担持した8族ないし9族金属触媒に
アルカリ金属を添加して調製され、200℃のような低
温でもアンモニアを合成することができるものである。
The present inventors have already proposed an ammonia synthesis catalyst in which any one of Group 8 to Group 9 transition metals consisting of iron, ruthenium, osmium, and cobalt and an alkali metal are supported on activated carbon or porous carbon. The invention was made (Japanese Patent Publication No. 54-37592). This ammonia synthesis catalyst is prepared by adding an alkali metal to a Group 8 to Group 9 metal catalyst supported on activated carbon, and is capable of synthesizing ammonia even at a low temperature such as 200 ° C.

【0004】その後、この触媒系についてアルカリ金属
に代えてアルカリ金属塩を使用し、触媒担体として特定
の比表面積を有するグラファイト含有炭素を使用するア
ンモニア製造方法(特公昭59−16816号公報)が
報告され、また、本発明者らも塩化ルテニウムとアルカ
リ金属塩とをアルミナ担体に担持させ、一酸化炭素、水
による被毒の少ないアンモニア合成触媒(Journal of C
atalysis, 92巻, 296-304 (1985), 同 305-311 (1985)
)を報告した。
After that, an ammonia production method (Japanese Patent Publication No. 59-16816) in which an alkali metal salt was used instead of an alkali metal for this catalyst system, and graphite-containing carbon having a specific surface area was used as a catalyst carrier. In addition, the inventors of the present invention also support ruthenium chloride and an alkali metal salt on an alumina carrier to form an ammonia synthesis catalyst that is less poisoned by carbon monoxide and water (Journal of C
atalysis, Volume 92, 296-304 (1985), 305-311 (1985)
) Was reported.

【0005】また、本発明者らはルテニウムカルボニ
ル、ルテニウムアセチルアセトナート等の塩素を含まな
いルテニウム化合物を出発原料とするルテニウム触媒の
調製方法(特開平2−258066号公報)を提案し
た。さらに、本発明者らはルテニウムをアルミナ担体に
担持し、促進剤として希土類元素を添加した触媒(Jour
nal of Catalysis, 136巻, 118-125 (1992) )、および
ルテニウムを希土類酸化物上に担持した触媒(特開平6
−79177)を提案した。しかしながら、ルテニウム
触媒を工業的なアンモニア合成触媒として使用するため
には、さらなる活性の向上が望まれる。本発明は担持ル
テニウム触媒の改良に関するものである。
The present inventors also proposed a method for preparing a ruthenium catalyst starting from a chlorine-free ruthenium compound such as ruthenium carbonyl or ruthenium acetylacetonate (JP-A-2-258066). Furthermore, the inventors of the present invention supported ruthenium on an alumina carrier and added a rare earth element as a promoter (Jour.
nal of Catalysis, Vol. 136, 118-125 (1992)), and a catalyst in which ruthenium is supported on a rare earth oxide (Japanese Patent Laid-Open Publication No. HEI-6 (1999)).
-79177). However, in order to use the ruthenium catalyst as an industrial ammonia synthesis catalyst, further improvement in activity is desired. The present invention relates to improvements in supported ruthenium catalysts.

【0006】[0006]

【発明が解決しようとする課題】本発明は活性炭担持ル
テニウム触媒を用いてアンモニアを合成する方法におい
て、高活性な触媒を提供することを課題とする。
An object of the present invention is to provide a highly active catalyst in a method for synthesizing ammonia using a ruthenium catalyst supported on activated carbon.

【0007】[0007]

【課題を解決するための手段】本発明は、ルテニウムお
よびアルカリ土類金属元素を活性炭に担持してなるアン
モニア合成触媒を製造するに当たり、ルテニウムの原料
としてルテニウムと一般式(1)
Means for Solving the Problems In producing an ammonia synthesis catalyst comprising ruthenium and an alkaline earth metal element supported on activated carbon, the present invention uses ruthenium as a raw material for ruthenium and the general formula (1).

【0008】[0008]

【化2】 R1−CO−CH2−CO−R2 (1) (式中、R1 およびR2 は炭素数1〜20のアルキル基
を表し、同一でも異なっていてもよい。)で表される化
合物Xとの錯体RuX3を使用することを特徴とするアンモ
ニア合成触媒の製造法である。
Embedded image R 1 —CO—CH 2 —CO—R 2 (1) (wherein, R 1 and R 2 represent an alkyl group having 1 to 20 carbon atoms and may be the same or different). A method for producing an ammonia synthesis catalyst, characterized in that a complex RuX 3 with the compound X shown is used.

【0009】[0009]

【発明の実施の形態】本発明の触媒はルテニウムおよび
アルカリ土類金属元素を活性炭に担持したものである。
本発明において、活性炭は木材、石炭、ヤシ殻等を原料
とする通常のものが使用できる。また、形状も粉末、粒
状等、特に制限はない。活性炭の比表面積は少なくとも
600m2/g以上、好ましくは800m2/g以上、特に好ま
しくは1000m2/g以上のものが良い。比表面積が小さ
いと充分なアンモニア合成速度が得られない。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst of the present invention comprises ruthenium and an alkaline earth metal element supported on activated carbon.
In the present invention, as the activated carbon, usual ones made of wood, coal, coconut shell, etc. can be used. Further, the shape is not particularly limited, such as powder and granules. The specific surface area of the activated carbon is at least 600 m 2 / g or more, preferably 800 m 2 / g or more, and particularly preferably 1000 m 2 / g or more. If the specific surface area is small, a sufficient ammonia synthesis rate cannot be obtained.

【0010】活性炭にルテニウムを担持する前に活性炭
を700℃以上の温度で水素と接触させることは、高活
性触媒を得るための有効な方法である。この水素処理は
オートクレーブのような密閉容器に活性炭と水素含有ガ
スを充填して行っても良く、あるいは水素含有ガスを流
通しながら行っても良い。水素処理温度は700℃以
上、望ましくは800〜1000℃である。水素処理温
度が低過ぎると触媒活性の向上が認められない。また、
必要以上に高い温度で水素処理を行っても効果は一定
で、エネルギーの損失を招くばかりでそれに見合う触媒
活性の向上が見られない。水素処理圧力は減圧、常圧、
加圧のいずれでも良いが、通常は常圧付近で水素処理を
行う。水素処理時間は1〜50hrの範囲で選択され
る。1hr以下では水素処理の効果が現れず、50hr
以上の処理を行っても水素処理の効果は一定である。
Contacting the activated carbon with hydrogen at a temperature of 700 ° C. or higher before supporting ruthenium on the activated carbon is an effective method for obtaining a highly active catalyst. This hydrogen treatment may be performed by filling a closed container such as an autoclave with activated carbon and a hydrogen-containing gas, or may be performed while circulating the hydrogen-containing gas. The hydrogen treatment temperature is 700 ° C or higher, preferably 800 to 1000 ° C. If the hydrogen treatment temperature is too low, no improvement in catalytic activity is observed. Also,
Even if the hydrogen treatment is carried out at a temperature higher than necessary, the effect is constant, only energy loss is caused, and no corresponding improvement in catalytic activity is observed. Hydrogen treatment pressure is reduced pressure, normal pressure,
Although any pressure may be applied, hydrogen treatment is usually carried out near atmospheric pressure. The hydrogen treatment time is selected within the range of 1 to 50 hours. Below 1 hr, the effect of hydrogen treatment does not appear, and 50 hr
Even if the above treatment is performed, the effect of hydrogen treatment is constant.

【0011】本発明において、アルカリ土類金属元素と
してはマグネシウム、カルシウム、バリウム、およびス
トロンチウムが使用されるが、特にバリウムを用いた場
合に活性化の効果が顕著である。アルカリ土類金属元素
の添加は、アルカリ土類金属化合物の水溶液に担体を浸
漬し、引き続いて乾燥することによって行われる。この
操作は担体へのルテニウムの担持に先立って、あるいは
担持後に行うことができる。アルカリ土類金属元素の添
加量はルテニウムに対する原子比として0.1〜20の
範囲で選ぶことができる。アルカリ土類金属元素の添加
量が前記の範囲より少ないとアンモニア合成活性の向上
が認められず、前記の範囲を越えると逆にアンモニア合
成活性が低下する。
In the present invention, magnesium, calcium, barium and strontium are used as the alkaline earth metal element, and the activation effect is particularly remarkable when barium is used. The alkaline earth metal element is added by immersing the carrier in an aqueous solution of an alkaline earth metal compound and subsequently drying. This operation can be performed before or after the ruthenium is loaded on the carrier. The addition amount of the alkaline earth metal element can be selected in the range of 0.1 to 20 as an atomic ratio with respect to ruthenium. If the amount of the alkaline earth metal element added is less than the above range, no improvement in the ammonia synthesis activity is observed, and if it exceeds the above range, the ammonia synthesis activity decreases conversely.

【0012】本発明ではルテニウムの原料として錯体Ru
X3を用いる。ここに、Xは一般式(1) (式中、R1
およびR2 は炭素数1〜20のアルキル基を表し、同一
でも異なっていてもよい。)で表される化合物である。
錯体RuX3を出発原料としてアンモニア合成触媒を調製す
ることにより、大幅にアンモニア合成活性が向上する。
本発明の触媒を工業的規模で製造する場合、入手の容易
さと価格が低いことから、化合物Xとしてアセチルアセ
トンを使用することが望ましい。
In the present invention, the complex Ru is used as a raw material for ruthenium.
Use X 3 . Where X is the general formula (1) (wherein R 1
And R 2 represent an alkyl group having 1 to 20 carbon atoms and may be the same or different. ).
By preparing the ammonia synthesis catalyst using the complex RuX 3 as a starting material, the ammonia synthesis activity is significantly improved.
When producing the catalyst of the present invention on an industrial scale, it is desirable to use acetylacetone as the compound X because of its easy availability and low cost.

【0013】ルテニウムの錯体RuX3はアセトン、テトラ
ヒドロフラン等の極性有機溶媒、または水に溶解させて
活性炭に含浸させる。ルテニウム担持量はルテニウム金
属として活性炭に対して0.1〜20重量%、好ましく
は1〜5重量%である。担持量0.1重量%以下では触
媒活性が低く、担持量20重量%以上では担持量を増や
してもアンモニア合成活性の向上が認められず、高価な
ルテニウムを多量に使用する意味がない。
Ruthenium complex RuX 3 is dissolved in a polar organic solvent such as acetone or tetrahydrofuran, or water to impregnate activated carbon. The amount of ruthenium supported on the activated carbon as ruthenium metal is 0.1 to 20% by weight, preferably 1 to 5% by weight. When the loading amount is 0.1% by weight or less, the catalytic activity is low, and when the loading amount is 20% by weight or more, the ammonia synthesis activity is not improved even if the loading amount is increased, and it is meaningless to use a large amount of expensive ruthenium.

【0014】ルテニウムを含浸させた後、真空排気およ
び/または水素還元処理を行う。真空排気は50℃〜6
00℃、好ましくは150℃〜550℃で行う。真空排
気時間は0.5〜20hrである。水素還元温度は10
0℃〜700℃、好ましくは200℃〜650℃、水素
還元時間は0.5〜20hrである。水素還元処理を真
空排気に引き続いて行う方法も、真空排気処理か水素還
元処理の一方のみを行う方法も、いずれも本発明の範囲
に含まれるが、本発明の触媒においては水素還元処理を
行うことによってそのアンモニア合成活性が飛躍的に向
上するので、水素還元処理を実施することが望ましい。
After impregnating with ruthenium, vacuum evacuation and / or hydrogen reduction treatment is performed. Vacuum exhaust is 50 ℃ to 6
It is carried out at 00 ° C, preferably 150 ° C to 550 ° C. The evacuation time is 0.5 to 20 hours. Hydrogen reduction temperature is 10
The temperature is 0 ° C to 700 ° C, preferably 200 ° C to 650 ° C, and the hydrogen reduction time is 0.5 to 20 hours. Both the method of performing the hydrogen reduction treatment subsequent to the vacuum exhaust and the method of performing only one of the vacuum exhaust treatment and the hydrogen reduction treatment are included in the scope of the present invention, but the catalyst of the present invention performs the hydrogen reduction treatment. As a result, the ammonia synthesizing activity is dramatically improved, so it is desirable to carry out hydrogen reduction treatment.

【0015】アンモニア合成反応における反応条件は、
平衡論上低温高圧が望ましいが、本発明の触媒は反応温
度100℃〜500℃、好ましくは150℃〜350℃
で使用される。また、反応圧力は0.5〜300kg/cm2
である。空間速度は、通常1000〜100,000/
hrである。水素と窒素のモル比は1:1〜5:1の範
囲で選択されるが、化学両論比である3:1またはこれ
より窒素過剰側の条件が好ましい。本発明の触媒は、低
温活性であるためにアンモニアが高濃度で得られるの
で、液化分離が容易である。以下、本発明の効果を実施
例により説明する。
The reaction conditions in the ammonia synthesis reaction are as follows:
Although low temperature and high pressure are desirable in equilibrium theory, the catalyst of the present invention has a reaction temperature of 100 ° C to 500 ° C, preferably 150 ° C to 350 ° C.
Used in. The reaction pressure is 0.5 to 300 kg / cm 2
It is. Space velocity is usually 1000-100,000 /
It is hr. The molar ratio of hydrogen to nitrogen is selected in the range of 1: 1 to 5: 1, but a stoichiometric ratio of 3: 1 or a nitrogen excess side condition is preferred. Since the catalyst of the present invention is active at a low temperature, ammonia can be obtained at a high concentration, so that liquefaction separation is easy. Hereinafter, the effects of the present invention will be described with reference to examples.

【0016】[0016]

【実施例】【Example】

実施例1 和光純薬製、粒状活性炭を石英製の反応管に充填し、3
0ml/minの水素を流通させながら、常圧、800℃で2
4hr、引き続いて915℃で24hr水素処理した。
0.080gのルテニウムアセチルアセトナートRu(aca
c)3 を約30mlのテトラヒドロフラン(THF)に溶解
し、その中に1.0gの水素処理活性炭を加えた。一晩
放置後、溶媒をロータリーエバポレーターで除去し、ル
テニウムアセチルアセトナートを担体上に担持した。得
られたRu(acac)3/水素処理活性炭を400℃に至るまで
2hrで昇温しながら真空排気処理し、錯体を分解し
た。得られた Ru/水素処理活性炭触媒中のルテニウム担
持量は活性炭に対して2重量%であった。硝酸バリウム
Ba(NO3)2 0.517gを15mlの純水に溶解し、その
中に前記Ru/水素処理活性炭を投入して攪拌し、一晩放
置した。水浴上で水を蒸発させ、次いで空気中で120
℃、1hr乾燥してRu/Ba(NO3)2/水素処理活性炭触媒を調
製した。触媒中の Ba/Ru原子比は10であった。得られ
た触媒を流通式反応器に充填し、水素50ml/min流通下
5hr水素還元を行った。水素還元温度は315〜60
0℃の範囲で変化させた。引き続いて反応温度315
℃、反応圧力1kg/cm2、反応原料のフィード量は水素4
5ml/min、窒素15ml/minでアンモニア合成反応を行っ
た。反応成績は触媒1g、1hr当たりのアンモニア生
成モル数で表現した。反応の結果を表1に示す。
Example 1 A Wako Pure Chemical Industries, Ltd. granular activated carbon was filled in a quartz reaction tube, and 3
While circulating 0 ml / min of hydrogen, 2 at normal pressure and 800 ° C
It was treated with hydrogen for 4 hours and subsequently at 915 ° C. for 24 hours.
0.080 g of ruthenium acetylacetonate Ru (aca
c) 3 was dissolved in about 30 ml of tetrahydrofuran (THF), into which 1.0 g of hydrotreated activated carbon was added. After standing overnight, the solvent was removed by a rotary evaporator, and ruthenium acetylacetonate was loaded on the carrier. The obtained Ru (acac) 3 / hydrogen-treated activated carbon was vacuum-exhausted while heating up to 400 ° C. for 2 hours to decompose the complex. The amount of ruthenium supported on the obtained Ru / hydrogen-treated activated carbon catalyst was 2% by weight based on the activated carbon. Barium nitrate
0.517 g of Ba (NO 3 ) 2 was dissolved in 15 ml of pure water, and the Ru / hydrogen-treated activated carbon was charged therein, stirred, and left overnight. Evaporate the water on a water bath and then 120 in air.
Ru / Ba (NO 3 ) 2 / hydrogen-treated activated carbon catalyst was prepared by drying at ℃ for 1 hr. The Ba / Ru atomic ratio in the catalyst was 10. The obtained catalyst was filled in a flow reactor and hydrogen reduction was carried out for 5 hours under a flow of hydrogen of 50 ml / min. Hydrogen reduction temperature is 315-60
It was changed in the range of 0 ° C. Then reaction temperature 315
° C, reaction pressure 1 kg / cm 2 , feed amount of reaction raw material is 4
Ammonia synthesis reaction was performed at 5 ml / min and 15 ml / min of nitrogen. The reaction results were expressed by the number of moles of ammonia produced per 1 g of catalyst and 1 hr. The results of the reaction are shown in Table 1.

【0017】比較例1 実施例1と同じ条件で水素処理活性炭を製造した。0.
029gのルテニウムカルボニルRu3(CO)12 を約30ml
のTHFに溶解し、その中に0.669gの水素処理活
性炭を加えた。一晩放置後、溶媒をロータリーエバポレ
ーターで除去し、ルテニウムカルボニルを担体上に担持
した。得られたRu3(CO)12/水素処理活性炭を450℃に
至るまで2hrで昇温しながら真空排気処理し、カルボ
ニルを分解してCOを除去した。得られた Ru/水素処理活
性炭触媒中のルテニウム担持量は活性炭に対して2重量
%であった。得られた Ru/水素処理活性炭触媒に対して
実施例1と同じ条件で硝酸バリウムBa(NO3)2を添加し、
Ru/Ba(NO3)2/水素処理活性炭触媒を調製した。触媒中の
Ba/Ru原子比は10であった。得られた触媒を流通式反
応器に充填し、実施例1と同じ条件でアンモニア合成反
応を行った。結果を表1に示す。
Comparative Example 1 A hydrogenated activated carbon was produced under the same conditions as in Example 1. 0.
About 30 ml of ruthenium carbonyl Ru 3 (CO) 12 of 029 g
Of THF and 0.669 g of hydrotreated activated carbon was added thereto. After standing overnight, the solvent was removed by a rotary evaporator, and ruthenium carbonyl was loaded on the carrier. The obtained Ru 3 (CO) 12 / hydrogen-treated activated carbon was vacuum-exhausted while heating up to 450 ° C. for 2 hours to decompose carbonyl and remove CO. The amount of ruthenium supported on the obtained Ru / hydrogen-treated activated carbon catalyst was 2% by weight based on the activated carbon. Barium nitrate Ba (NO 3 ) 2 was added to the obtained Ru / hydrogen-treated activated carbon catalyst under the same conditions as in Example 1,
Ru / Ba (NO 3 ) 2 / hydrogen-treated activated carbon catalyst was prepared. In the catalyst
The Ba / Ru atomic ratio was 10. The obtained catalyst was packed in a flow reactor, and an ammonia synthesis reaction was carried out under the same conditions as in Example 1. The results are shown in Table 1.

【0018】[0018]

【表1】 表1 ──────────────────────────────────── Ru原料 Ba/Ru 触媒 反応温度 活性 原子比 還元温度 [℃] [℃] (*1) ──────────────────────────────────── 実施例1 Ru(acac)3 10 315 315 103 400 〃 318 500 〃 838 600 〃 1221 ──────────────────────────────────── 比較例1 Ru3(CO)12 10 315 315 60 400 〃 149 500 〃 318 600 〃 443 ──────────────────────────────────── 注 (*1)単位:μmol/(g・hr)[Table 1] Table 1 ──────────────────────────────────── Ru raw material Ba / Ru Catalyst reaction temperature Active atomic ratio Reduction temperature [℃] [℃] (* 1) ──────────────────────────────────── --Example 1 Ru (acac) 3 10 315 315 103 400 〃 318 500 〃 838 600 〃 1221 ──────────────────────────── Comparative Example 1 Ru 3 (CO) 12 10 315 315 60 60 400 〃 149 500 〃 318 600 〃 443 ──────────────────── ──────────────── Note (* 1) Unit: μmol / (g ・ hr)

【0019】[0019]

【発明の効果】本発明の触媒は、従来の担持ルテニウム
触媒に比べてアンモニア合成活性が高い。
The catalyst of the present invention has a higher ammonia synthesis activity than the conventional supported ruthenium catalyst.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ルテニウムおよびアルカリ土類金属元素
を活性炭に担持してなるアンモニア合成触媒を製造する
に当たり、ルテニウムの原料としてルテニウムと一般式
(1) 【化1】 R1−CO−CH2−CO−R2 (1) (式中、R1 およびR2 は炭素数1〜20のアルキル基
を表し、同一でも異なっていてもよい。)で表される化
合物Xとの錯体RuX3を使用することを特徴とするアンモ
ニア合成触媒の製造法。
1. When producing an ammonia synthesis catalyst comprising ruthenium and an alkaline earth metal element supported on activated carbon, ruthenium and a compound represented by the general formula (1): R 1 —CO—CH 2 — CO—R 2 (1) (In the formula, R 1 and R 2 represent an alkyl group having 1 to 20 carbon atoms and may be the same or different.) The complex RuX 3 with the compound X is used. A method for producing an ammonia synthesis catalyst, which comprises:
【請求項2】 一般式(1)で表される化合物Xが、ア
セチルアセトンである請求項1記載のアンモニア合成触
媒の製造法。
2. The method for producing an ammonia synthesis catalyst according to claim 1, wherein the compound X represented by the general formula (1) is acetylacetone.
【請求項3】 アルカリ土類金属元素がバリウムである
請求項1または2記載のアンモニア合成触媒の製造法。
3. The method for producing an ammonia synthesis catalyst according to claim 1, wherein the alkaline earth metal element is barium.
【請求項4】 錯体RuX3を活性炭に担持するに先立っ
て、活性炭を700℃以上の温度で水素と接触させるこ
とを特徴とする請求項1〜3のいずれかに記載のアンモ
ニア合成触媒の製造法。
4. The production of the ammonia synthesis catalyst according to claim 1, wherein the activated carbon is brought into contact with hydrogen at a temperature of 700 ° C. or higher before supporting the complex RuX 3 on the activated carbon. Law.
JP04758396A 1996-03-05 1996-03-05 Method for producing ammonia synthesis catalyst Expired - Lifetime JP3773293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04758396A JP3773293B2 (en) 1996-03-05 1996-03-05 Method for producing ammonia synthesis catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04758396A JP3773293B2 (en) 1996-03-05 1996-03-05 Method for producing ammonia synthesis catalyst

Publications (2)

Publication Number Publication Date
JPH09239272A true JPH09239272A (en) 1997-09-16
JP3773293B2 JP3773293B2 (en) 2006-05-10

Family

ID=12779285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04758396A Expired - Lifetime JP3773293B2 (en) 1996-03-05 1996-03-05 Method for producing ammonia synthesis catalyst

Country Status (1)

Country Link
JP (1) JP3773293B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421788C (en) * 2006-03-03 2008-10-01 厦门大学 Mixed ruthenium base amino synthetic catalyst and its preparing method
WO2012077658A1 (en) 2010-12-07 2012-06-14 国立大学法人東京工業大学 Ammonia synthesis catalyst and ammonia synthesis method
US10131545B2 (en) 2013-01-22 2018-11-20 Nippon Shokubai Co., Ltd. Ammonia synthesis method and catalyst for ammonia synthesis
CN110280268A (en) * 2019-07-03 2019-09-27 北京氦舶科技有限责任公司 A kind of synthetic ammonia catalyst and preparation method thereof
US10695751B2 (en) 2015-09-15 2020-06-30 Japan Science And Technology Agency Laves phase intermetallic compound, catalyst using intermetallic compound, and method for producing ammonia
US10759668B2 (en) 2015-11-10 2020-09-01 Japan Science And Technology Agency Supported metal material, supported metal catalyst, and ammonia synthesis method using the same
US10792645B2 (en) 2015-12-25 2020-10-06 Japan Science And Technology Agency Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421788C (en) * 2006-03-03 2008-10-01 厦门大学 Mixed ruthenium base amino synthetic catalyst and its preparing method
WO2012077658A1 (en) 2010-12-07 2012-06-14 国立大学法人東京工業大学 Ammonia synthesis catalyst and ammonia synthesis method
US9150423B2 (en) 2010-12-07 2015-10-06 Tokyo Institute Of Technology Ammonia synthesis catalyst and ammonia synthesis method
US10131545B2 (en) 2013-01-22 2018-11-20 Nippon Shokubai Co., Ltd. Ammonia synthesis method and catalyst for ammonia synthesis
US10695751B2 (en) 2015-09-15 2020-06-30 Japan Science And Technology Agency Laves phase intermetallic compound, catalyst using intermetallic compound, and method for producing ammonia
US10759668B2 (en) 2015-11-10 2020-09-01 Japan Science And Technology Agency Supported metal material, supported metal catalyst, and ammonia synthesis method using the same
US10792645B2 (en) 2015-12-25 2020-10-06 Japan Science And Technology Agency Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method
CN110280268A (en) * 2019-07-03 2019-09-27 北京氦舶科技有限责任公司 A kind of synthetic ammonia catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP3773293B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
EP0120655B1 (en) Improved catalysts and their use in ammonia production
JPS5929293B2 (en) Method for producing silver-supported catalyst for producing ethylene oxide
JPH07309787A (en) Double decomposition method for olefin with improved rheniumcatalyst
US4467124A (en) Preparation of 1,1,1,3,3,3-hexafluoropropane-2-ol by vapor phase catalytic reaction of hexafluoroacetone hydrate with hydrogen
JP3773293B2 (en) Method for producing ammonia synthesis catalyst
JP3672367B2 (en) Ammonia synthesis catalyst and production method thereof
JPH0679177A (en) Catalyst and process for synthesizing ammonia
JP3552766B2 (en) Ammonia synthesis catalyst and its preparation method
JPH04305541A (en) Method of manufacturing chloroform from carbon tetrachloride and catalyst composition used therefor
Noda et al. Liquid-phase dehydrogenation of 2-propanol by suspended nickel fine-particle catalyst.
KR20210114142A (en) Catalyst for making dicarboxyl acid aromatic heterocyclic compound, and method for preparing dicarboxyl acid aromatic heterocyclic compound
JP2532145B2 (en) Ammonia production catalyst
JP3788172B2 (en) Method for producing ammonia synthesis catalyst and method for ammonia synthesis
WO2021172107A1 (en) Metal-loaded article containing typical element oxide, catalyst for ammonia synthesis and method for synthesizing ammonia
US4510071A (en) Methanol conversion process
KR102397424B1 (en) Dicarboxyl acid aromatic heterocyclic compound and method for preparing thereof
JP3485622B2 (en) Ammonia synthesis catalyst and ammonia synthesis method
JPH03178335A (en) Silver catalyst for oxidizing ethylene into ethylene oxide, its production and oxidation of ethylene
US2805207A (en) Silver catalysts
JPWO2020175558A1 (en) Acid Nitrogen Hydride, Metal Carriers Containing Acid Nitrogen Hydride, and Catalysts for Ammonia Synthesis
GB2033776A (en) Catalyst for the production of ammonia
JPH0736893B2 (en) Catalyst for catalytic reduction of carbon dioxide and method for producing methanol using the same
US20030100804A1 (en) Catalyst for preparing fluorine-containing alcohol compound and a process for preparation of fluorine-containing alcohol compound
JP7388776B2 (en) Catalyst for ammonia synthesis and method for producing ammonia
JP3873389B2 (en) Method for producing 1,6-hexanediol

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term