JPH09239263A - Adsorbent for treating malodor and malodor treatment method using the same - Google Patents

Adsorbent for treating malodor and malodor treatment method using the same

Info

Publication number
JPH09239263A
JPH09239263A JP8050513A JP5051396A JPH09239263A JP H09239263 A JPH09239263 A JP H09239263A JP 8050513 A JP8050513 A JP 8050513A JP 5051396 A JP5051396 A JP 5051396A JP H09239263 A JPH09239263 A JP H09239263A
Authority
JP
Japan
Prior art keywords
adsorbent
malodor
gas
catalyst
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8050513A
Other languages
Japanese (ja)
Inventor
Noriko Watanabe
紀子 渡辺
Akira Kato
加藤  明
Hisao Yamashita
寿生 山下
Hiroshi Ichiyanagi
宏 一柳
Hitoshi Yamazaki
均 山崎
Tomohiko Sadakata
知彦 貞方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP8050513A priority Critical patent/JPH09239263A/en
Priority to KR1019970007416A priority patent/KR970064708A/en
Publication of JPH09239263A publication Critical patent/JPH09239263A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an absorbent having high adsorbing capacity and high durability in a malodor treatment method adsorbing exhaust gas containing a malodor component due to a contained volatile org. solvent by an adsorbent and treating the conc. malodor component desorbed from the adsorbent. SOLUTION: This malodor treating absorbent is based on zeolite containing one or more kinds of elements selected from rare earth elements. A malodor component containing volatile org. solvent in exhaust has as a main component is adsorbed by the malodor treating absorbent and, thereafter, the absorbent is intermittently heated and the conc. malodor component is desorbed from the absorbent to be treated. As rare each elements, Ce and La are effective. As zeolite, H-ZSM 5 having an MFI structure is effective. This absorbent shows high absorbing capacity to a volatile org. solvent in the presence of steam and can be regenerated at 250 deg.C or lower and is reduced in the lowering of absorbing capacity even of adsorption and regeneration are repeated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、揮発性有機溶剤を
含有する悪臭を処理する吸着剤とそれを用いた悪臭処理
方法に関する。
TECHNICAL FIELD The present invention relates to an adsorbent for treating a malodor containing a volatile organic solvent and a method for treating a malodor using the adsorbent.

【0002】[0002]

【従来の技術】環境汚染の中で、悪臭の占める割合は大
きい。1993年の悪臭防止法の改定によって、トルエ
ン、キシレン、酢酸エチル、プロピオンアルデヒドなど
新たに10の物質が、悪臭規制物質に認定された。その
ためトルエン、キシレンなど揮発性有機溶剤を含有する
排ガスを排出する塗装、印刷、石油化学等の化学系工場
では、近年悪臭処理が益々重要になってきた。
2. Description of the Related Art A bad odor accounts for a large proportion of environmental pollution. With the revision of the Odor Control Act of 1993, 10 new substances such as toluene, xylene, ethyl acetate, and propionaldehyde have been certified as odor control substances. Therefore, in chemical plants such as painting, printing, and petrochemicals that emit exhaust gas containing volatile organic solvents such as toluene and xylene, the malodor treatment has become more and more important in recent years.

【0003】揮発性有機溶剤を含有する排ガスの悪臭処
理方法としては、(1)吸着法、(2)直接燃焼法、
(3)触媒酸化法が一般的である。直接燃焼法や触媒酸
化法は悪臭物質濃度が数百ppm以上の高濃度の場合、
エネルギ−的にも有効である。しかし、悪臭物質濃度が
低濃度の場合は一般的に吸着法が用いられる。
As a method for treating the offensive odor of exhaust gas containing a volatile organic solvent, (1) adsorption method, (2) direct combustion method,
(3) The catalytic oxidation method is generally used. The direct combustion method and the catalytic oxidation method have a high odor substance concentration of several hundred ppm or more,
It is also effective in terms of energy. However, when the malodorous substance concentration is low, the adsorption method is generally used.

【0004】吸着法とは、吸着剤に悪臭物質を吸着さ
せ、飽和吸着に達する前に再生または交換する方法であ
る。再生時に高濃度に濃縮されて吸着剤から脱離した悪
臭物質を含むガスは、上記の(2)直接燃焼法、(3)
触媒酸化法や回収装置等を併用して処理される。吸着剤
充填層は、1基で寿命がきたら廃棄するか再生する方
法、2基以上を交互に使用する切替え法、円筒ロ−タを
用い吸着再生を繰返して使用する間欠法、流動床法など
がある。
The adsorption method is a method of adsorbing a malodorous substance on an adsorbent and regenerating or exchanging it before reaching saturated adsorption. The gas containing the malodorous substance that has been concentrated to a high concentration during desorption and desorbed from the adsorbent is used in the above (2) direct combustion method, (3)
It is processed by using a catalytic oxidation method and a recovery device in combination. As for the adsorbent packed bed, one unit should be discarded or regenerated at the end of its life, a switching method using two or more units alternately, an intermittent method in which adsorption regeneration is repeatedly used using a cylindrical rotor, a fluidized bed method, etc. There is.

【0005】常温付近での臭気処理用吸着剤としては活
性炭が最も代表的な材料で、古くから用いられている。
揮発性有機溶剤の吸着除去に活性炭を使用している最近
の例としては、特開平6−63349号等がある。ま
た、活性炭の再生法も種々工夫されている(特開平3−
77619号)。しかし、活性炭は常温で広範囲の悪臭
物質に高い吸着能を示すが、揮発性有機溶剤の種類によ
っては活性炭の温度が上昇し発火した例があり、信頼性
に問題がある。最近は活性炭にかわり疎水性ゼオライト
が用いられている(例えば特開平2−99138号、特
開平6−226037号)。ゼオライトは、活性炭に比
べて高温で使用や再生処理を行うことができる。しか
し、ゼオライトは細孔の形状に特徴があることから、吸
着再生の繰返しで細孔が閉塞され、吸着性能が低下する
現象がおこる場合がある。また、ゼオライトは炭化水素
の改質触媒として用いられていることから、再生時に吸
着していた有機溶剤が分解され、ゼオライト上に蓄積し
吸着性能を低下させるという問題がある。また、処理す
る排ガス中に多量の水蒸気を含有する場合、吸着性能が
大きく低下する問題もある。
Activated carbon is the most representative material as an adsorbent for odor treatment at around room temperature and has been used for a long time.
As a recent example of using activated carbon for adsorption and removal of a volatile organic solvent, there is JP-A-6-63349. In addition, various methods for regenerating activated carbon have been devised (Japanese Patent Laid-Open No. HEI 3-
777619). However, activated carbon has a high adsorption ability for a wide range of malodorous substances at room temperature, but depending on the type of volatile organic solvent, there are cases in which the temperature of the activated carbon rises and ignites, which is problematic in reliability. Recently, hydrophobic zeolite has been used instead of activated carbon (for example, JP-A-2-99138 and JP-A-6-226037). Zeolites can be used and regenerated at higher temperatures than activated carbon. However, since the shape of the pores of zeolite is characteristic, the pores may be blocked by repeated adsorption and regeneration, which may cause a phenomenon that the adsorption performance is deteriorated. Further, since zeolite is used as a hydrocarbon reforming catalyst, there is a problem in that the organic solvent adsorbed during regeneration is decomposed and accumulated on the zeolite to deteriorate the adsorption performance. In addition, when the exhaust gas to be treated contains a large amount of water vapor, there is a problem that the adsorption performance is significantly reduced.

【0006】ゼオライトの吸着性能を向上するため、遷
移金属等金属陽イオンをイオン交換でゼオライトに担持
する方法もある。芳香族系炭化水素を含む自動車排ガス
処理の分野では、Ag−ゼオライト系が高い吸着性能が
ある(特開平6−126165号、特開平7−8836
4号、特開平7−155613号、特開平7−1853
26号、特開平7−96178号)。これらの吸着剤
は、ゼオライト表面の金属陽イオンを中心とする静電場
の変化によって、吸着質との相互作用が強くなる等の理
由で、吸着質を強固に吸着する。そのため、吸着質の脱
離が起こりにくくなり、例えば特開平6−126165
号の場合のように、240℃以上に加熱しないと脱離し
ない場合もある。しかし、本発明の対象となる、塗装、
印刷、石油化学等の化学系工場における排ガス中の揮発
性有機溶剤を主成分とする悪臭処理においては、通常、
特開平6−226037号、特開平7−88317号の
様なハニカムロ−タ等の回転吸着体が使用される場合が
多い。そして、悪臭成分の吸着は常温〜50,60℃付
近で行われ、吸着剤の再生は120〜250℃付近で行
われる。従って、吸着性能が高くても、再生を250℃
以上の高温で行わなければならない材料では、本発明の
対象分野には適用は出来ない。
In order to improve the adsorption performance of zeolite, there is also a method of supporting a metal cation such as a transition metal on the zeolite by ion exchange. In the field of treating automobile exhaust gas containing aromatic hydrocarbons, Ag-zeolite has high adsorption performance (JP-A-6-126165, JP-A-7-8836).
4, JP-A-7-155613, and JP-A-7-1853.
26, JP-A-7-96178). These adsorbents strongly adsorb the adsorbate because the interaction with the adsorbate becomes stronger due to a change in the electrostatic field centered on the metal cation on the surface of the zeolite. Therefore, desorption of the adsorbate is less likely to occur, and, for example, JP-A-6-126165.
As in the case of No. 6, it may not be desorbed unless it is heated to 240 ° C or higher. However, the coating, which is the subject of the present invention,
In the processing of malodor mainly composed of volatile organic solvents in exhaust gas in printing, petrochemical and other chemical plants,
In many cases, a rotary adsorbent such as a honeycomb rotor disclosed in JP-A-6-226037 and JP-A-7-88317 is used. Then, the malodorous components are adsorbed at room temperature to around 50 and 60 ° C, and the adsorbent is regenerated at around 120 to 250 ° C. Therefore, even if the adsorption performance is high, regeneration at 250 ° C
The above materials that must be performed at a high temperature cannot be applied to the target field of the present invention.

【0007】また、セリウム、ランタン等の希土類金属
をゼオライトに担持して燃焼排ガスを処理する方法が知
られているが(特開平6-190283号、特開平6-205980
号) 、これらはいずれも悪臭物質の吸着に用いるもので
はなく、車の排ガス中の炭化水素の燃焼触媒として用い
るものであり、その処理温度は本発明における吸着した
悪臭物質の脱離のための加熱温度と明確に異なる300
℃以上の高温である。
There is also known a method of treating a combustion exhaust gas by supporting a rare earth metal such as cerium or lanthanum on zeolite (JP-A-6-190283 and JP-A-6-205980).
No.), these are not used for adsorption of malodorous substances, but are used as combustion catalysts for hydrocarbons in vehicle exhaust gas, and the treatment temperature is for desorption of adsorbed malodorous substances in the present invention. 300 different from heating temperature
It is a high temperature of ℃ or more.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、排ガ
ス中の揮発性有機溶剤を含む悪臭成分を吸着剤に吸着さ
せた後、吸着剤を加熱して、吸着剤から脱離した濃縮さ
れた悪臭成分を処理する悪臭処理方法において、前述の
問題点を解決し、水蒸気存在下でも高い吸着性能を示
し、かつ再生を250℃以下で行うことが出来、吸着再
生の繰返しによって性能低下の少なく信頼性の高い吸着
剤及び悪臭処理方法を提供することにある。
DISCLOSURE OF THE INVENTION The object of the present invention is to adsorb an offensive odor component containing a volatile organic solvent in exhaust gas to an adsorbent, and then heat the adsorbent to desorb it from the adsorbent. In the malodor processing method for treating malodorous components, the above-mentioned problems are solved, high adsorption performance is exhibited even in the presence of water vapor, and regeneration can be carried out at 250 ° C or less, so that performance degradation is lessened by repeated adsorption regeneration. An object is to provide a highly reliable adsorbent and a malodor processing method.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく疎水性ゼオライトに種々の元素を添加し改
良を重ねた結果、本発明を完成するに至った。本発明の
吸着剤は、希土類元素から選ばれた1種以上を含有する
ゼオライトを含んでなるものであることを特徴とする。
Means for Solving the Problems The present inventors have completed the present invention as a result of adding various elements to a hydrophobic zeolite to solve the above-mentioned problems and repeating improvements. The adsorbent of the present invention is characterized by containing a zeolite containing at least one selected from rare earth elements.

【0010】上記吸着剤において、母体となるゼオライ
トは耐水性を持たせるためシリカ/アルミナ比(SiO
2/Al23比)が大きいほう、例えば、20以上が好
ましい。シリカ/アルミナ比が小さいと耐水性に乏し
く、水蒸気を含有する排ガスの悪臭処理で高性能を示さ
ない。ゼオライトの種類は特にMFI構造を有するH−
ZSM5が好ましい 〔ゼオライトの構造については
W.M.Meier and H.D.Olson,“Atlas of Zeolite Structu
re Types", Butterworth-Heinemann London(1992)参
照〕。なお、H−ZSM5のH型についてはゼオライト
を電気的に中和するときの陽イオンがH であることを
意味する。上記吸着剤において、希土類元素としては、
Ce,La,Y,Pr,Ndなどが挙げられる。上記吸
着剤において、Ce,La等の1種以上のゼオライトへ
の含有量、すなわち担持量の合計は、元素の重量%で
0.1〜10.0wt%、特に好ましくは0.1〜5.
0wt%が有効である。なぜならば、0.1wt%より
少ない担持量では効果が得られず、10.0wt%より
大きい担持量ではゼオライトの比表面積低下を招き逆に
吸着性能が低下するためである。
In the above adsorbent, the matrix zeolite has a silica / alumina ratio (SiO 2) in order to have water resistance.
The larger ( 2 / Al 2 O 3 ratio) is, for example, 20 or more is preferable. When the silica / alumina ratio is small, the water resistance is poor and the exhaust gas containing steam does not show high performance in the malodor treatment. The type of zeolite is especially H- having an MFI structure.
ZSM5 is preferred [For the structure of zeolite,
WMMeier and HDOlson, “Atlas of Zeolite Structu
re Types ", Butterworth-Heinemann London (1992)]. Regarding H type of H-ZSM5, it means that the cation when electrically neutralizing the zeolite is H 2. In the above adsorbent, As a rare earth element,
Ce, La, Y, Pr, Nd and the like can be mentioned. In the above adsorbent, the content of Ce, La or the like in one or more zeolites, that is, the total supported amount is 0.1 to 10.0 wt% in terms of weight% of the element, particularly preferably 0.1 to 5.
0 wt% is effective. This is because the effect is not obtained with a loading amount less than 0.1 wt%, and the specific surface area of the zeolite is reduced with a loading amount greater than 10.0 wt%, and conversely the adsorption performance is reduced.

【0011】上記吸着剤において、Ce,Laの1種以
上の元素をゼオライトに担持させる方法としては、これ
ら元素をイオンまたは酸化物の状態で高分散担持出来る
のであれば、含浸法、混練法、イオン交換法のいずれで
も良い。これらの方法の中では、特にイオン交換法が好
ましい。これら元素がイオン状態で担持されている割合
が多いほど高い吸着性能、耐久性能を示す。イオン交換
法で調製した場合、元素のイオン交換率は、10.0〜
150%が好ましい。なお、ゼオライトが持つ陽イオン
は溶液中で他の陽イオンに置き換えることができるもの
であり、イオン交換率とはその置き換えの割合を表すも
のである。イオン交換法の場合は、含浸法、混練法に比
較して高分散担持が可能であるため、少量の担持でも有
効に働く特徴がある。
In the above adsorbent, as a method for supporting one or more elements of Ce and La on the zeolite, an impregnation method, a kneading method, or a kneading method may be used as long as these elements can be supported in a highly dispersed state in an ion or oxide state. Any of the ion exchange methods may be used. Among these methods, the ion exchange method is particularly preferable. The higher the proportion of these elements supported in the ionic state, the higher the adsorption performance and durability performance. When prepared by the ion exchange method, the ion exchange rate of the element is 10.0 to
150% is preferable. The cations of the zeolite can be replaced with other cations in the solution, and the ion exchange rate represents the replacement rate. In the case of the ion exchange method, compared to the impregnation method and the kneading method, high-dispersion loading can be performed, and therefore, there is a feature that even a small amount of loading works effectively.

【0012】上記吸着剤の使用にあたっては、上記組成
範囲にある1種類の吸着剤を1つの吸着剤充填層におさ
めて使用しても良いし、上記組成範囲にある異なる組成
の2種以上の吸着剤を混合して1つの吸着剤充填層にお
さめて使用しても良い。更に、上記した本発明の吸着剤
は、シリカ/アルミナ比(SiO2/Al2比)の大
きいゼオライトから選ばれた1種以上と混合して、1つ
の吸着剤充填層におさめて使用しても良い。なぜなら
ば、多種類の揮発性有機溶剤を含む排ガス処理の場合は
悪臭物質の分子量、分子のサイズが広い分布を持つた
め、異なる細孔径、異なる吸着性能をもつ材料を混合し
て使用することは有効である。但し、シリカ/アルミナ
比(SiO/Al23比)の大きいゼオライトから選
ばれた1種以上の混合割合は、本発明の吸着剤に対し5
0wt%以下が好ましい。なぜならば、疎水性ゼオライ
ト単体は、本発明の吸着剤よりも吸着性能や耐久性が劣
るので、50wt%より多量に混合すると、逆に性能に
悪影響を及ぼす。
When using the above-mentioned adsorbent, one kind of adsorbent having the above composition range may be contained in one adsorbent packed bed, or two or more kinds having different compositions within the above composition range may be used. The adsorbents may be mixed and stored in one adsorbent packed bed for use. Further, the above-mentioned adsorbent of the present invention is mixed with at least one selected from zeolites having a large silica / alumina ratio (SiO 2 / Al 2 O 3 ratio) and used in one adsorbent packed bed. You may. This is because, in the case of treating exhaust gas containing many kinds of volatile organic solvents, the molecular weight and the size of the malodorous substance have a wide distribution, so it is not possible to mix and use materials with different pore diameters and different adsorption performances. It is valid. However, the mixing ratio of at least one selected from zeolites having a large silica / alumina ratio (SiO 2 / Al 2 O 3 ratio) is 5 with respect to the adsorbent of the present invention.
It is preferably 0 wt% or less. This is because the hydrophobic zeolite simple substance is inferior in adsorption performance and durability to the adsorbent of the present invention, and therefore when mixed in a larger amount than 50 wt%, it adversely affects the performance.

【0013】通常吸着法では、再生時に高濃度に濃縮さ
れて吸着剤から脱離した悪臭物質を含むガスは、直接燃
焼法、触媒酸化法や回収装置等を併用して処理される。
本発明の吸着剤は、酸化触媒(燃焼触媒と同義)を担持
することによって吸着剤と酸化触媒を一体化し、再生時
に吸着剤から脱離した悪臭物質を触媒で同時に処理する
吸着剤触媒として使用することが可能である。一体化す
る手段として、吸着剤に直接酸化触媒を担持する方法が
ある。そして、酸化触媒成分の吸着剤への担持は金属塩
を用いた含浸法で行われる。酸化触媒成分としてはP
t、Pd、Rh、Mn,Fe,Co,Ni,Cuから選
ばれた1種以上の元素の金属または金属酸化物が有効で
ある。これら酸化触媒の吸着剤への担持量はPt、P
d、Rhの元素から選ばれた1種以上の場合、金属で
0.05〜5.0wt%、Mn,Fe,Co,Ni,C
uから選ばれた1種以上の場合、金属酸化物で1.0〜
20.0wt%が好ましい。多量の担持は、その調製工
程での熱処理回数の増加や触媒成分原料の影響で、吸着
剤の焼結を促進し性能低下を招く。
In the ordinary adsorption method, a gas containing a malodorous substance that is concentrated to a high concentration during desorption and desorbed from an adsorbent is treated by using a direct combustion method, a catalytic oxidation method, a recovery device and the like in combination.
The adsorbent of the present invention is used as an adsorbent catalyst in which an adsorbent and an oxidation catalyst are integrated by supporting an oxidation catalyst (synonymous with a combustion catalyst), and a malodorous substance desorbed from the adsorbent during regeneration is simultaneously treated with the catalyst. It is possible to As a means for integrating them, there is a method of directly supporting the oxidation catalyst on the adsorbent. Then, the oxidation catalyst component is supported on the adsorbent by an impregnation method using a metal salt. P as the oxidation catalyst component
Metals or metal oxides of at least one element selected from t, Pd, Rh, Mn, Fe, Co, Ni and Cu are effective. The loading amount of these oxidation catalysts on the adsorbent is Pt, P
In the case of one or more selected from the elements of d and Rh, 0.05 to 5.0 wt% of metal, Mn, Fe, Co, Ni, C
In the case of one or more selected from u, the metal oxide content is 1.0 to
20.0 wt% is preferable. A large amount of supporting accelerates the sintering of the adsorbent due to the increase in the number of heat treatments in the preparation process and the influence of the catalyst component raw material, resulting in a decrease in performance.

【0014】更に、再生時に吸着剤から脱離した悪臭物
質を触媒で同時に処理する方法として、上記したとおり
本発明の吸着剤と酸化触媒とを混合して一体化する。こ
の場合酸化触媒の活性成分としては、Pt、Pd、R
h、Mn,Fe,Co,Ni,Cuから選ばれた1種以
上の元素の金属または金属酸化物が有効である。酸化触
媒の担体は、アルミナ、チタニア、ジルコニア、アルミ
ナ−ジルコニア、シリカ−アルミナ、ゼオライト等が有
効である。活性成分の担体への担持量はPt、Pd、R
hの元素から選ばれた1種以上の場合、金属で0.05
〜5.0wt%、Mn,Fe,Co,Ni,Cuから選
ばれた1種以上の場合、金属酸化物で1.0〜20.0
wt%が好ましい。これら吸着剤と触媒は同一のペレッ
トに成形されたり、同一のハニカム担体上に別々の層と
してコーティングされたりして一体化され同一の反応層
に収められる。あるいはペレットに成形された吸着剤と
触媒とを両者混合し、同一層に収めてもよい。
Further, as a method for simultaneously treating the malodorous substance desorbed from the adsorbent during regeneration with a catalyst, the adsorbent of the present invention and the oxidation catalyst are mixed and integrated as described above. In this case, the active components of the oxidation catalyst include Pt, Pd, R
Metals or metal oxides of one or more elements selected from h, Mn, Fe, Co, Ni and Cu are effective. As the carrier of the oxidation catalyst, alumina, titania, zirconia, alumina-zirconia, silica-alumina, zeolite, etc. are effective. The amount of the active ingredient loaded on the carrier is Pt, Pd, R
If more than one selected from the elements of h, 0.05 for metal
.About.5.0 wt%, in the case of one or more selected from Mn, Fe, Co, Ni and Cu, 1.0 to 20.0 in the case of metal oxide.
wt% is preferred. The adsorbent and the catalyst are molded into the same pellet or coated on the same honeycomb carrier as separate layers to be integrated and housed in the same reaction layer. Alternatively, the adsorbent and the catalyst formed into pellets may be mixed and put in the same layer.

【0015】更に、再生時に高濃度に濃縮されて吸着剤
から脱離した悪臭物質を含むガスを処理する方法とし
て、本吸着剤からの脱離ガスの流路下流に燃焼触媒を設
置し、その触媒によって処理することが可能である。こ
の場合用いられる燃焼触媒は、排ガス中の有機溶剤の種
類、燃焼触媒入口のガス温度等システム構成によって、
最適な種類や組成を選択できる。
Further, as a method of treating a gas containing a malodorous substance which is concentrated to a high concentration during desorption and desorbed from the adsorbent, a combustion catalyst is installed downstream of the flow path of the desorbed gas from the adsorbent. It is possible to treat with a catalyst. The combustion catalyst used in this case depends on the system configuration such as the type of organic solvent in the exhaust gas and the gas temperature at the combustion catalyst inlet.
You can select the optimum type and composition.

【0016】次に、本発明を詳細に説明する。本発明の
吸着剤は、含浸法、混練法、イオン交換法のいずれでも
製造できる。含浸法で製造する方法では、MFI構造を
有するH−ZSM5等のゼオライトの粉末に、所定濃度
のCe,La等の元素から選ばれた1種以上の水溶性塩
の水溶液を含浸し、乾燥後、加熱焼成することにより得
られる。水溶性塩としては、硝酸塩または酢酸塩が一般
的である。2種以上の元素を担持する場合は、2種以上
の水溶性塩の混合水溶液を含浸して2種以上の元素を同
時に担持しても良いし、1種類の水溶性塩の水溶液を含
浸し加熱焼成後異なる種類の水溶液を逐次含浸してもよ
い。これらの吸着剤は、最終的には原料の塩が分解する
温度、すなわち200℃以上800℃以下、好ましくは
400〜600℃で大気中で加熱焼成して得られる。
Next, the present invention will be described in detail. The adsorbent of the present invention can be produced by any of the impregnation method, the kneading method and the ion exchange method. In the method of production by the impregnation method, zeolite powder such as H-ZSM5 having an MFI structure is impregnated with a predetermined concentration of an aqueous solution of one or more water-soluble salts selected from elements such as Ce and La, and after drying. It can be obtained by heating and baking. As the water-soluble salt, nitrate or acetate is generally used. When supporting two or more elements, it may be impregnated with a mixed aqueous solution of two or more water-soluble salts to simultaneously support two or more elements, or may be impregnated with an aqueous solution of one water-soluble salt. After heating and baking, different types of aqueous solutions may be sequentially impregnated. These adsorbents are finally obtained by heating and burning in the air at a temperature at which the raw material salt is decomposed, that is, 200 ° C. or higher and 800 ° C. or lower, preferably 400 to 600 ° C.

【0017】混練法で製造する方法では、所定量の
(1)MFI構造を有するH−ZSM5等の粉末、
(2)Ce,La等の元素から選ばれた1種以上の水溶
性塩、(3)水、をらいかい機またはボ−ルミル等の混
練用機器を使って1時間以上湿式混練し、できたスラリ
−を乾燥後、加熱焼成することにより得られる。このと
き、先に(1)と(2)を乾式混練した後、(3)水を
加えて湿式混練しても良い。原料として水溶性ではない
塩を用いることもできるが、担持元素の分散性が悪く、
本発明の特徴が発現しにくい。これらの吸着剤は、最終
的には原料の塩が分解する温度、すなわち200℃以上
800℃以下、好ましくは400〜600℃で大気中で
加熱焼成して得られる。
In the method of manufacturing by the kneading method, a predetermined amount of (1) powder such as H-ZSM5 having an MFI structure,
(2) One or more kinds of water-soluble salts selected from the elements such as Ce and La, (3) water, and wet kneading for 1 hour or more using a kneading machine or a kneading machine such as a ball mill. The obtained slurry is dried and then heated and calcined. At this time, (1) and (2) may be dry-kneaded first, and then (3) water may be added for wet-kneading. Although it is possible to use a salt that is not water-soluble as a raw material, the dispersibility of the supported element is poor,
The features of the present invention are hard to be expressed. These adsorbents are finally obtained by heating and burning in the air at a temperature at which the raw material salt is decomposed, that is, 200 ° C. or higher and 800 ° C. or lower, preferably 400 to 600 ° C.

【0018】イオン交換法で製造する方法は、以下の手
順に従う。所定量の(1)MFI構造を有するH−ZS
M5等の粉末を、所定量の(2)Ce,La等の元素か
ら選ばれた1種以上の水溶性塩、(3)水を混合した交
換溶液に入れて、一定温度に加熱しながら所定時間撹拌
した後、デカンテ−ションで交換溶液を取り除く。この
操作を1回以上繰り返した後、蒸留水を加えてデカンテ
−ションで十分洗浄し、濾過、乾燥し、加熱焼成するこ
とにより得られる。この時、交換溶液中の水溶性塩の量
は、ゼオライトに担持する元素の量と等量以上を含有
し、溶液濃度が濃いほど短時間でイオン交換できる。ま
た、温度条件は室温以上、好ましくは60〜100℃が
最適である。2種類以上の元素をイオン交換する場合に
は、原料塩の混合溶液を交換溶液として同時に行っても
良いし、単一組成の交換溶液で逐次行っても良い。これ
らの吸着剤は、200℃以上800℃以下、好ましくは
400〜600℃で大気中で加熱焼成して得られる。各
種調製法のうち、イオン交換法が最も有効な方法であ
る。
The method for producing by the ion exchange method follows the following procedure. H-ZS having a predetermined amount of (1) MFI structure
A powder such as M5 is put in an exchange solution in which a predetermined amount of (2) one or more water-soluble salts selected from the elements such as Ce and La, and (3) water are mixed, and the mixture is heated to a predetermined temperature while predetermined. After stirring for an hour, the exchange solution is removed by decantation. After repeating this operation once or more, it is obtained by adding distilled water, thoroughly washing with decantation, filtering, drying, and baking by heating. At this time, the amount of the water-soluble salt in the exchange solution is equal to or more than the amount of the element supported on the zeolite, and the higher the solution concentration, the shorter the ion exchange can be performed. The optimum temperature condition is room temperature or higher, preferably 60 to 100 ° C. When two or more kinds of elements are ion-exchanged, a mixed solution of raw material salts may be simultaneously used as an exchange solution, or may be sequentially used as an exchange solution having a single composition. These adsorbents are obtained by heating and burning in the air at 200 ° C. or higher and 800 ° C. or lower, preferably 400 to 600 ° C. Among various preparation methods, the ion exchange method is the most effective method.

【0019】本発明の吸着剤に更に触媒成分を担持した
吸着剤触媒は、上記本発明の吸着剤に触媒成分となる金
属塩の水溶液を含浸し、乾燥後、加熱焼成することによ
って得られる。金属塩としては、硝酸塩、塩化物、アン
ミン錯体が一般的で、これらを酸または水に溶かした溶
液を水で希釈して用いる。2種以上の塩の混合水溶液を
含浸して2種以上の元素を同時に担持しても良いし、1
種類の水溶性塩の水溶液を含浸し加熱焼成後異なる種類
の水溶液を逐次含浸してもよい。これらの吸着剤は、最
終的には原料の塩が分解する温度、すなわち250℃以
上800℃以下、好ましくは400〜600℃で大気中
で加熱焼成して得られる。
The adsorbent catalyst in which the catalyst component is further supported on the adsorbent of the present invention is obtained by impregnating the adsorbent of the present invention with an aqueous solution of a metal salt serving as the catalyst component, drying and then heating and calcining. As the metal salt, nitrates, chlorides, and ammine complexes are generally used, and a solution obtained by dissolving these in an acid or water is diluted with water before use. It is also possible to impregnate a mixed aqueous solution of two or more kinds of salts and simultaneously carry two or more kinds of elements.
It is also possible to impregnate aqueous solutions of different types of water-soluble salts, and after heating and firing, successively impregnate different types of aqueous solutions. These adsorbents are finally obtained by heating and burning in the air at a temperature at which the salt of the raw material decomposes, that is, 250 ° C or higher and 800 ° C or lower, preferably 400 to 600 ° C.

【0020】以上の方法で調製される本発明の吸着剤
は、希土類以外の元素、例えば遷移金属のFe,Co,
Ni,CuやAgを含むことも可能である。ただしこの
場合は、希土類の担持量の10%以下であることが望ま
しい。多量の担持は、例えば遷移金属の場合酸化触媒と
しての働きがあるため、吸着剤としての使用には妨げに
なるからである。
The adsorbent of the present invention prepared by the above method is suitable for elements other than rare earth elements, such as transition metals Fe, Co,
It is also possible to contain Ni, Cu or Ag. However, in this case, it is desirable that the amount is 10% or less of the amount of the rare earth supported. This is because a large amount of loaded metal acts as an oxidation catalyst in the case of a transition metal, which hinders its use as an adsorbent.

【0021】このようにして製造された本発明の吸着剤
あるいは吸着剤触媒は、排ガス中の揮発性有機溶剤を含
む悪臭成分を吸着剤に吸着させた後、間欠的に吸着剤を
加熱して、吸着剤から脱離した濃縮された悪臭成分を処
理する悪臭処理方法において有効に働く。その理由は、
ゼオライトに担持された希土類から選ばれた1種以上の
元素が次のような状態にあるためと考えられる。(1)
陽イオンの状態でゼオライト上に高分散する、またはゼ
オライトの陽イオンと置換されてゼオライト骨格の一部
となることによって、ゼオライト表面の静電場が変化し
て吸着分子の極性との相互作用が強くなる。(2)陽イ
オンの状態または酸化物の状態でゼオライト表面に高分
散することによりゼオライトの細孔分布が変化し、吸
着、脱離性能が向上する。(3)陽イオンの状態または
酸化物の状態でゼオライト表面に高分散し、ゼオライト
の吸着能力を補強する。本発明の吸着剤は、以上の効果
が複合することによって有効に働くと考えられる。例え
ば、(1)の相互作用ばかり強いと、吸着能は高まる
が、脱離もしにくくなる。本発明の吸着剤は、これら複
数の効果がバランスしているため、吸着能も高く、脱離
もしやすいと考えられる。
The adsorbent or adsorbent catalyst of the present invention produced in this manner is obtained by adsorbing a malodorous component containing volatile organic solvent in exhaust gas onto the adsorbent and then heating the adsorbent intermittently. , It works effectively in the malodor processing method of treating the concentrated malodor component desorbed from the adsorbent. The reason is,
It is considered that one or more elements selected from rare earths supported on zeolite are in the following states. (1)
By being highly dispersed on the zeolite in the state of cations or by being substituted with the cations of the zeolite to become part of the zeolite skeleton, the electrostatic field on the zeolite surface changes and the interaction with the polarity of the adsorbed molecule is strong. Become. (2) The highly dispersed zeolite on the surface of the zeolite in the cation state or the oxide state changes the pore distribution of the zeolite and improves the adsorption / desorption performance. (3) The zeolite is highly dispersed in the cation state or the oxide state on the surface of the zeolite to reinforce the adsorption capacity of the zeolite. It is considered that the adsorbent of the present invention works effectively by combining the above effects. For example, if only the interaction of (1) is strong, the adsorption capacity is increased, but desorption is also difficult. Since the adsorbent of the present invention balances these effects, it is considered that the adsorbent has a high adsorption capacity and is easily desorbed.

【0022】本発明の吸着剤の形状は、吸着剤粉末をペ
レットなどに成型した粒状、吸着剤粉末をバインダ等と
混合して押出し成型したハニカム形状、吸着剤粉末をバ
インダ等と混合してセラミックスや金属の基材上にコ−
ティングした構造体、繊維状のセラミックスと混合して
抄紙したペ−パ−状のものを各種形状に組合せた構造体
などがある。セラミックスや金属の基材としては、ハニ
カム形状、板状基材、金網形状等がある。
The shape of the adsorbent of the present invention is a granular shape obtained by molding the adsorbent powder into pellets, a honeycomb shape obtained by mixing the adsorbent powder with a binder or the like, and an extrusion molding, or a ceramic by mixing the adsorbent powder with the binder or the like. On a metal or metal substrate
There are various types of structures, such as a coated structure and a paper-shaped mixture prepared by mixing with fibrous ceramics and making a paper. The ceramic or metal base material includes a honeycomb shape, a plate-shaped base material, a wire mesh shape, and the like.

【0023】以上の本発明の吸着剤は、排ガス中の揮発
性有機溶剤を含む悪臭成分を吸着させた後、吸着剤を加
熱して、吸着剤から脱離した濃縮された悪臭成分を処理
する悪臭処理方法における、吸着剤として使用する。上
記形状に加工された吸着剤を充填した層に処理するガス
を導入し、出口ガス中の悪臭物質濃度がある一定値を超
えたら、吸着剤充填層に加熱した再生用ガスを導入し吸
着している悪臭物質を濃縮した状態で脱離させる。この
時、吸着剤充填層は1基でもよいし、2基以上を交互に
切替えて、1基を再生中に他基を吸着に使用してもよ
い。また、吸着剤が担持されたハニカム型の円筒状の回
転体(ロ−タと呼ぶ)を用い、軸線方向に一端から処理
ガスを流通する吸着部と、加熱した再生用ガスを流通し
て脱着を行う脱離部と、冷却用ガスを流通する冷却部を
周方向に形成し、ロ−タを回転させながらロ−タの各部
分が順次この3個所を回ることによって、吸着脱離再生
を繰返す方法で使用される。これらの方法で吸着剤に吸
着された後、濃縮して脱離した悪臭成分は、吸着剤充填
層後流に設置した触媒燃焼器等の処理装置で処理する。
または、ロ−タ式の場合は、脱離部の吸着剤の出口の面
に燃焼触媒を接触させて設置してもよい。
The above-mentioned adsorbent of the present invention adsorbs a malodorous component containing a volatile organic solvent in exhaust gas and then heats the adsorbent to treat the concentrated malodorous component desorbed from the adsorbent. Used as an adsorbent in the malodor processing method. When the gas to be treated is introduced into the layer filled with the adsorbent processed into the above shape, and when the malodorous substance concentration in the outlet gas exceeds a certain value, the heated regeneration gas is introduced into the adsorbent-filled layer to adsorb it. The malodorous substances that are present are released in a concentrated state. At this time, one adsorbent-packed layer may be used, or two or more adsorbent-filled beds may be alternately switched to use another group for adsorption while one is being regenerated. In addition, using a honeycomb-shaped cylindrical rotating body (called a rotor) carrying an adsorbent, an adsorption section for flowing the processing gas from one end in the axial direction and a desorption by circulating a heated regeneration gas. By forming a desorption section for carrying out the above and a cooling section for circulating a cooling gas in the circumferential direction, each part of the rotor sequentially turns around these three points while rotating the rotor, thereby performing adsorption / desorption regeneration. Used in a repeating method. The malodorous component that is adsorbed on the adsorbent by these methods and then concentrated and desorbed is treated by a treatment device such as a catalytic combustor installed downstream of the adsorbent packed bed.
Alternatively, in the case of the rotor type, the combustion catalyst may be placed in contact with the surface of the adsorbent outlet of the desorption section.

【0024】本発明の吸着剤触媒を用いて有効に悪臭処
理を行う方法としては、上記形状に加工された吸着剤触
媒を充填した充填塔が2塔以上あり、1塔で吸着処理を
行いながら、他塔で吸着剤の再生を並行して行い、再生
で吸着剤の再生と悪臭成分の処理を同時におこなう方
法、吸着剤触媒が担持されたハニカム型の円筒状の回転
体の各部分が、悪臭を含む排ガスと接触する吸着部と、
加熱された再生用ガスと接触する脱離部と、冷却ガスと
接触する冷却部の3個所を順次回り、脱離部では吸着剤
の再生と悪臭成分の処理を同時におこなう方法などで使
用される。
As a method for effectively treating a malodor using the adsorbent catalyst of the present invention, there are two or more packed columns packed with the adsorbent catalyst processed into the above-mentioned shape, and the adsorbent treatment is performed in one column. , A method of performing the regeneration of the adsorbent in parallel in another tower, and simultaneously performing the regeneration of the adsorbent and the treatment of the malodorous component in the regeneration, each part of the honeycomb-shaped cylindrical rotating body carrying the adsorbent catalyst, An adsorption part that comes into contact with exhaust gas containing a foul odor,
The desorption part that comes into contact with the heated regeneration gas and the cooling part that comes into contact with the cooling gas are sequentially turned around in three places, and the desorption part is used in such a way that the adsorbent is regenerated and the malodorous component is treated at the same time. .

【0025】本発明の吸着剤およびこれを用いた悪臭処
理方法は、揮発性有機溶剤を主成分とする排ガスの悪臭
処理に有効に働く。揮発性有機溶剤とは、トルエン、キ
シレン、スチレンなどの芳香族炭化水素、酢酸エチルな
どのエステル類、イソブタノ−ルなどのアルコ−ル類な
どに代表される。本発明は、なかでも特に芳香族炭化水
素に有効である。更に、本発明はこれらの揮発性有機溶
剤以外の悪臭物質、例えばアセトアルデヒド、イソバレ
ルアルデヒドなどのアルデヒド類、トリメチルアミンな
どのアミン類、メチルメルカプタンなどのメルカプタン
類等にも、吸着剤として有効に働く。
The adsorbent of the present invention and the malodor processing method using the same act effectively on the malodor treatment of exhaust gas containing a volatile organic solvent as a main component. The volatile organic solvent is represented by aromatic hydrocarbons such as toluene, xylene and styrene, esters such as ethyl acetate, alcohols such as isobutanol and the like. The present invention is particularly effective for aromatic hydrocarbons. Furthermore, the present invention effectively acts as an adsorbent on malodorous substances other than these volatile organic solvents, for example, aldehydes such as acetaldehyde and isovaleraldehyde, amines such as trimethylamine, and mercaptans such as methyl mercaptan.

【0026】[0026]

【作用】本発明は、排ガス中の揮発性有機溶剤を含む悪
臭成分を吸着剤に吸着させた後、吸着剤を加熱して、吸
着剤から脱離した濃縮された悪臭成分を処理する悪臭処
理方法に用いることで有効に作用する。特に、常温〜5
0,60℃付近で吸着を行い、120〜250℃付近で
脱離と再生を行い、吸着脱離を繰り返す悪臭処理方法に
有効に作用する。
The present invention is a malodor treatment for treating a concentrated malodorous component desorbed from the adsorbent by heating the adsorbent after adsorbing the malodorous component containing volatile organic solvent in the exhaust gas. It works effectively when used in a method. Especially from room temperature to 5
Adsorption is performed at about 60 ° C., desorption and regeneration are performed at about 120 to 250 ° C., and it effectively acts on a malodor processing method in which adsorption and desorption are repeated.

【0027】[0027]

【発明の実施の形態】以下、本発明を実施例で具体的に
説明する。ただし、本発明はこれらの実施例に限定され
るものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to embodiments. However, the present invention is not limited to these examples.

【0028】[0028]

【実施例1】酢酸セリウム(Ce(CHCOO)3・H2
O)27.94gを蒸留水500mLに溶解した溶液
と、SiO2/Al23(シリカ/アルミナ比)が80のM
FI構造を有するH−ZSM−5粉末50gを混合し、
これを撹拌しながら6時間90℃に加熱し、イオン交換
をおこなった。終了後、この混合溶液を室温で一晩放置
した。これを、デカンテ−ジョンで4回洗浄後、吸引濾
過し、120℃で乾燥し、最終的に500℃で2時間焼
成し、吸着剤粉末を得た。
Example 1 Cerium acetate (Ce (CHCOO) 3 · H 2
O) 27.94 g dissolved in 500 mL of distilled water and M of SiO 2 / Al 2 O 3 (silica / alumina ratio) of 80
50g of H-ZSM-5 powder having FI structure is mixed,
This was heated at 90 ° C. for 6 hours with stirring to perform ion exchange. After the completion, the mixed solution was left at room temperature overnight. This was washed four times with decantation, suction filtered, dried at 120 ° C., and finally calcined at 500 ° C. for 2 hours to obtain an adsorbent powder.

【0029】[0029]

【実施例2】酢酸セリウム27.94gのかわりに酢酸
ランタン(La(CHCOO)3・1.5H2O)27.
72gを用いる以外は、実施例1と同様の方法で実施例
2の吸着剤粉末を得た。
Example 2 Lanthanum acetate (La (CHCOO) 3 .1.5H 2 O) 27.
An adsorbent powder of Example 2 was obtained in the same manner as in Example 1 except that 72 g was used.

【0030】[0030]

【実施例3】SiO2 /Al23 (シリカ/アルミナ
比)が80のMFI構造を有するH−ZSM−5粉末の
かわりにSiO2 /Al23 (シリカ/アルミナ比)
が30のMFI構造を有するH−ZSM−5粉末を用い
る以外は、実施例1と同様の方法で実施例3の吸着剤粉
末を得た。
Example 3 SiO 2 / Al 2 O 3 SiO 2 / Al 2 O 3 in place of the H-ZSM-5 powder (silica / alumina ratio) having an MFI structure 80 (silica / alumina ratio)
Was obtained in the same manner as in Example 1 except that H-ZSM-5 powder having an MFI structure of 30 was used.

【0031】[0031]

【実施例4】酢酸セリウム27.94gのかわりに酢酸
プラセオジム(Pr(CHCOO)3 ・6H2 O)2
3.63gを用いる以外は、実施例1と同様の方法で実
施例4の吸着剤粉末を得た。
EXAMPLE 4 Instead of 27.94 g of cerium acetate, praseodymium acetate (Pr (CHCOO) 3 .6H 2 O) 2
An adsorbent powder of Example 4 was obtained in the same manner as in Example 1 except that 3.63 g was used.

【0032】[0032]

【実施例5】酢酸セリウム27.94gのかわりに硝酸
ネオジム(Nd(NO)3 ・6H2O)23.81gを
用いる以外は、実施例1と同様の方法で実施例5の吸着
剤粉末を得た。
Example 5 except for using neodymium nitrate (Nd (NO) 3 · 6H 2 O) 23.81g instead of cerium acetate 27.94G, the adsorbent powder of Example 5 in the same manner as in Example 1 Obtained.

【0033】[0033]

【実施例6】酢酸セリウム18.21gを蒸留水500
mlに溶解した溶液と、SiO2 /Al23 (シリカ
/アルミナ比)が80のMFI構造を有するH−ZSM
−5粉末50gを混合し、これを攪拌しながら6時間9
0℃に加熱し、イオン交換をおこなった。終了後、この
混合溶液を室温で一晩放置した。これを、デカンテージ
ョンで4回洗浄後、吸引濾過し、120℃で乾燥した。
次に、この粉末を、酢酸ランタン27.72gを蒸留水
500mlに溶解した溶液に混合し、これを攪拌しなが
ら6時間90℃に加熱した。この混合溶液を室温で一晩
放置した後、デカンテージョンで4回洗浄後、吸引濾過
し、120℃で乾燥し、最終的に500℃で2時間焼成
し、吸着剤粉末を得た。
Example 6 18.21 g of cerium acetate was added to distilled water 500
H-ZSM having a MFI structure with a solution dissolved in ml and SiO 2 / Al 2 O 3 (silica / alumina ratio) of 80
-5 50g of powder is mixed and stirred for 6 hours 9
Ion exchange was performed by heating to 0 ° C. After the completion, the mixed solution was left at room temperature overnight. This was washed four times with decantation, suction filtered, and dried at 120 ° C.
Next, this powder was mixed with a solution of 27.72 g of lanthanum acetate dissolved in 500 ml of distilled water, and this was heated to 90 ° C. for 6 hours while stirring. The mixed solution was left standing overnight at room temperature, washed four times with decantation, suction filtered, dried at 120 ° C., and finally calcined at 500 ° C. for 2 hours to obtain an adsorbent powder.

【0034】[0034]

【実施例7】酢酸セリウム1.359gとSiO2/A
23(シリカ/アルミナ比)が80のZSM−5粉末4
0gをらいかい機で10分間乾式混練後、これに蒸留水
35mLを加えて更に1時間湿式混練した。その後、こ
のスラリ−を120℃で乾燥し、最終的に500℃で2
時間焼成し、吸着剤粉末を得た。
Example 7 1.359 g of cerium acetate and SiO 2 / A
l 2 O 3 ZSM-5 powder 4 (silica / alumina ratio) is 80
After dry-kneading 0 g of the mixture for 10 minutes with a raider, 35 mL of distilled water was added thereto, and the mixture was further wet-kneaded for 1 hour. After that, the slurry is dried at 120 ° C and finally at 500 ° C for 2 hours.
Firing was carried out for an hour to obtain an adsorbent powder.

【0035】[0035]

【比較例1】SiO2/Al23(シリカ/アルミナ比)が
80のMFI構造を有するH−ZSM5粉末50gを、
500℃で2時間焼成し、吸着剤粉末を得た。
Comparative Example 1 50 g of H-ZSM5 powder having an MFI structure with SiO 2 / Al 2 O 3 (silica / alumina ratio) of 80,
It was fired at 500 ° C. for 2 hours to obtain an adsorbent powder.

【0036】[0036]

【比較例2】SiO2 /Al23 (シリカ/アルミナ
比)が80のMFI構造を有するH−ZSM−5粉末の
かわりにSiO2 /Al23 (シリカ/アルミナ比)
が203のMOR構造を有するH−モルデナイト粉末を
用いる以外は、実施例1と同様の方法で比較例2の吸着
剤粉末を得た。
[Comparative Example 2] SiO 2 / Al 2 O 3 (silica / alumina ratio) was replaced with SiO 2 / Al 2 O 3 (silica / alumina ratio) instead of H-ZSM-5 powder having an MFI structure of 80.
The adsorbent powder of Comparative Example 2 was obtained in the same manner as in Example 1 except that the H-mordenite powder having a MOR structure of No. 203 was used.

【0037】[0037]

【比較例3】SiO2 /Al23 (シリカ/アルミナ
比)が80のMFI構造を有するH−ZSM−5粉末の
かわりにSiO2 /Al23 (シリカ/アルミナ比)
が203のMOR構造を有するH−モルデナイト粉末を
用いる以外は、実施例2と同様の方法で比較例3の吸着
剤粉末を得た。
[Comparative Example 3] SiO 2 / Al 2 O 3 SiO 2 / Al 2 O 3 in place of the H-ZSM-5 powder (silica / alumina ratio) having an MFI structure 80 (silica / alumina ratio)
Was obtained in the same manner as in Example 2 except that the H-mordenite powder having a MOR structure of No. 203 was used.

【0038】[0038]

【比較例4】酢酸セリウム27.94gのかわりに硝酸
銀(AgNO3)5.54gを用い、SiO2/Al23
(シリカ/アルミナ比)が80のMFI構造を有するH−
ZSM−5粉末のかわりにSiO2/Al23(シリカ/
アルミナ比)が203のMOR構造を有するH−モルデ
ナイト粉末を用いる以外は、実施例1と同様の方法で比
較例4の吸着剤粉末を得た。
Comparative Example 4 5.54 g of silver nitrate (AgNO 3 ) was used in place of 27.94 g of cerium acetate, and SiO 2 / Al 2 O 3 was used.
H- having an MFI structure (silica / alumina ratio) of 80
SiO 2 / Al 2 O 3 in place of ZSM-5 powder (silica /
An adsorbent powder of Comparative Example 4 was obtained in the same manner as in Example 1 except that the H-mordenite powder having an MOR structure (alumina ratio) of 203 was used.

【0039】[0039]

【比較例5】酢酸セリウム27.94gのかわりに酢酸
銅(Cu(CHCOO)2・H2O)24.96gを用い
る以外は、実施例1と同様の方法で比較例5の吸着剤粉
末を得た。
Comparative Example 5 The adsorbent powder of Comparative Example 5 was prepared in the same manner as in Example 1 except that 24.96 g of copper acetate (Cu (CHCOO) 2 .H 2 O) was used instead of 27.94 g of cerium acetate. Obtained.

【0040】[0040]

【比較例6】酢酸セリウム27.94gのかわりに硝酸
ニッケル(Ni(NO32・6H2O)36.35gを
用いる以外は、実施例1と同様の方法で比較例6の吸着
剤粉末を得た。表1に、上記実施例1、実施例2、実施
例3、実施例4、実施例5、実施例6、実施例7、比較
例1、比較例2、比較例3、比較例4、比較例5、比較
例6の吸着剤を、アルカリ溶融した後ICP法で担持元
素の定量分析を行った結果、及びそれから換算したイオ
ン交換率を示す。
Comparative Example 6 The adsorbent powder of Comparative Example 6 was prepared in the same manner as in Example 1 except that 36.35 g of nickel nitrate (Ni (NO 3 ) 2 .6H 2 O) was used instead of 27.94 g of cerium acetate. Got In Table 1, the above-mentioned Example 1, Example 2, Example 3, Example 4, Example 5, Example 6, Example 7, Comparative Example 1, Comparative Example 2, Comparative Example 3, Comparative Example 4, Comparative Example The results of quantitative analysis of the supported elements by the ICP method after the alkali melting of the adsorbents of Example 5 and Comparative Example 6 and the ion exchange rate converted therefrom are shown.

【0041】[0041]

【表1】 [Table 1]

【0042】上記実施例1、実施例2、実施例3、実施
例4、実施例5、実施例6、実施例7、比較例1、実施
例2、比較例3、比較例4、比較例5、比較例6の吸着
剤粉末を、プレス成型後、10〜20メッシュに整粒し
た。これを用いて、悪臭成分の吸着及び脱離性能を評価
した。
Example 1, Example 2, Example 3, Example 4, Example 5, Example 5, Example 6, Comparative Example 1, Example 2, Comparative Example 3, Comparative Example 4, Comparative Example 5, the adsorbent powder of Comparative Example 6 was press-molded and then sized to 10 to 20 mesh. This was used to evaluate the adsorption and desorption performance of malodorous components.

【0043】下記評価条件1で、上記吸着剤にトルエン
を含む悪臭ガスを流通させて、出口ガス濃度を分析する
ことにより、吸着性能を評価した。図1に、実施例1、
実施例2、実施例3、実施例4、実施例5、実施例6、
比較例1、比較例4、実施例2、比較例3の吸着剤の、
破過時間と40分間の総吸着量を示す。ここで破過時間
とは、吸着剤層にガスを導入後、出口ガス中のトルエン
除去率が90%に達するまでの経過時間と定義した。希
土類をH−ZSM−5に担持した実施例1、実施例2、
実施例3、実施例4、実施例5、実施例6は、これらの
母体ゼオライトである比較例1に比較して、吸着除去性
能が大きく向上した。これにたいして、希土類をH−モ
ルデナイトに担持した比較例2、比較例3の場合は、希
土類の添加効果は得られず、吸着除去性能は低い。
Under the following evaluation condition 1, a malodorous gas containing toluene was passed through the adsorbent and the outlet gas concentration was analyzed to evaluate the adsorption performance. In FIG. 1, Example 1,
Example 2, Example 3, Example 4, Example 5, Example 6,
Of the adsorbents of Comparative Example 1, Comparative Example 4, Example 2 and Comparative Example 3,
The breakthrough time and the total adsorption amount for 40 minutes are shown. Here, the breakthrough time was defined as the elapsed time after the gas was introduced into the adsorbent layer until the removal rate of toluene in the outlet gas reached 90%. Examples 1 and 2 in which rare earths are supported on H-ZSM-5.
In Example 3, Example 4, Example 5, and Example 6, the adsorption removal performance was greatly improved as compared with Comparative Example 1, which is the parent zeolite. On the other hand, in the case of Comparative Examples 2 and 3 in which the rare earth element was supported on H-mordenite, the effect of adding the rare earth element was not obtained, and the adsorption removal performance was low.

【0044】〔評価条件1〕 SV:60000/h F :3.0 L/min 悪臭ガス組成:トルエン100ppm,空気バランス 吸着剤温度:50 ℃ 吸着時間:40 min 同様に、評価条件2で実施例1、実施例2、実施例3、
実施例4、実施例6、実施例7、比較例1、比較例4、
比較例5、比較例6の吸着剤の吸着性能を評価した。図
2に、破過時間と40分間の総吸着量を示す。評価条件
2は、悪臭ガス中に水蒸気を含んでいるため、評価条件
1に比べて全体的に性能が低下しているが、本発明の実
施例1、実施例2、実施例3、実施例4、実施例6、実
施例7の吸着剤は、母体ゼオライトである比較例1に比
較して、吸着除去性能が向上した。希土類以外の元素を
担持した場合は、比較例4を除いて逆に性能が低下し
た。 〔評価条件2〕 SV:60000/h F :3.0 L/min 悪臭ガス組成:トルエン100ppm,H2 O3.3
%,空気バランス 吸着剤温度:50 ℃ 吸着時間:40 min 上記評価条件2で、上記吸着剤にトルエンを含む悪臭ガ
スを流通させた後、下記評価条件3にて吸着剤を加熱す
ることによって吸着した悪臭成分を脱離させ、吸着剤の
温度と、出口ガス中の濃度を測定した。図3に、実施例
1、実施例2、比較例1、比較例4、比較例5の吸着剤
の、脱離特性を示す。実施例1と実施例2は、脱離ピー
ク温度が150℃で、250℃以下で脱離が完了してい
る。実施例1と実施例2の母体ゼオライトである比較例
1に比べると、ピーク温度はほぼ同じで、高温側がむし
ろ脱離しやすくなっている。比較例4は、図1及び図2
では高い吸着性能を示したが、脱離においては250℃
以上でも脱離が続いている。比較例4の場合は、吸着分
子との相互作用が強力になり過ぎて、脱離がしにくくな
ったと考えられる。比較例5は、200℃以下に脱離ピ
ークをひとつ持つが、その脱離量は少ない。比較例5の
場合は、吸着剤層の温度が250℃以上に上昇したとこ
ろで、急激に吸着剤層の温度が上昇し、脱離しないで残
っていた悪臭物質が燃焼するのが確認された。
[Evaluation Condition 1] SV: 60000 / h F: 3.0 L / min Odorous gas composition: Toluene 100 ppm, air balance Adsorbent temperature: 50 ° C. Adsorption time: 40 min Similarly, Example under Evaluation Condition 2 1, Example 2, Example 3,
Example 4, Example 6, Example 7, Comparative Example 1, Comparative Example 4,
The adsorption performance of the adsorbents of Comparative Example 5 and Comparative Example 6 was evaluated. FIG. 2 shows the breakthrough time and the total adsorption amount for 40 minutes. Since the evaluation condition 2 includes water vapor in the malodorous gas, the overall performance is lower than that of the evaluation condition 1, but the first, second, third, and third embodiments of the present invention are performed. 4, the adsorbents of Example 6 and Example 7 have improved adsorption removal performance as compared with Comparative Example 1 which is a base zeolite. When an element other than rare earth was loaded, the performance was conversely deteriorated except for Comparative Example 4. [Evaluation condition 2] SV: 60000 / h F: 3.0 L / min Odorous gas composition: Toluene 100 ppm, H 2 O 3.3
%, Air balance Adsorbent temperature: 50 ° C. Adsorption time: 40 min Under the above-mentioned evaluation condition 2, a malodorous gas containing toluene is passed through the above-mentioned adsorbent, and then the adsorbent is heated under the following evaluation condition 3 to adsorb. The malodorous components were desorbed, and the temperature of the adsorbent and the concentration in the outlet gas were measured. FIG. 3 shows the desorption characteristics of the adsorbents of Example 1, Example 2, Comparative Example 1, Comparative Example 4, and Comparative Example 5. In Example 1 and Example 2, the desorption peak temperature was 150 ° C, and desorption was completed at 250 ° C or lower. Compared with Comparative Example 1, which is the host zeolite of Example 1 and Example 2, the peak temperatures are almost the same, and the high temperature side is more likely to be desorbed. Comparative Example 4 is shown in FIGS.
Showed high adsorption performance, but desorption was performed at 250 ° C.
Desorption continues even above. In the case of Comparative Example 4, it is considered that the interaction with the adsorbed molecule became too strong and the desorption became difficult. Comparative Example 5 has one desorption peak at 200 ° C. or lower, but the desorption amount is small. In the case of Comparative Example 5, it was confirmed that when the temperature of the adsorbent layer increased to 250 ° C. or higher, the temperature of the adsorbent layer rapidly increased, and the malodorous substance that remained without being desorbed burned.

【0045】〔評価条件3〕 SV:40000/h F :2.0 L/min 流通ガス入口組成:空気 吸着剤温度:50 ℃から500℃まで30℃/min
で昇温。
[Evaluation condition 3] SV: 40,000 / h F: 2.0 L / min Composition of flowing gas inlet: Air Adsorbent temperature: 50 ° C to 500 ° C 30 ° C / min
To raise the temperature.

【0046】[0046]

【実施例8】酢酸セリウム27.94gのかわりに酢酸
セリウム18.21gを用いる以外は、実施例1と同様
の方法で実施例8の吸着剤粉末を得た。
Example 8 An adsorbent powder of Example 8 was obtained in the same manner as in Example 1 except that 18.21 g of cerium acetate was used instead of 27.94 g of cerium acetate.

【0047】[0047]

【実施例9】酢酸セリウム27.94gのかわりに酢酸
セリウム6.09gを用いる以外は実施例1と同様の方
法で実施例9の吸着剤粉末を得た。
Example 9 An adsorbent powder of Example 9 was obtained in the same manner as in Example 1 except that 6.09 g of cerium acetate was used instead of 27.94 g of cerium acetate.

【0048】[0048]

【実施例10】イオン交換の時間を6時間から16時間
に変更する以外は実施例1と同様の方法で実施例10の
吸着剤粉末を得た。
Example 10 An adsorbent powder of Example 10 was obtained in the same manner as in Example 1 except that the ion exchange time was changed from 6 hours to 16 hours.

【0049】表2に、上記実施例8、実施例9、実施例
10の吸着剤を、アルカリ溶融した後ICP法で担持元
素の定量分析を行った結果、及びそれから換算したイオ
ン交換率を示す。
Table 2 shows the results of quantitative analysis of the supported elements by the ICP method after the alkali-melting of the adsorbents of Examples 8, 9, and 10 described above, and the ion exchange rates converted therefrom. .

【0050】[0050]

【表2】 [Table 2]

【0051】上記実施例1、実施例8、実施例9、実施
例10、比較例1の吸着剤粉末を、プレス成型後、10
〜20meshに整粒した。これを用いて、下記評価条
件4で、悪臭成分の吸着性能を評価した。実施例1、実
施例8、実施例9、実施例10は、すべてCe元素を担
持したCe−ZSM5である。図4に、Ceのイオン交
換率と破過時間および吸着量の関係を示す。イオン交換
率10%以上150%以下でCe担持効果があり、特に
15〜100%で有効である。
The adsorbent powders of the above-mentioned Example 1, Example 8, Example 9, Example 10 and Comparative Example 1 were press-molded for 10
The particle size was adjusted to about 20 mesh. Using this, the adsorption performance of the malodorous component was evaluated under the following evaluation condition 4. Example 1, Example 8, Example 9, and Example 10 are all Ce-ZSM5 carrying a Ce element. FIG. 4 shows the relationship between the ion exchange rate of Ce, the breakthrough time, and the adsorption amount. When the ion exchange rate is 10% or more and 150% or less, there is an effect of supporting Ce, and particularly when it is 15 to 100%.

【0052】[評価条件4] SV:60000 /h F :3.0 L/min 悪臭ガス組成:トルエン100ppm,H2O3.3
%,空気バランス 吸着剤温度:50 ℃ 吸着時間:20 min 10〜20メッシュの実施例8と比較例1の粒状吸着剤
を用い、上記評価条件4で吸着、下記評価条件5で脱
離、その後吸着剤層の入口と出口を密閉して50℃まで
冷却の3工程を繰返して、吸着性能変化を比較した。図
5に、3工程繰返し回数10回までの、吸着時における
トルエン平均除去率の変化を示す。ここでトルエン平均
除去率は以下で定義される。 トルエン平均除去率(%)=(A−B)/A×100 A:入口ガス中のトルエンの20分間の積算量(mg) B:出口ガス中のトルエンの20分間の積算量(mg) 実施例8と比較例1のトルエン平均除去率は、繰返し開
始初期には低下するが、5回以降は安定している。安定
した平均除去率は、実施例8は約83%、比較例1は7
8%であった。本発明の吸着剤は、繰返し使用による耐
久性にも優れている。
[Evaluation condition 4] SV: 60000 / h F: 3.0 L / min Odorous gas composition: Toluene 100 ppm, H 2 O 3.3
%, Air balance Adsorbent temperature: 50 ° C. Adsorption time: 20 min Using the granular adsorbents of Example 8 and Comparative Example 1 of 10 to 20 mesh, adsorption under the above evaluation condition 4, desorption under the following evaluation condition 5, and then The inlet and outlet of the adsorbent layer were closed and the three steps of cooling to 50 ° C. were repeated to compare changes in adsorption performance. FIG. 5 shows changes in the average removal rate of toluene during adsorption up to the number of repetitions of 3 steps up to 10 times. Here, the average removal rate of toluene is defined below. Toluene average removal rate (%) = (A−B) / A × 100 A: 20 minutes cumulative amount of toluene in the inlet gas (mg) B: 20 minutes cumulative amount of toluene in the outlet gas (mg) Implemented The average removal rates of toluene in Example 8 and Comparative Example 1 decrease at the initial stage of the repetition start, but are stable after 5 times. The stable average removal rate was about 83% in Example 8 and 7 in Comparative Example 1.
8%. The adsorbent of the present invention is also excellent in durability by repeated use.

【0053】[評価条件5] SV:40000 /h F :2.0 L/min 流通ガス入口組成:空気 吸着剤温度:50 ℃から180℃まで30℃/min
で昇温。
[Evaluation condition 5] SV: 40000 / h F: 2.0 L / min Flow gas inlet composition: Air Adsorbent temperature: 30 ° C / min from 50 ° C to 180 ° C
To raise the temperature.

【0054】[0054]

【実施例11】実施例1の粉末34.0gと蒸留水11
1.0gをボ−ルミルにいれ24時間混合した。これ
に、ポリビニルアルコ−ル10wt%水溶液54.0g
と、アルミナゾル10wt%溶液1.0gを加えさらに
1時間混合した。得られたスラリ−に無機繊維を素材に
したハニカム構造体をディップした後、余分な溶液をエ
アブロ−でとりのぞいてから、室温で乾燥後、120℃
の乾燥機中で乾燥し、550℃で1時間焼成した。この
操作を繰り返すことにより、ハニカム構造体に所定量の
吸着剤をコ−ティングし、実施例11のハニカム型吸着
剤を得た。
Example 11 34.0 g of the powder of Example 1 and distilled water 11
1.0 g was put into a ball mill and mixed for 24 hours. To this, polyvinyl alcohol 10 wt% aqueous solution 54.0 g
And 1.0 g of a 10 wt% solution of alumina sol were added and mixed for another hour. After dipping a honeycomb structure made of inorganic fibers into the obtained slurry, remove excess solution with an air blower and dry at room temperature, then at 120 ° C.
And dried at 550 ° C. for 1 hour. By repeating this operation, a predetermined amount of the adsorbent was coated on the honeycomb structure to obtain the honeycomb adsorbent of Example 11.

【0055】[0055]

【比較例7】実施例1の粉末のかわりに比較例1の粉末
を用いる以外は、実施例11と同様の方法で比較例7の
ハニカム型吸着剤を得た。評価条件6で実施例11、比
較例7の吸着剤の吸着性能を評価した。表3に、各ハニ
カム型吸着剤の、吸着剤コ−ティング量と、破過時間、
吸着量を示す。実施例11はハニカム構造体上にコ−テ
ィングした形状でも高い吸着除去性能を示す
Comparative Example 7 A honeycomb type adsorbent of Comparative Example 7 was obtained in the same manner as in Example 11 except that the powder of Comparative Example 1 was used instead of the powder of Example 1. The adsorption performance of the adsorbents of Example 11 and Comparative Example 7 was evaluated under evaluation condition 6. Table 3 shows the amount of adsorbent coating and the breakthrough time of each honeycomb type adsorbent.
Indicates the amount of adsorption. Example 11 shows high adsorption / removal performance even in the shape coated on the honeycomb structure.

【0056】[0056]

【表3】 [Table 3]

【0057】[評価条件6] SV:15000 /h F :2.11 L/min 悪臭ガス組成:トルエン100ppm,H2O3.3
%,空気バランス 吸着剤温度:50 ℃ 吸着時間:20 min
[Evaluation condition 6] SV: 15000 / h F: 2.11 L / min Odorous gas composition: Toluene 100 ppm, H 2 O 3.3
%, Air balance Adsorbent temperature: 50 ° C Adsorption time: 20 min

【0058】[0058]

【実施例12】白金含有量3.4wt%のジニトロアン
ミン白金硝酸塩溶液に、実施例11のハニカム型吸着剤
を浸せきしたのち、余分な溶液をエアブロ−でとりのぞ
いてから、120℃で乾燥し、500℃で2時間焼成
し、実施例12のPt担持Ce−ZSM5吸着剤触媒を
えた。実施例12のPt担持量は1.0wt%である。
実施例12の吸着剤触媒を、上記評価条件6で吸着性能
の評価を行った後、下記評価条件7で脱離性能の評価を
行った。吸着時の、トルエン平均浄化率は92.1%で
あった。脱離時には、180℃の空気を導入すると、吸
着されていたトルエンは燃焼を開始した。出口ガス中の
トルエン濃度は約6ppmであった。
Example 12 The honeycomb type adsorbent of Example 11 was dipped in a dinitroammine platinum nitrate solution having a platinum content of 3.4 wt%, the excess solution was removed with an air blower, and then dried at 120 ° C. Calcination at 500 ° C. for 2 hours gave the Pt-supported Ce-ZSM5 adsorbent catalyst of Example 12. The amount of Pt supported in Example 12 is 1.0 wt%.
The adsorption performance of the adsorbent catalyst of Example 12 was evaluated under the above evaluation conditions 6, and then the desorption performance was evaluated under the following evaluation conditions 7. The average purification rate of toluene at the time of adsorption was 92.1%. At the time of desorption, when air at 180 ° C. was introduced, the adsorbed toluene started to burn. The toluene concentration in the outlet gas was about 6 ppm.

【0059】[評価条件6] SV:15000 /h F :2.11 L/min 脱離ガス組成:空気 入口ガス温度:180 ℃[Evaluation condition 6] SV: 15000 / h F: 2.11 L / min Desorbed gas composition: air Inlet gas temperature: 180 ° C.

【0060】[0060]

【実施例13】本発明の吸着剤を用いて有効に悪臭処理
を行うための、2塔式悪臭処理装置フロ−を図6に示
す。ペレット状に成型した吸着剤は吸着塔1aおよび吸
着塔1bに充填される。まず、吸着塔1aに悪臭成分を
含んだ排ガスを9のラインより導入し、浄化されたガス
は10のラインより排出される。吸着性能が寿命に達す
るころ、バルブ8a,8b,8cを切替えて、吸着塔1
bに排ガスを導入する。吸着塔1bで排ガスを処理して
いる間、吸着塔1aに加熱された脱離再生用ガス(空
気)をライン11から導入し、脱離、再生を行う。濃縮
された悪臭成分を含んだガスは、ブロア7を介しヒ−タ
6bで加熱され触媒燃焼式処理装置4に導入され、燃焼
浄化され、13より排出される。この排ガスの熱は、熱
交換器5a,5bで熱回収される。本システムでは、吸
着剤の形状は、ハニカム型でも有効に働く。
[Embodiment 13] FIG. 6 shows a two-column type malodor processing apparatus flow for effectively treating malodor using the adsorbent of the present invention. The adsorbent formed into pellets is packed in the adsorption tower 1a and the adsorption tower 1b. First, the exhaust gas containing a malodorous component is introduced into the adsorption tower 1a through a line 9 and the purified gas is discharged through a line 10. When the adsorption performance reaches the end of its life, the valves 8a, 8b, 8c are switched to the adsorption tower 1
Exhaust gas is introduced into b. While the exhaust gas is being treated in the adsorption tower 1b, the desorption / regeneration gas (air) heated in the adsorption tower 1a is introduced from the line 11 to perform desorption / regeneration. The gas containing the concentrated malodorous component is heated by the heater 6b through the blower 7, introduced into the catalytic combustion type processing device 4, burned and purified, and discharged from 13. The heat of this exhaust gas is recovered by the heat exchangers 5a and 5b. In this system, the shape of the adsorbent works effectively even if it is a honeycomb type.

【0061】[0061]

【実施例14】本発明の吸着剤を用いて有効に悪臭処理
を行うための、ロ−タ式悪臭処理装置フロ−を図7に示
す。吸着塔1には、吸着剤が担持されたハニカム型の円
筒状の回転体(吸着剤ロ−タ2)が設置されている。ロ
−タ2は、処理ガスをライン9より流通する吸着部と、
加熱した再生用ガス空気をライン11より導入する脱離
部と、冷却用空気をライン14より導入する冷却部を周
方向に形成し、ロ−タを回転させながらロ−タの各部分
が順次この3個所をまわることによって吸着、脱離、再
生を繰り返す。冷却に用いたガスはヒ−タ6bで加熱さ
れ脱離部に導入される。脱離部より排出された悪臭の濃
縮されたガスは、ブロア7を介して、ヒ−タ6aで加熱
され、触媒燃焼式処理装置4に導入され、燃焼浄化さ
れ、排出される。この排ガスの熱は、熱交換器5a,5
bで熱回収され、脱離ガス、悪臭の濃縮されたガスを加
熱する。
[Embodiment 14] FIG. 7 shows a rotor type malodor processing apparatus flow for effectively treating malodor using the adsorbent of the present invention. In the adsorption tower 1, a honeycomb-shaped cylindrical rotating body (adsorbent rotor 2) carrying an adsorbent is installed. The rotor 2 has an adsorbing section through which the processing gas flows through the line 9,
A desorption part for introducing heated regeneration gas air from the line 11 and a cooling part for introducing cooling air from the line 14 are formed in the circumferential direction, and each part of the rotor is sequentially rotated while rotating the rotor. By advancing these three locations, adsorption, desorption and regeneration are repeated. The gas used for cooling is heated by the heater 6b and introduced into the desorption section. The malodorous concentrated gas discharged from the desorption section is heated by the heater 6a through the blower 7, introduced into the catalytic combustion type processing device 4, and is burned and purified, and discharged. The heat of this exhaust gas is transferred to the heat exchangers 5a, 5a.
Heat is recovered in b, and the desorbed gas and the odorous concentrated gas are heated.

【0062】[0062]

【実施例15】本発明の吸着剤を用いて有効に悪臭処理
を行うための、ロ−タ式悪臭処理装置フロ−を図8に示
す。吸着塔1には、吸着剤が担持されたハニカム型の円
筒状の回転体(吸着剤ロ−タ2)が設置されている。ロ
−タ2の脱離部の出口には燃焼触媒3が設置されてい
る。ロ−タ2は、処理ガスをライン9より流通する吸着
部と、加熱した再生用空気をライン11より導入する脱
離部と、冷却用空気をライン14より導入する冷却部を
周方向に形成し、ロ−タを回転させながらロ−タの各部
分が順次この3個所をまわることによって吸着、脱離、
再生を繰り返す。脱離部では、出口に設置された燃焼触
媒3によって、悪臭の濃縮されたガスは燃焼浄化され、
排出される。この排ガスの熱は、熱交換器5で熱回収さ
れ、脱離用ガスを加熱する。
[Embodiment 15] FIG. 8 shows a rotor type malodor processing apparatus flow for effectively treating malodor using the adsorbent of the present invention. In the adsorption tower 1, a honeycomb-shaped cylindrical rotating body (adsorbent rotor 2) carrying an adsorbent is installed. A combustion catalyst 3 is installed at the outlet of the desorption part of the rotor 2. The rotor 2 has, in the circumferential direction, an adsorbing section through which a processing gas flows through a line 9, a desorbing section through which heated regeneration air is introduced through a line 11, and a cooling section that introduces cooling air through a line 14. Then, while rotating the rotor, each part of the rotor sequentially turns around these three parts to adsorb, desorb,
Repeat playback. In the desorption section, the combustion catalyst 3 installed at the outlet burns and purifies the odor-rich gas.
Is discharged. The heat of this exhaust gas is recovered by the heat exchanger 5 to heat the desorption gas.

【0063】[0063]

【実施例16】悪臭処理用吸着剤と燃焼触媒を一体化し
た本発明の吸着剤触媒を用いて有効に悪臭処理を行うた
めの、2塔式悪臭処理装置フロ−を図9に示す。ペレッ
ト状に成型した吸着剤触媒は吸着触媒等塔15aおよび
吸着触媒塔15bに充填される。まず、吸着触媒塔15
aに悪臭成分を含んだ排ガスを9のラインより導入し、
浄化されたガスは10のラインより排出される。吸着性
能が寿命に達するころ、バルブ8a,8b,8cを切替
えて、吸着触媒塔15bに排ガスを導入する。吸着触媒
塔15bで排ガスを処理している間、吸着触媒塔15a
に加熱された脱離再生用ガス(空気)をライン11から
導入し、脱離、再生と同時に触媒で悪臭成分は燃焼浄化
され、13より排出される。この排ガスの熱は、熱交換
器5で熱回収される。この場合、吸着触媒塔内の吸着剤
触媒は、ペレット状吸着剤とペレット状燃焼触媒を混合
して充填してもよいし、吸着剤粉末と燃焼触媒粉末を混
合したものをペレット状に成型したものでも良い。ま
た、形状はハニカム型でもよい。
[Embodiment 16] FIG. 9 shows a two-tower type malodor processing device flow for effectively carrying out malodor processing by using the adsorbent catalyst of the present invention in which the malodor processing adsorbent and the combustion catalyst are integrated. The adsorbent catalyst formed into pellets is packed in the adsorption catalyst tower 15a and the adsorption catalyst tower 15b. First, the adsorption catalyst tower 15
Introduce exhaust gas containing malodorous component to a from 9 lines,
The purified gas is discharged from the line 10. When the adsorption performance reaches the end of its life, the valves 8a, 8b, 8c are switched to introduce the exhaust gas into the adsorption catalyst tower 15b. While processing the exhaust gas in the adsorption catalyst tower 15b, the adsorption catalyst tower 15a
The heated desorption / regeneration gas (air) is introduced from the line 11, and at the same time as the desorption / regeneration, the malodorous components are burnt and purified by the catalyst and discharged from 13. The heat of this exhaust gas is recovered by the heat exchanger 5. In this case, the adsorbent catalyst in the adsorption catalyst tower may be filled by mixing the pellet-shaped adsorbent and the pellet-shaped combustion catalyst, or a mixture of the adsorbent powder and the combustion catalyst powder is molded into pellets. Anything is fine. Further, the shape may be a honeycomb type.

【0064】[0064]

【実施例17】悪臭処理用吸着剤と燃焼触媒を一体化し
た本発明の吸着剤触媒を用いて有効に悪臭処理を行うた
めの、ロ−タ式悪臭処理装置フロ−を図10に示す。吸
着触媒塔15には、吸着剤触媒が担持されたハニカム型
の円筒状の回転体(吸着剤触媒ロ−タ16)が設置され
ている。ロ−タ16は、処理ガスをライン9より流通す
る吸着部と、加熱した再生用ガス空気をライン11より
導入する脱離部と、冷却用空気をライン14より導入す
る冷却部を周方向に形成し、ロ−タを回転させながらロ
−タの各部分が順次この3個所をまわることによって吸
着、脱離、再生を繰り返す。冷却に用いたガスは、ブロ
ア7を介して、ヒ−タ6で加熱され、脱離再生用ガスと
してロ−タ16の脱離部に導入される。脱離部では、脱
離、再生と同時に触媒で悪臭成分が燃焼浄化され、13
より排出される。この排ガスの熱は、熱交換器5で熱回
収され、脱離ガス、悪臭の濃縮されたガスを加熱する。
[Embodiment 17] FIG. 10 shows a rotor-type malodor processing device flow for effectively carrying out malodor processing using the adsorbent catalyst of the present invention in which the malodor processing adsorbent and the combustion catalyst are integrated. In the adsorption catalyst tower 15, a honeycomb-shaped cylindrical rotating body (adsorbent catalyst rotor 16) carrying an adsorbent catalyst is installed. The rotor 16 has an adsorbing section through which the processing gas flows through the line 9, a desorbing section through which heated regeneration gas air is introduced through the line 11, and a cooling section that introduces cooling air through the line 14 in the circumferential direction. As the rotor is rotated, each part of the rotor is sequentially rotated around these three parts to repeat adsorption, desorption and regeneration. The gas used for cooling is heated by the heater 6 through the blower 7 and introduced into the desorption section of the rotor 16 as desorption regeneration gas. In the desorption section, the odorous components are burnt and purified by the catalyst at the same time as desorption and regeneration.
Is more exhausted. The heat of the exhaust gas is recovered by the heat exchanger 5, and heats the desorbed gas and the odorous concentrated gas.

【0065】[0065]

【発明の効果】本発明によリ、希土類元素から選ばれた
1種以上の元素を含有するゼオライトを含んでなる悪臭
処理用吸着剤、および排ガス中の揮発性有機溶剤を主成
分とする悪臭成分を前記悪臭処理用吸着剤に吸着させた
後、間欠的に吸着剤を加熱し、吸着剤から濃縮された悪
臭成分を脱離しで悪臭成分を処理方法を提供する。前記
悪臭処理用吸着剤を用いることにより、水蒸気存在下で
も悪臭成分の高い吸着性能を示し、かつその吸着剤から
の脱離を250℃以下で行うことができ、吸着再生の繰
返しによって性能低下の少なく、信頼性高い悪臭処理を
効果的に行うことができる。
According to the present invention, a malodor-treating adsorbent containing a zeolite containing at least one element selected from rare earth elements, and a malodor mainly containing a volatile organic solvent in exhaust gas. A method for treating a malodorous component by adsorbing the components to the malodorous treatment adsorbent and then intermittently heating the adsorbent to remove the concentrated malodorous component from the adsorbent. By using the malodor processing adsorbent, a high malodor component adsorption performance can be exhibited even in the presence of water vapor, and desorption from the adsorbent can be carried out at 250 ° C. or lower. A small amount of highly reliable odor can be effectively treated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸着剤及び比較吸着剤の破過時間と吸
着量を示す図。
FIG. 1 is a diagram showing a breakthrough time and an adsorption amount of an adsorbent of the present invention and a comparative adsorbent.

【図2】本発明の吸着剤及び比較吸着剤の破過時間と吸
着量を示す図。
FIG. 2 is a diagram showing breakthrough times and adsorption amounts of the adsorbents of the present invention and comparative adsorbents.

【図3】本発明の吸着剤及び比較吸着剤の温度に対する
脱離特性を示す図。
FIG. 3 is a diagram showing desorption characteristics with respect to temperature of the adsorbent of the present invention and the comparative adsorbent.

【図4】本発明の吸着剤の担持元素のイオン交換率と破
過時間及び吸着量の関係を示す図。
FIG. 4 is a diagram showing a relationship among an ion exchange rate of a supported element of the adsorbent of the present invention, a breakthrough time and an adsorption amount.

【図5】本発明の吸着剤及び比較吸着剤の、吸着脱離冷
却を繰り返したときのトルエン平均除去率の変化を示す
図。
FIG. 5 is a diagram showing changes in the average removal rate of toluene of the adsorbent of the present invention and the comparative adsorbent when adsorption and desorption cooling are repeated.

【図6】本発明の吸着剤を用いて有効に悪臭処理を行う
ための、2塔式悪臭処理装置フロ−を示す図。
FIG. 6 is a view showing a two-column type malodor processing device flow for effectively malodor processing using the adsorbent of the present invention.

【図7】本発明の吸着剤を用いて有効に悪臭処理を行う
ための、ロ−タ式悪臭処理装置フロ−を示す図。
FIG. 7 is a view showing a rotor-type malodor processing device flow for effectively malodor processing by using the adsorbent of the present invention.

【図8】本発明の吸着剤を用いて有効に悪臭処理を行う
ための、ロ−タ式悪臭処理装置フロ−を示す図。
FIG. 8 is a diagram showing a rotor type malodor processing device flow for effectively treating malodor using the adsorbent of the present invention.

【図9】本発明の吸着剤触媒を用いて有効に悪臭処理を
行うための、2塔式悪臭処理装置フロ−を示す図。
FIG. 9 is a view showing a two-column type malodor processing device flow for effectively malodor treatment using the adsorbent catalyst of the present invention.

【図10】本発明の吸着剤触媒を用いて有効に悪臭処理
を行うための、ロ−タ式悪臭処理装置フロ−を示す図。
FIG. 10 is a view showing a rotor type malodor processing device flow for effectively malodor processing by using the adsorbent catalyst of the present invention.

【符号の説明】 1,1a,1b…吸着塔、2…吸着剤ロ−タ、3…燃焼
触媒、4…触媒燃焼式処理装置、5a,5b…熱交換
器、6a,6b…ヒ−タ、7…ブロア、8a,8b,8
c,8d…切り替えバルブ、9…排ガス導入ライン、1
0…浄化ガス排出ライン、11…脱離再生用ガスライ
ン、12…脱離濃縮ガスライン、13…浄化ガス排出ラ
イン、14…冷却用ガスライン、15…吸着触媒塔、1
6…吸着剤触媒ロ−タ
[Description of symbols] 1, 1a, 1b ... Adsorption tower, 2 ... Adsorbent rotor, 3 ... Combustion catalyst, 4 ... Catalytic combustion type processing device, 5a, 5b ... Heat exchanger, 6a, 6b ... Heater , 7 ... Blower, 8a, 8b, 8
c, 8d ... Switching valve, 9 ... Exhaust gas introduction line, 1
0 ... Purified gas discharge line, 11 ... Desorption / regeneration gas line, 12 ... Desorption concentrated gas line, 13 ... Purified gas discharge line, 14 ... Cooling gas line, 15 ... Adsorption catalyst tower, 1
6 ... Adsorbent catalyst rotor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 一柳 宏 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 山崎 均 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 貞方 知彦 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshio Yamashita 7-1, 1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Hiroshi Ichiyanagi 6-9, Takara-cho, Kure-shi, Hiroshima Babcock Hitachi Ltd. Kure Factory (72) Inventor Hitoshi Yamazaki 3 36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Research Institute (72) Tomohiko Sadakata 3 36 Takaracho Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Institute

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素から選ばれた1種以上の元素
を含有するゼオライトを含んでなることを特徴とする悪
臭処理用吸着剤。
1. An adsorbent for treating malodor, which comprises a zeolite containing at least one element selected from rare earth elements.
【請求項2】 ゼオライトがMFI構造を有するH−Z
SM5であることを特徴とする請求項1記載の悪臭処理
用吸着剤。
2. The HZ in which the zeolite has an MFI structure.
The malodor processing adsorbent according to claim 1, which is SM5.
【請求項3】 希土類元素のゼオライトに対する含有量
が、元素の重量%で0.1〜10.0wt%であること
を特徴とする請求項1乃至2のいずれか1項記載の悪臭
処理用吸着剤。
3. The adsorption for malodor treatment according to claim 1, wherein the content of the rare earth element with respect to the zeolite is 0.1 to 10.0 wt% in terms of weight% of the element. Agent.
【請求項4】 希土類元素をイオン交換法によりゼオラ
イトに含有させたもののイオン交換率が10%以上15
0%以下であることを特徴とする請求項1乃至3のいず
れか1項記載の悪臭処理用吸着剤。
4. The ion exchange rate of a rare earth element contained in zeolite by an ion exchange method is 10% or more 15
The malodor processing adsorbent according to any one of claims 1 to 3, which is 0% or less.
【請求項5】 請求項1乃至4のいずれか1項記載の吸
着剤と酸化触媒とを含むことを特徴とする悪臭処理用吸
着剤触媒。
5. An adsorbent catalyst for malodor treatment, comprising the adsorbent according to any one of claims 1 to 4 and an oxidation catalyst.
【請求項6】 酸化触媒が、Pt、Pd、Rh、Mn,
Fe,Co,Ni,Cuから選ばれた1種以上の元素の
金属又は金属酸化物からなり、Pt、Pd、Rhの元素
から選ばれた1種以上の場合は金属で0.05〜5.0
wt%含み、Mn,Fe,Co,Ni,Cuから選ばれ
た1種以上の場合は金属酸化物で1.0〜20.0wt
%含むことを特徴とする請求項5項記載の悪臭処理用吸
着剤触媒。
6. The oxidation catalyst is Pt, Pd, Rh, Mn,
It consists of a metal or a metal oxide of one or more elements selected from Fe, Co, Ni, and Cu, and in the case of one or more elements selected from the elements of Pt, Pd, and Rh, 0.05 to 5. 0
In the case of one or more selected from Mn, Fe, Co, Ni, and Cu, the content of the metal oxide is 1.0 to 20.0 wt.
% Of the adsorbent catalyst for malodor treatment according to claim 5.
【請求項7】 揮発性有機溶剤を含有するガスを請求項
1乃至4のいずれか1項記載の吸着剤または請求項5乃
至6のいずれか1項記載の吸着剤触媒に吸着させる工程
と、吸着剤を加熱して悪臭成分を吸着剤から脱離、除去
する工程を含むことを特徴とする悪臭処理方法。
7. A step of adsorbing a gas containing a volatile organic solvent to the adsorbent according to any one of claims 1 to 4 or the adsorbent catalyst according to any one of claims 5 to 6, A malodor processing method comprising a step of heating an adsorbent to remove and remove a malodorous component from the adsorbent.
【請求項8】 吸着剤から脱離することによって濃縮し
た悪臭成分を、燃焼触媒を通すことによって無臭化する
ことを特徴とする請求項7記載の悪臭処理方法。
8. The malodor processing method according to claim 7, wherein the malodorous component concentrated by being desorbed from the adsorbent is deodorized by passing it through a combustion catalyst.
【請求項9】 吸着剤を担持したハニカム型の筒状の回
転体を横断面方向に少なくとも3つの区画に仕切り、1
つの区画に悪臭成分を含む被処理ガスを通し、他の1つ
の区画に悪臭成分脱離用の加熱ガスを通し、他の1つの
区画に吸着剤冷却用の冷熱ガスを通すようにし、前記回
転体の回転に伴い、各区画は冷熱ガスの通過と被処理ガ
スの通過及び加熱ガスの通過を順次受け、悪臭成分の吸
着と脱離とが行うようにしたことを特徴とする悪臭処理
方法。
9. A honeycomb-shaped tubular rotating body carrying an adsorbent is partitioned into at least three sections in the cross-sectional direction, and 1
The gas to be treated containing the malodorous component is passed through one compartment, the heating gas for deodorizing the malodorous ingredient is passed through the other compartment, and the cold heat gas for cooling the adsorbent is passed through the other compartment. A malodor processing method characterized in that each compartment is sequentially subjected to the passage of cold gas, the passage of gas to be treated and the passage of heating gas as the body rotates to adsorb and desorb malodorous components.
【請求項10】 請求項9記載の悪臭処理方法におい
て、前記加熱ガスを通すことによって吸着剤から脱離さ
せた悪臭成分を、該加熱ガスと一緒に燃焼触媒に接触さ
せ、悪臭成分を無臭化することを特徴とする請求項9記
載の悪臭処理方法。
10. The malodor processing method according to claim 9, wherein the malodorous component released from the adsorbent by passing the heating gas is brought into contact with the combustion catalyst together with the heating gas to deodorize the malodorous component. The malodor processing method according to claim 9, wherein
JP8050513A 1996-03-07 1996-03-07 Adsorbent for treating malodor and malodor treatment method using the same Pending JPH09239263A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8050513A JPH09239263A (en) 1996-03-07 1996-03-07 Adsorbent for treating malodor and malodor treatment method using the same
KR1019970007416A KR970064708A (en) 1996-03-07 1997-03-06 Deodorant adsorbent and odor removal method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8050513A JPH09239263A (en) 1996-03-07 1996-03-07 Adsorbent for treating malodor and malodor treatment method using the same

Publications (1)

Publication Number Publication Date
JPH09239263A true JPH09239263A (en) 1997-09-16

Family

ID=12861061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8050513A Pending JPH09239263A (en) 1996-03-07 1996-03-07 Adsorbent for treating malodor and malodor treatment method using the same

Country Status (2)

Country Link
JP (1) JPH09239263A (en)
KR (1) KR970064708A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101589A1 (en) * 2002-05-30 2003-12-11 Tokyo Electron Limited Dehumidification system and dehumidification method
JP2007069152A (en) * 2005-09-08 2007-03-22 Mitsubishi Motors Corp Hc adsorbent and deterioration detecting device for hc adsorbent
JP2007521344A (en) * 2003-06-20 2007-08-02 フォード モーター カンパニー Method and apparatus for using VOC as engine fuel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020037609A (en) * 2000-11-15 2002-05-22 이후근 The method of manufacturing about adsorbent for harmful gas removal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101589A1 (en) * 2002-05-30 2003-12-11 Tokyo Electron Limited Dehumidification system and dehumidification method
JP2004000824A (en) * 2002-05-30 2004-01-08 Tokyo Electron Ltd Dehumidifier and dehumidification method
US7217313B2 (en) 2002-05-30 2007-05-15 Tokyo Electron Limited Dehumidification system and dehumidification method
JP2007521344A (en) * 2003-06-20 2007-08-02 フォード モーター カンパニー Method and apparatus for using VOC as engine fuel
JP4741368B2 (en) * 2003-06-20 2011-08-03 フォード モーター カンパニー Method and apparatus for using VOC as engine fuel
JP2007069152A (en) * 2005-09-08 2007-03-22 Mitsubishi Motors Corp Hc adsorbent and deterioration detecting device for hc adsorbent

Also Published As

Publication number Publication date
KR970064708A (en) 1997-10-13

Similar Documents

Publication Publication Date Title
KR100388394B1 (en) Catalyst for exhaust gas purification and its manufacturing method
KR102504525B1 (en) Cold start catalyst and its use in exhaust systems
CN107250497B (en) Passive NOx adsorber
RU2674020C2 (en) Nox trap composition
RU2612136C2 (en) Cold start-up catalyst and its application in exhaust systems
US6912847B2 (en) Diesel engine system comprising a soot filter and low temperature NOx trap
EP0593898B1 (en) Exhaust gas conversion method and apparatus using thermally stable zeolites
JP2018528846A (en) Passive NOx adsorbent
JPH07144128A (en) Hydrocarbon adsorbent, catalyst and device for purifying exhaust gas
KR20160094997A (en) An exhaust gas catalyst containing two different noble metal-molecular sieve catalysts
JP2009518162A (en) Hydrothermally stable Ag-zeolite hydrocarbon trap for olefinic hydrocarbon small molecules
JPH07303834A (en) Molded article made of continuous highly strong base body and its preparation
JP2800499B2 (en) Hydrocarbon adsorbent
KR20160083886A (en) Three-way catalyst comprising a silver-containing extruded zeolite substrate and its use in exhaust systems
JP3500675B2 (en) Exhaust gas purification catalyst
JPH07102957A (en) Device and method for exhaust emission control
JPH0796178A (en) Adsorbent of hydrocarbon in exhaust gas from internal combustion engine
JPH09239263A (en) Adsorbent for treating malodor and malodor treatment method using the same
WO2008018388A1 (en) Nitrogen oxides adsorber and process for production thereof
JPH07332073A (en) Exhaust emission control device
JPH08243383A (en) Hydrphobic deodorant and method for regenerating same
JPH05337363A (en) Adsorbing material for carbon monoxide in inert gas
JPH08229387A (en) Adsorbent integrated with hydrocarbon combustion catalytic function and purifying method of hydrocarbon in internal combustion engine exhaust gas
JPH09225265A (en) Exhaust gas purifying device
JPH08308917A (en) Deodorizing apparatus