JPH0922922A - Interconnection structure to pt electrode on sic - Google Patents

Interconnection structure to pt electrode on sic

Info

Publication number
JPH0922922A
JPH0922922A JP7168736A JP16873695A JPH0922922A JP H0922922 A JPH0922922 A JP H0922922A JP 7168736 A JP7168736 A JP 7168736A JP 16873695 A JP16873695 A JP 16873695A JP H0922922 A JPH0922922 A JP H0922922A
Authority
JP
Japan
Prior art keywords
electrode
layer
sic
wiring
ptsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7168736A
Other languages
Japanese (ja)
Inventor
Eiji Kamiyama
栄治 神山
Kazuhiro Fusegawa
和宏 府瀬川
Teruzo Ito
輝三 伊藤
Yasuyoshi Tomiyama
能省 富山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Mitsubishi Materials Corp
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU, CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Mitsubishi Materials Corp filed Critical CHIKYU KANKYO SANGYO GIJUTSU
Priority to JP7168736A priority Critical patent/JPH0922922A/en
Publication of JPH0922922A publication Critical patent/JPH0922922A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02123Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body inside the bonding area
    • H01L2224/02125Reinforcing structures
    • H01L2224/02126Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05009Bonding area integrally formed with a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05558Shape in side view conformal layer on a patterned surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the release of a Pt electrode from SiC without deteriorating the resistivity of the electrode when an interconnection material having heat resistance is provided at the electrode and used in a high-temperature environment. SOLUTION: The structure for interconnecting a Pt electrode 12 formed on SiC 11 is provided. An Au layer 13 and a nitride layer 14 like TiNx are sequentially formed in this order on the electrode 12, and an interconnection material 15 made of a high melting point metal like Mo, W or its silicide is connected to the layer 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は150℃以上800℃以
下の高温下で動作する耐熱型集積回路の配線構造に関す
る。更に詳しくはSiC上に設けられたPt電極への配
線構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring structure of a heat-resistant integrated circuit which operates at a high temperature of 150 ° C. to 800 ° C. More specifically, it relates to a wiring structure to a Pt electrode provided on SiC.

【0002】[0002]

【従来の技術】従来、この種の耐熱性のある電極構造と
して、p型SiCと、このSiC上のPt電極と、これ
らの間に設けられ空乏領域を有するp型SiCのドープ
層とにより構成された抵抗性電極構造(ohmic contact
structure)が開示されている(米国特許第5,32
3,022号)。この抵抗性電極構造では、ドープ層が
p型SiCとPt電極との間で抵抗性挙動(ohmic beha
vior)を示すに十分なp型のドーパント濃度を有する。
この抵抗性電極構造を高温環境下で使用すると、SiC
とPtの間でPtSixの生成反応が生じるけれども、
この反応で生じたPtSixは電極の抵抗性を悪化させ
ない特長がある。このPt電極に耐熱性のある配線材を
配線する場合に、配線材としてMoやWのような高融点
金属又はそのケイ化物(silicide)が考えられる。
2. Description of the Related Art Conventionally, as this kind of heat-resistant electrode structure, a p-type SiC, a Pt electrode on this SiC, and a p-type SiC doped layer having a depletion region provided between them are used. Resistive electrode structure (ohmic contact
structure) is disclosed (US Pat. No. 5,32).
3,022). In this resistive electrode structure, the doped layer has a resistive behavior between the p-type SiC and the Pt electrode.
vior) with a sufficient p-type dopant concentration.
When this resistive electrode structure is used in a high temperature environment, SiC
Although a PtSi x formation reaction occurs between Pt and Pt,
The PtSi x produced in the reaction has an advantage that does not deteriorate the resistance of the electrode. When wiring a wiring material having heat resistance to the Pt electrode, a refractory metal such as Mo or W or a silicide thereof can be considered as the wiring material.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの配線
材をPt電極に配線した場合には、高温環境下で使用す
ると、配線材成分とPtが反応してPt電極中に配線材
成分が固溶し、更に高温環境下で使用し続けると、配線
材成分がSiCとPt電極の界面まで達し、電極の抵抗
性を悪化させるか、或いは電極がSiCから剥離し易く
なる不具合がある。
However, when these wiring materials are wired to the Pt electrode and used in a high temperature environment, the wiring material component reacts with Pt and the wiring material component is solidified in the Pt electrode. When melted and continued to be used in a high temperature environment, there is a problem that the wiring material component reaches the interface between the SiC and the Pt electrode to deteriorate the resistance of the electrode, or the electrode is easily separated from the SiC.

【0004】例えば、p型SiC上に形成されたPt電
極に配線材として高融点金属のMoを用いて配線する
と、Mo/Pt/SiCの構造となる。この構造が高温
環境下に曝される初期の段階では、各界面において、M
o/{Mo,Pt}/{PtSix+C}/SiCを生
じて4層構造となる。この段階ではSiCとPt電極の
界面ではPtSixが存在するため、Pt電極の電気的
特性は損なわれない。しかし長期にわたって高温環境下
に曝されると、MoはSiCとPt電極の界面まで到達
する。PtSix中のSiはMoとケイ化物を作った方
が熱力学的に安定なため、界面のPtSix/SiCの
構造は破壊され、電気的特性が劣化する。この現象は他
の高融点金属、例えばW、Ti、Co、Ni、Taなど
も同様に生じる。
[0004] For example, when wiring of Pt electrode formed on p-type SiC using Mo which is a refractory metal as a wiring material, a structure of Mo / Pt / SiC is obtained. At the initial stage when this structure is exposed to a high temperature environment, at each interface, M
o / {Mo, Pt} occurs a / {PtSi x + C} / SiC becomes a four-layer structure. Since at this stage the presence of PtSi x at the interface between SiC and Pt electrodes, the electrical properties of the Pt electrode is not impaired. However, when exposed to a high temperature environment for a long period of time, Mo reaches the interface between the SiC and Pt electrodes. Since Si in PtSi x is thermodynamically stable when Si is formed with Mo, the PtSi x / SiC structure at the interface is destroyed and the electrical characteristics deteriorate. This phenomenon similarly occurs with other refractory metals, such as W, Ti, Co, Ni, and Ta.

【0005】また、p型SiC上に形成されたPt電極
に配線材として高融点金属のケイ化物、例えばWSix
を用いて配線する場合には、膜のもつストレスを減少さ
せるために余剰のSiを一般的に含ませて、WSi2+x
/Pt/SiCの構造にする。この場合、高温環境下に
曝される初期段階でWSi中の余剰SiがPtと反応し
て失われ、配線材のWSi膜は膜のもつストレスにより
剥離し易くなる。これを回避するためにWSiを被着す
る前のPt/SiCの状態で熱処理してPtSix/S
iCにしている。しかしこの場合でもWSi膜の剥がれ
を生じない代わりに長期にわたって高温環境下に曝した
場合に、WとPtの相互拡散により上述したMoと同様
に電気的特性が劣化する。
Further, a silicide of a refractory metal such as WSi x is used as a wiring material for a Pt electrode formed on p-type SiC.
In the case of wiring using WSi 2 + x , excess Si is generally included in order to reduce the stress of the film.
/ Pt / SiC structure. In this case, excess Si in WSi reacts with Pt and is lost in the initial stage of exposure to a high temperature environment, and the WSi film of the wiring material is easily peeled off due to the stress of the film. In order to avoid this, heat treatment is performed in the state of Pt / SiC before deposition of WSi to obtain PtSi x / S.
iC. However, even in this case, when the WSi film is not peeled off and is exposed to a high temperature environment for a long period of time, the electrical characteristics are deteriorated due to the mutual diffusion of W and Pt, as with Mo described above.

【0006】これらの点を解消するために、上記配線材
(例えばWSix)とPt電極の間にTiNxのようなバ
リアメタル層を介在させて、WSix/TiNx/Pt/
SiCの構造にすることにより、900℃の温度下でも
WSixとPt間の反応を抑制するようにすることが試
みられた。しかしこの場合でも550℃程度の温度でP
t電極が{Pt,PtSix}になって、WSix/Ti
x/{Pt,PtSix}/SiCの構造に変化し、P
tの存在がTiNxのバリア機能を低下させる不具合が
あった。本発明の目的は、Pt電極に耐熱性のある配線
材を設けて高温環境下で使用したときに、Pt電極の抵
抗性を悪化させず、かつPt電極がSiCから剥離しな
いSiC上のPt電極への配線構造を提供することにあ
る。
In order to solve these problems, a barrier metal layer such as TiN x is interposed between the wiring material (for example, WSi x ) and the Pt electrode, and WSi x / TiN x / Pt /
An attempt was made to suppress the reaction between WSi x and Pt even at a temperature of 900 ° C. by adopting a structure of SiC. However, even in this case, at a temperature of about 550 ° C, P
The t electrode becomes {Pt, PtSi x }, and WSi x / Ti
Change to a structure of N x / {Pt, PtSi x } / SiC, P
There is a problem that the presence of t deteriorates the barrier function of TiN x . An object of the present invention is to provide a Pt electrode with a heat-resistant wiring material and not to deteriorate the resistance of the Pt electrode and to prevent the Pt electrode from peeling off from the SiC when used in a high temperature environment. To provide a wiring structure to the.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すようにSiC11上に形成されたPt電極1
2に配線する構造の改良であって、このPt電極12上
にAu層13と窒化物層14とがこの順に形成され、こ
の窒化物層14に高融点金属又はそのケイ化物からなる
配線材15が接続されたことを特徴とする。このSiC
11はp型SiC及びn型SiCを含むが、p型SiC
としては、α−SiC、β−SiCのいずれでもよい。
窒化物層14としては、TiNx,TaNx,ZrNx
VNx又はHfNxの層が挙げられる。また高融点金属と
しては、融点が950℃以上のMo、W、Ti、Co、
Ni、Taなどが挙げられ、高融点金属のケイ化物とし
ては、共晶温度が950℃以上のケイ化モリブデン、ケ
イ化タングステン、ケイ化チタン、ケイ化コバルト、ケ
イ化ニッケル、ケイ化タンタル等が例示される。Pt電
極12の厚さは0.001〜1μmであることが、Au
層13の厚さは0.1〜5μmであることが、窒化物層
14の厚さは0.05〜0.3μmであることが、また
配線材15の厚さは0.1〜2μmであることがそれぞ
れ好ましい。
The invention according to claim 1 is
As shown in FIG. 1, a Pt electrode 1 formed on SiC 11
2 is an improvement in the structure for wiring, in which an Au layer 13 and a nitride layer 14 are formed in this order on the Pt electrode 12, and a wiring material 15 made of a refractory metal or a silicide thereof is formed on the nitride layer 14. Is connected. This SiC
11 includes p-type SiC and n-type SiC, but p-type SiC
It may be either α-SiC or β-SiC.
As the nitride layer 14, TiN x , TaN x , ZrN x ,
VN x or HfN x layers can be mentioned. Further, as the high melting point metal, Mo, W, Ti, Co having a melting point of 950 ° C. or higher,
Ni, Ta and the like are mentioned, and examples of the silicide of the refractory metal include molybdenum silicide, eutectic temperature of 950 ° C. or higher, tungsten silicide, titanium silicide, cobalt silicide, nickel silicide, tantalum silicide and the like. It is illustrated. The Pt electrode 12 has a thickness of 0.001 to 1 μm.
The layer 13 has a thickness of 0.1 to 5 μm, the nitride layer 14 has a thickness of 0.05 to 0.3 μm, and the wiring member 15 has a thickness of 0.1 to 2 μm. It is preferable that each is present.

【0008】請求項2に係る発明は、この窒化物層14
がTiNx層であることを特徴とする。よりバリア性が
高いからである。
The invention according to claim 2 relates to the nitride layer 14
Is a TiN x layer. This is because the barrier property is higher.

【0009】請求項3に係る発明は、この高融点金属が
Mo又はWであることを特徴とする。より耐熱性が高い
ためである 請求項4に係る発明は、この高融点金属のケイ化物がM
oSix又はWSixであることを特徴とする。やはり耐
熱性が高いためである。
The invention according to claim 3 is characterized in that the refractory metal is Mo or W. This is because the heat resistance is higher, and in the invention according to claim 4, the silicide of the refractory metal is M
oSi x or WSi x . After all, it has high heat resistance.

【0010】請求項5に係る発明は、図3に示すように
SiC21上に形成されたPt電極22に配線する構造
の改良であって、このPt電極22上にAu層23が形
成され、このAu層23にAuからなるボンディングワ
イヤからなる配線材25が接続されたことを特徴とす
る。このSiC21も請求項1のSiC11と同様にp
型SiC及びn型SiCを含み、p型SiCとしては、
α−SiC、β−SiCのいずれでもよい。またPt電
極22の厚さは0.001〜1μmであることが、また
Au層23の厚さは1〜5μmであることがそれぞれ好
ましい。配線材であるボンディングワイヤ26のワイヤ
径は0.025〜1mmφであることが好ましい。
The invention according to claim 5 is an improvement of the structure of wiring to the Pt electrode 22 formed on the SiC 21 as shown in FIG. 3, in which the Au layer 23 is formed on the Pt electrode 22. A wiring member 25 made of a bonding wire made of Au is connected to the Au layer 23. This SiC21 also has the same p value as the SiC11 of claim 1.
Including p-type SiC and n-type SiC,
Either α-SiC or β-SiC may be used. The Pt electrode 22 preferably has a thickness of 0.001 to 1 μm, and the Au layer 23 preferably has a thickness of 1 to 5 μm. The wire diameter of the bonding wire 26, which is a wiring material, is preferably 0.025 to 1 mmφ.

【0011】請求項6に係る発明は、上記Au層13又
はAu層23に含まれるPtが10at%以下であるこ
とを特徴とする。Au層中のPtの含有量を10at%
以下にすることにより、余剰のPtがAu層に固溶さ
れ、結果として配線材15又は25の接合又は接続不良
が防止される。請求項7に係る発明は、上記Au層13
又はAu層23に含まれるCが0.08at%以下であ
ることを特徴とする。Au層中のCの含有量をCのAu
への固溶限界である0.08at%以下にすることによ
り、余剰のCが上部の配線材15又は25に拡散するこ
とを防ぎ、請求項6の発明と同様の効果を奏する。
The invention according to claim 6 is characterized in that Pt contained in the Au layer 13 or the Au layer 23 is 10 at% or less. The content of Pt in the Au layer is 10 at%
With the following, excess Pt is solid-dissolved in the Au layer, and as a result, defective joining or connection of the wiring material 15 or 25 is prevented. The invention according to claim 7 provides the Au layer 13
Alternatively, C contained in the Au layer 23 is 0.08 at% or less. The content of C in the Au layer is changed to Au of C.
By setting the solid solution limit to 0.08 at% or less, the excessive C is prevented from diffusing into the upper wiring member 15 or 25, and the same effect as the invention of claim 6 is achieved.

【0012】請求項8に係る発明は、図2及び図4に示
すようにPt電極12又は22がPtSix層12a又
は22aを介してSiC11又は22上に形成されたこ
とを特徴とする。このPtSix層はその形成方法に応
じて0.005〜2μmの厚さに形成される。
The invention according to claim 8 is characterized in that, as shown in FIGS. 2 and 4, the Pt electrode 12 or 22 is formed on the SiC 11 or 22 via the PtSi x layer 12a or 22a. This PtSi x layer is formed to a thickness of 0.005 to 2 μm depending on the forming method.

【0013】[0013]

【作用】SiC上のPt電極と耐熱性のある配線材との
間にAu層を介在させることにより、高温使用環境下に
おいても、Au層を構成するAuが不活性な元素である
ため、Au層がバリア層として作用し、配線材がSiC
とPt電極の界面まで到達せず、その界面に形成される
PtSixを分解せず、界面を安定に保つ。またSiC
上にPt電極を形成したときに生じた余剰の反応生成物
であるPtやCがAu層に固溶されるために、SiCと
Pt電極の界面におけるPtSix/SiCの構造が安
定化し、電気的特性も劣化しない。
By interposing the Au layer between the Pt electrode on SiC and the heat-resistant wiring material, Au constituting the Au layer is an inactive element even under a high temperature use environment. Layer acts as a barrier layer and the wiring material is SiC
Does not reach the interface between the Pt electrode and the Pt electrode, does not decompose PtSi x formed at the interface, and keeps the interface stable. Also SiC
Excessive reaction products Pt and C generated when the Pt electrode is formed on the Au layer are solid-solved in the Au layer, so that the structure of PtSi x / SiC at the interface between the SiC and the Pt electrode is stabilized, and the PtSi x / SiC structure is stabilized. Characteristics do not deteriorate.

【0014】図1及び図2に示すように、Au層13上
に更に窒化物層14を積層して配線材15を接合すれ
ば、よりバリア性が高まり、配線材15の配線不良が解
消される。図3及び図4に示すように、Au層23の厚
さを1μm程度にすれば、窒化物層を設けることなく、
Auからなるボンディングワイヤ25を直接接続するこ
とができる。図示しないが、SiC上のPt電極に直接
Auからなる配線材を配線することもできる。
As shown in FIGS. 1 and 2, if a nitride layer 14 is further laminated on the Au layer 13 and the wiring material 15 is bonded thereto, the barrier property is further enhanced and the wiring failure of the wiring material 15 is eliminated. It As shown in FIGS. 3 and 4, if the thickness of the Au layer 23 is about 1 μm, the nitride layer is not provided,
The bonding wire 25 made of Au can be directly connected. Although not shown, a wiring material made of Au can be directly wired to the Pt electrode on SiC.

【0015】[0015]

【実施例】次に、本発明の実施例を比較例とともに説明
する。 <実施例1>図1に示すように、先ずキャリア濃度が6
×1014/cm3のp型3C−SiC基板11上に0.
5μm厚のSiO2からなる絶縁膜16を形成し、所定
の部分をエッチングした後、SiC基板11上に直接
0.01μm厚のPt電極12を形成した。次いでこの
Pt電極12上に同様に絶縁膜16を形成し、所定の部
分をエッチングした後、Pt電極12上に0.3μm厚
のAu層13を形成した。次にこのAu層13上に同様
に絶縁膜16を形成し、所定の部分をエッチングした
後、Au層13上に0.15μm厚の窒化チタン(Ti
x)層14を形成した。更にこのTiNx層14上に同
様に絶縁膜16を形成し、所定の部分をエッチングした
後、TiNx層14上に0.5μm厚のMoからなる配
線材15を形成した。Pt電極12はターゲットとして
Ptを用いて、Au層13はターゲットとしてAuを用
いて、それぞれアルゴン100%の不活性ガス中でスパ
ッタリングを行うことにより形成した。TiNx層14
はターゲットとしてTiを用いてアルゴンに窒素を50
%混合したガス中で反応性スパッタリングを行うことに
より成膜した。Moからなる配線材15はターゲットと
してMoを用いて、アルゴン100%の不活性ガス中で
スパッタリングを行うことにより形成した。
Next, examples of the present invention will be described together with comparative examples. Example 1 First, as shown in FIG. 1, the carrier concentration was 6
On the p-type 3C-SiC substrate 11 of × 10 14 / cm 3 , 0.
An insulating film 16 made of SiO 2 having a thickness of 5 μm was formed, a predetermined portion was etched, and then a Pt electrode 12 having a thickness of 0.01 μm was formed directly on the SiC substrate 11. Next, an insulating film 16 was similarly formed on the Pt electrode 12 and a predetermined portion was etched, and then an Au layer 13 having a thickness of 0.3 μm was formed on the Pt electrode 12. Next, an insulating film 16 is similarly formed on the Au layer 13 and a predetermined portion is etched, and then a titanium nitride (Ti) having a thickness of 0.15 μm (Ti) is formed on the Au layer 13.
The N x ) layer 14 was formed. Further, an insulating film 16 was similarly formed on the TiN x layer 14 and a predetermined portion was etched, and then a wiring member 15 made of Mo and having a thickness of 0.5 μm was formed on the TiN x layer 14. The Pt electrode 12 was formed by using Pt as a target and the Au layer 13 by using Au as a target and performing sputtering in an inert gas of 100% argon. TiN x layer 14
Uses argon as a target and 50 times as much nitrogen as argon.
% To form a film by performing reactive sputtering in a mixed gas. The wiring member 15 made of Mo was formed by using Mo as a target and performing sputtering in an inert gas of 100% argon.

【0016】<実施例2>図2に示すように、実施例1
と同一の構成のSiC基板11上に実施例1と同様にし
てPt電極12を形成した後、アルゴン100%の不活
性ガス雰囲気下、900℃で30分間熱処理することに
より、SiC基板11とPt電極12の界面に0.01
μm厚のPtSix層12aを形成した。以下、実施例
1と同様にしてPt電極12上にAu層13及びTiN
x層14をこの順に形成し、TiNx層14上に0.5μ
m厚のWSixからなる配線材15を形成した。この配
線材15はターゲットとしてWSix化合物を用いて、
アルゴン100%の不活性ガス中でスパッタリングを行
うことにより形成した。
<Embodiment 2> As shown in FIG.
After the Pt electrode 12 was formed on the SiC substrate 11 having the same structure as in Example 1 in the same manner as in Example 1, the Pt electrode 12 was heat-treated at 900 ° C. for 30 minutes in an inert gas atmosphere of 100% argon to remove the Pt electrode 12 from the Pt electrode. 0.01 at the interface of electrode 12
A PtSi x layer 12a having a thickness of μm was formed. Thereafter, in the same manner as in Example 1, the Au layer 13 and TiN were formed on the Pt electrode 12.
The x layer 14 is formed in this order, and 0.5 μ is formed on the TiN x layer 14.
A wiring member 15 made of mSi WSi x was formed. This wiring member 15 uses a WSi x compound as a target,
It was formed by performing sputtering in an inert gas containing 100% argon.

【0017】<実施例3>図3に示すように、実施例1
と同一の構成のSiC基板21上に実施例1と同様にし
てPt電極22を形成した後、Pt電極22上に実施例
1と同様に絶縁膜26を形成し、所定の部分をエッチン
グした後、Pt電極22上に1μm厚のAu層23を形
成した。次にこのAu層23上にAuからなるボンディ
ングワイヤ25を超音波法でボンディングすることによ
り、接続した。符号26はSiO2からなる絶縁膜であ
る。
<Embodiment 3> As shown in FIG.
After the Pt electrode 22 is formed on the SiC substrate 21 having the same structure as in the first embodiment, the insulating film 26 is formed on the Pt electrode 22 in the same manner as in the first embodiment, and a predetermined portion is etched. An Au layer 23 having a thickness of 1 μm was formed on the Pt electrode 22. Next, a bonding wire 25 made of Au was bonded on the Au layer 23 by ultrasonic wave method to connect. Reference numeral 26 is an insulating film made of SiO 2 .

【0018】<実施例4>図4に示すように、実施例1
と同一の構成のSiC基板21上にPt層を形成した
後、アルゴン100%の不活性ガス雰囲気下、900℃
で30分間熱処理することにより0.01μm厚のPt
Six層22aを形成した。以下、実施例3と同様にし
て、Pt電極22上に1μm厚のAu層23を形成し
た。次にこのAu層23上にAuからなるボンディング
ワイヤ25を超音波法でボンディングすることにより、
接続した。Au層23中のPt及びCの含有量はそれぞ
れ0.01at%以下であった。
<Embodiment 4> As shown in FIG.
After forming a Pt layer on the SiC substrate 21 having the same structure as the above, 900 ° C. in an inert gas atmosphere of 100% argon.
0.01 μm thick Pt by heat treatment for 30 minutes
The Si x layer 22a was formed. Hereinafter, in the same manner as in Example 3, the Au layer 23 having a thickness of 1 μm was formed on the Pt electrode 22. Next, a bonding wire 25 made of Au is bonded on the Au layer 23 by an ultrasonic method,
Connected The Pt and C contents in the Au layer 23 were each 0.01 at% or less.

【0019】<実施例5>最初に成膜するPtの膜厚を
変えることでAu層23中のPtの含有量を5at%に
した以外は、実施例4と同様にしてAuからなるボンデ
ィングワイヤ25を接続した。
<Embodiment 5> A bonding wire made of Au was prepared in the same manner as in Embodiment 4 except that the Pt content in the Au layer 23 was changed to 5 at% by changing the film thickness of Pt to be formed first. 25 were connected.

【0020】<実施例6>最初に形成するPtの層厚を
変えることでAu層23中のPtの含有量を10at%
にした以外は、実施例4と同様にしてAuからなるボン
ディングワイヤ25を接続した。 <比較例1>最初に形成するPtの層厚を変えることで
Au層23中のPtの含有量を15at%にした以外
は、実施例4と同様にしてAuからなるボンディングワ
イヤ25を接続した。 <比較例2>最初に形成するPtの層厚を変えることで
Au層23中のPtの含有量を30at%にした以外
は、実施例4と同様にしてAuからなるボンディングワ
イヤ25を接続した。
<Embodiment 6> The Pt content in the Au layer 23 was changed to 10 at% by changing the thickness of the Pt layer formed first.
The bonding wire 25 made of Au was connected in the same manner as in Example 4 except that the above was adopted. Comparative Example 1 A bonding wire 25 made of Au was connected in the same manner as in Example 4 except that the Pt content in the Au layer 23 was changed to 15 at% by changing the thickness of the Pt layer formed first. . Comparative Example 2 A bonding wire 25 made of Au was connected in the same manner as in Example 4 except that the Pt content in the Au layer 23 was changed to 30 at% by changing the thickness of the Pt layer formed first. .

【0021】<比較試験と評価>実施例4〜6及び比較
例1、2の配線構造について、700℃で100時間熱
処理し、ボンディングワイヤの接続不良率及び抵抗値の
増加率をそれぞれ測定した。接続不良率はボンディング
したAuワイヤ25に引張り試験機のフックを掛けて
0.25mm/秒の速度で引上げたときに、Auワイヤ
が付いたまま配線材が電極から剥離する割合を調べるこ
とにより求めた。また抵抗値の増加率はSiC基板上に
互いに孤立した図4に示すPtSix層22a、Pt電
極22及びAu層23からなる配線構造を2つ形成し、
その2つの配線間の抵抗値を上記熱処理の前及び後に測
定してその変化から算出した。なおこの測定値には配
線構造(PtSix層22a〜Au層23)内の抵抗に
加えて、SiC基板21と電極(PtSix層22
a)との間の接触抵抗及びSiC基板21自体の抵抗
が含まれるけれども、配線構造の面積を十分に大きく
し、かつ2つの配線間の距離を十分に短くすることで上
記及びの抵抗を無視した。ボンディングワイヤの接
続不良率及び抵抗値の増加率の各測定結果を表1に示
す。
<Comparative Test and Evaluation> The wiring structures of Examples 4 to 6 and Comparative Examples 1 and 2 were heat-treated at 700 ° C. for 100 hours, and the connection failure rate of the bonding wire and the increase rate of the resistance value were measured. The connection failure rate is obtained by checking the rate at which the wiring material peels from the electrode with the Au wire attached when the bonded Au wire 25 is hooked by a tensile tester and pulled up at a speed of 0.25 mm / sec. It was In addition, the rate of increase of the resistance value is obtained by forming two wiring structures each including a PtSi x layer 22a, a Pt electrode 22 and an Au layer 23 shown in FIG.
The resistance value between the two wirings was measured before and after the heat treatment and calculated from the change. In addition to the resistance in the wiring structure (PtSi x layer 22 a to Au layer 23), this measured value includes the SiC substrate 21 and the electrode (PtSi x layer 22).
Although the contact resistance with a) and the resistance of the SiC substrate 21 itself are included, the above resistance is ignored by sufficiently increasing the area of the wiring structure and sufficiently reducing the distance between the two wirings. did. Table 1 shows the respective measurement results of the connection failure rate of the bonding wire and the increase rate of the resistance value.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、Au層中にPt
を15at%又は30at%含む比較例1及び2では、
ボンディングワイヤの接続不良率が38〜55%と極め
て高く、また抵抗値の増加率も37〜780%と極めて
高かったのに対して、Au層中にPtを10at%以下
含み、又はCを0.08at%以下含む実施例4〜6で
は、ボンディングワイヤの接続不良率は1%未満と極め
て低く、また抵抗値の増加率も8%未満と極めて低かっ
た。実施例4〜6の結果が優れているのは、これらの配
線構造を700℃の高温環境下で100時間熱処理した
ときに、Au層の下層において未反応で残存していたP
tがAu層に固溶して電極構造を安定化するためと考え
られる。
As is clear from Table 1, Pt is contained in the Au layer.
In Comparative Examples 1 and 2 containing 15 at% or 30 at%,
The bonding failure rate of the bonding wire was extremely high at 38 to 55%, and the increase rate of the resistance value was also extremely high at 37 to 780%, while Pt was contained at 10 at% or less in the Au layer, or C was 0. In Examples 4 to 6 containing 0.08 at% or less, the connection failure rate of the bonding wire was extremely low, less than 1%, and the increase rate of the resistance value was also extremely low, less than 8%. The results of Examples 4 to 6 are excellent because when these wiring structures were heat-treated in a high temperature environment of 700 ° C. for 100 hours, P remained unreacted in the lower layer of the Au layer.
It is considered that t is a solid solution in the Au layer to stabilize the electrode structure.

【0024】<実施例8>図4に示すように、実施例1
と同一の構成のSiC基板21上に実施例1と同様にし
て0.03μm厚のPt電極22を形成した後、1%H
2/99%N2ガス中、900℃で30分間熱処理して、
PtSix層22aを形成した。次いでこのPtSix
22a上に0.2μm厚のAu層23を形成した。この
状態で1%H2/99%N2ガス中、700℃で10時間
熱処理した後、表面分析法であるオージェ分析法により
電極の表面から深さ方向の組成を調べた。その結果を図
5に示す。図5において、横軸はアルゴンガスのスパッ
タリング時間を、縦軸はオージェ電子により検出される
各元素の信号強度をそれぞれ示す。図5のA部から明ら
かなように、PtSix層22aは長時間の高温環境下
においても安定してSiCに接して形成されていること
が判明した。
<Embodiment 8> As shown in FIG.
A Pt electrode 22 having a thickness of 0.03 μm was formed on the SiC substrate 21 having the same structure as in Example 1 in the same manner as in Example 1, and then 1% H
Heat treatment at 900 ° C for 30 minutes in 2 /99% N 2 gas,
The PtSi x layer 22a was formed. Then forming an Au layer 23 of 0.2μm thickness on the PtSi x layer 22a. In this state, heat treatment was performed at 700 ° C. for 10 hours in 1% H 2 /99% N 2 gas, and then the composition in the depth direction from the surface of the electrode was examined by Auger analysis, which is a surface analysis method. The result is shown in FIG. In FIG. 5, the horizontal axis represents the sputtering time of argon gas, and the vertical axis represents the signal intensity of each element detected by Auger electrons. As is clear from the portion A of FIG. 5, it was found that the PtSi x layer 22a was stably formed in contact with SiC even in a high temperature environment for a long time.

【0025】[0025]

【発明の効果】以上述べたように、本発明によれば、S
iC上のPt電極と耐熱性のある配線材との間にAu層
を介在させることにより、高温使用環境下においても、
Au層がバリア層として作用し、配線材がSiCとPt
電極の界面まで到達せず、その界面に形成されるPtS
xを分解せず、界面を安定に保つことができ、Pt電
極がSiCから剥離しない。またSiC上にPt電極を
形成したときに生じた余剰の反応生成物であるPtやC
がAu層に固溶されるために、SiCとPt電極の界面
におけるPtSix/SiCの構造が安定化し、長時間
使用しても抵抗値は変化せず、電気的特性も劣化しな
い。
As described above, according to the present invention, S
By interposing the Au layer between the Pt electrode on the iC and the heat resistant wiring material,
The Au layer acts as a barrier layer, and the wiring material is SiC and Pt.
PtS that does not reach the interface of the electrode and is formed at that interface
The interface can be kept stable without decomposing i x , and the Pt electrode does not peel off from the SiC. In addition, Pt and C which are excess reaction products generated when the Pt electrode is formed on SiC.
There to be dissolved in the Au layer, and structure stabilization of PtSi x / SiC at the interface between SiC and Pt electrodes, even when used for a long time without the change in resistance, even not deteriorated electrical characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1のSiC上のPt電極への配線
構造の拡大断面図。
FIG. 1 is an enlarged cross-sectional view of a wiring structure to a Pt electrode on SiC according to a first embodiment of the present invention.

【図2】本発明実施例2のSiC上のPt電極への配線
構造の拡大断面図。
FIG. 2 is an enlarged sectional view of a wiring structure to a Pt electrode on SiC according to a second embodiment of the present invention.

【図3】本発明実施例3のSiC上のPt電極への配線
構造の拡大断面図。
FIG. 3 is an enlarged sectional view of a wiring structure to a Pt electrode on SiC according to a third embodiment of the present invention.

【図4】本発明実施例4のSiC上のPt電極への配線
構造の拡大断面図。
FIG. 4 is an enlarged sectional view of a wiring structure to a Pt electrode on SiC according to a fourth embodiment of the present invention.

【図5】本発明実施例8の熱処理後の耐熱電極サンプル
のオージェ分析結果を示す図。
FIG. 5 is a diagram showing Auger analysis results of heat-resistant electrode samples after heat treatment of Example 8 of the present invention.

【符号の説明】[Explanation of symbols]

11,21 SiC 12,22 Pt電極 12a,22a PtSix層 13,23 Au層 14 窒化物層 15,25 配線材11,21 SiC 12,22 Pt electrodes 12a, 22a PtSi x layer 13,23 Au layer 14 Nitride layer 15,25 Wiring material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 輝三 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 (72)発明者 富山 能省 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruzo Ito 1-297 Kitabukuro-cho, Omiya City, Saitama Prefecture Mitsubishi Materials Corp. Research Institute (72) Inventor Noyama Toyama 1-297 Kitabukuro-cho, Omiya City, Saitama Prefecture Mitsubishi Materials Corporation, Research Institute

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 SiC(11)上に形成されたPt電極(12)
に配線する構造において、 前記Pt電極(12)上にAu層(13)と窒化物層(14)とがこ
の順に形成され、前記窒化物層(14)に高融点金属又はそ
のケイ化物からなる配線材(15)が接続されたことを特徴
とするSiC上のPt電極への配線構造。
1. A Pt electrode (12) formed on SiC (11)
In the structure of wiring, the Au layer (13) and the nitride layer (14) are formed in this order on the Pt electrode (12), and the nitride layer (14) is made of a refractory metal or its silicide. A wiring structure to a Pt electrode on SiC, characterized in that a wiring member (15) is connected.
【請求項2】 窒化物層(14)がTiNx層である請求項
1記載のSiC上のPt電極への配線構造。
2. The wiring structure to a Pt electrode on SiC according to claim 1, wherein the nitride layer (14) is a TiN x layer.
【請求項3】 高融点金属がMo又はWである請求項1
又は2記載のSiC上のPt電極への配線構造。
3. The refractory metal is Mo or W.
Alternatively, the wiring structure to the Pt electrode on SiC according to 2.
【請求項4】 高融点金属のケイ化物がMoSix又は
WSixである請求項1又は2記載のSiC上のPt電
極への配線構造。
4. The wiring structure for a Pt electrode on SiC according to claim 1, wherein the refractory metal silicide is MoSi x or WSi x .
【請求項5】 SiC(21)上に形成されたPt電極(22)
に配線する構造において、 前記Pt電極(22)上にAu層(23)が形成され、前記Au
層(23)にAuからなるボンディングワイヤからなる配線
材(25)が接続されたことを特徴とするSiC上のPt電
極への配線構造。
5. A Pt electrode (22) formed on SiC (21)
In the structure in which the Au layer (23) is formed on the Pt electrode (22),
A wiring structure to a Pt electrode on SiC, characterized in that a wiring material (25) made of a bonding wire made of Au is connected to the layer (23).
【請求項6】 Au層(13,23)に含まれるPtが10a
t%以下である請求項1ないし5いずれか記載のSiC
上のPt電極への配線構造。
6. The Pt contained in the Au layer (13, 23) is 10a.
The SiC according to any one of claims 1 to 5, which is at most t%.
Wiring structure to the upper Pt electrode.
【請求項7】 Au層(13,23)に含まれるCが0.08
at%以下である請求項1ないし6いずれか記載のSi
C上のPt電極への配線構造。
7. The C contained in the Au layer (13,23) is 0.08.
7. The Si according to claim 1, which is at% or less.
Wiring structure to Pt electrode on C.
【請求項8】 Pt電極(12,22)がPtSix層(12a,22
a)を介してSiC(11,21)上に形成された請求項1ない
し7いずれか記載のSiC上のPt電極への配線構造。
8. The Pt electrode (12, 22) is a PtSi x layer (12a, 22).
The wiring structure to a Pt electrode on SiC according to claim 1, which is formed on SiC (11, 21) via a).
JP7168736A 1995-07-04 1995-07-04 Interconnection structure to pt electrode on sic Withdrawn JPH0922922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7168736A JPH0922922A (en) 1995-07-04 1995-07-04 Interconnection structure to pt electrode on sic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7168736A JPH0922922A (en) 1995-07-04 1995-07-04 Interconnection structure to pt electrode on sic

Publications (1)

Publication Number Publication Date
JPH0922922A true JPH0922922A (en) 1997-01-21

Family

ID=15873472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7168736A Withdrawn JPH0922922A (en) 1995-07-04 1995-07-04 Interconnection structure to pt electrode on sic

Country Status (1)

Country Link
JP (1) JPH0922922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8093598B2 (en) 2006-03-22 2012-01-10 Mitsubishi Electric Corporation Power semiconductor device
JP2013093574A (en) * 2011-10-26 2013-05-16 General Electric Co <Ge> Method and system for transient voltage suppressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8093598B2 (en) 2006-03-22 2012-01-10 Mitsubishi Electric Corporation Power semiconductor device
JP2012151498A (en) * 2006-03-22 2012-08-09 Mitsubishi Electric Corp Power semiconductor device
DE112007000697B4 (en) 2006-03-22 2013-11-07 Mitsubishi Electric Corp. Power semiconductor device
JP2013093574A (en) * 2011-10-26 2013-05-16 General Electric Co <Ge> Method and system for transient voltage suppressor

Similar Documents

Publication Publication Date Title
TW473956B (en) Semiconductor device and a process for forming the semiconductor device
EP0127281A1 (en) An electrode for a semiconductor device
EP1722004A1 (en) Substrate with a metallization bonding layer
JP2003089864A (en) Aluminum alloy thin film, wiring circuit having the same thin film, and target material depositing the thin film
WO2012066803A1 (en) Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
JPS61142739A (en) Manufacture of semiconductor device
EP0880801B1 (en) DIE ATTACHED SiC AND DIE ATTACH PROCEDURE FOR SiC
JP2878887B2 (en) Semiconductor electrode structure
JPH0922922A (en) Interconnection structure to pt electrode on sic
JP3095490B2 (en) Ceramic-metal joint
JPH0794633A (en) Ceramic board bonding metal member
JP2001127375A (en) Submount for mounting optical semiconductor element
JPH08293522A (en) Heat resistant electrode of semiconductor device
JP2006237374A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPH06140398A (en) Integrated circuit device
US10381455B1 (en) Diffusion barrier systems (DBS) for high temperature semiconductor electrical contacts
JP2762007B2 (en) Metal thin film laminated ceramic substrate
JP3302714B2 (en) Ceramic-metal joint
US4921158A (en) Brazing material
JP2992524B2 (en) Semiconductor element wiring forming method
JP2936483B2 (en) Thin film wiring and semiconductor device
JP2941841B2 (en) Method of forming alloy wiring
JPH04196421A (en) Semiconductor device and method of manufacturing the same
JPH0245958A (en) Semiconductor device
JP2945010B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001