JPH09213978A - Semiconductor of chalcopyrite structure and photovolatic device therewith - Google Patents

Semiconductor of chalcopyrite structure and photovolatic device therewith

Info

Publication number
JPH09213978A
JPH09213978A JP8014091A JP1409196A JPH09213978A JP H09213978 A JPH09213978 A JP H09213978A JP 8014091 A JP8014091 A JP 8014091A JP 1409196 A JP1409196 A JP 1409196A JP H09213978 A JPH09213978 A JP H09213978A
Authority
JP
Japan
Prior art keywords
iii
semiconductor
chalcopyrite structure
type
structure semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8014091A
Other languages
Japanese (ja)
Inventor
Hidenobu Nakazawa
秀伸 中沢
Tetsuya Yamamoto
哲也 山本
Hiroshi Yoshida
博 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8014091A priority Critical patent/JPH09213978A/en
Publication of JPH09213978A publication Critical patent/JPH09213978A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor of chalcopyrite structure which is of low resistance with less crystal defect and of p-type conductive type by doping impurities at low concentration. SOLUTION: A semiconductor of chalcopyrite structure shown by a chemical formula, I-III-VI2 , is doped with IV-group element such as carbon, silicon, etc., or boron of III-group element, thereby obtaining a semiconductor of chalcopyrite structure which is of low resistance and of p-type conductive type as shown by chemical formula, I-III-IVx VI2-x or I-III-IIIx VI2-x (where, I: Ib-group element in element periodic table; III: IIIb-group element; IV: IVb-group element; VI: VIb-group element).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術的分野】本発明は太陽電池等の光起
電力装置、あるいは光エネルギーを利用する装置に用い
られるカルコパイライト構造半導体に関する。
TECHNICAL FIELD The present invention relates to a chalcopyrite structure semiconductor used in a photovoltaic device such as a solar cell or a device utilizing light energy.

【0002】[0002]

【従来の技術】従来、化学式I−III−VI2 (式
中、Iは元素周期表のIb族の元素を、IIIはIII
b族元素を、VIはVIb族元素を表す。)で表される
カルコパイライト構造半導体は、太陽電池や発光素子等
への応用が期待されている材料である。ところが、太陽
電池へ応用した場合、p型の伝導型半導体としてカルコ
パイライト構造半導体を用いると、化学量論比I/II
Iにより電気特性(伝導型、抵抗値)や表面状態が大き
く変化することが知られている。すなわち、I/III
>1では低抵抗でp型の伝導型になり、表面にIb族元
素とVIb族元素の化合物(たとえば、CuSx,Cu
Sex)の異相が析出してリーク電流が発生する原因と
なり、太陽電池の特性が劣化する。一方、I/III≦
1では伝導型はn型になるか、あるいはp型になっても
高抵抗になる。高抵抗の場合、太陽電池の特性の中の曲
線因子が小さくなる理由により太陽電池の効率が低下す
るといった現象が知られている。つまり、太陽電池用と
して低抵抗のp型伝導型のカルコパイライト構造半導体
を安定的に得ることが求められていた。
2. Description of the Related Art Conventionally, the chemical formula I-III-VI 2 (wherein I is an element of Group Ib in the periodic table, III is III
VI represents a group b element, and VI represents a group VIb element. The chalcopyrite structure semiconductor represented by) is a material expected to be applied to a solar cell, a light emitting element, or the like. However, when applied to a solar cell, if a chalcopyrite structure semiconductor is used as a p-type conduction type semiconductor, the stoichiometric ratio I / II is obtained.
It is known that the electrical characteristics (conductivity type, resistance value) and the surface state greatly change depending on I. That is, I / III
When it is> 1, it becomes a p-type conductivity type with low resistance, and a compound of an Ib group element and a VIb group element (for example, CuS x , Cu
Se x ) causes the generation of a leakage current due to the precipitation of a different phase, which deteriorates the characteristics of the solar cell. On the other hand, I / III ≦
In the case of 1, the conductivity type becomes n-type or becomes high resistance even if it becomes p-type. It is known that when the resistance is high, the efficiency of the solar cell is lowered because the fill factor in the characteristics of the solar cell is reduced. That is, it has been required to stably obtain a low resistance p-type conduction type chalcopyrite structure semiconductor for a solar cell.

【0003】そこで、低抵抗のp型伝導型を持ったカル
コパイライト構造半導体を得るために、従来よりいくつ
かの方法が考えられている。一つの方法は、I/III
>1で低抵抗のp型伝導型のカルコパイライト構造半導
体を作製し、シアン化カリウム水溶液で表面にエッチン
グ処理を施して、リーク電流の原因であるCuSx,C
uSex等の異相を除去する方法。他の方法は、I/I
II≦1で高抵抗のp型伝導型のカルコパイライト構造
半導体を作製し、N、P,Sb,BiなどのVb族元素
をドーピングする等の方法(Thin Solid F
ilms 226(1993)149−155)があ
る。しかし、シアン化カリウムは生体に有毒であるため
工業化が難しい。また、N、P,Sb,BiなどのVb
族元素は分子線やイオン線を用いて高濃度のドーピング
が必要なためドーピングプロセス中に多量のドーパント
により新たな結晶欠陥等が生じるなどの問題点があっ
た。
Therefore, in order to obtain a chalcopyrite structure semiconductor having a low resistance p-type conductivity, several methods have been conventionally considered. One method is I / III
> 1 to produce a p-type conductivity type chalcopyrite semiconductor of low resistance, by etching the surface with aqueous potassium cyanide solution, CuS x is the cause of the leakage current, C
A method of removing a foreign phase such as uSe x . Another method is I / I
A method of producing a high resistance p-type conduction type chalcopyrite structure semiconductor with II ≦ 1 and doping with a Vb group element such as N, P, Sb, or Bi (Thin Solid F
ilms 226 (1993) 149-155). However, since potassium cyanide is toxic to the living body, industrialization is difficult. In addition, Vb such as N, P, Sb, and Bi
Since the group element needs high-concentration doping using a molecular beam or an ion beam, there has been a problem that a large amount of dopant causes a new crystal defect or the like during the doping process.

【0004】上記の問題点があるため、低抵抗でかつp
型の伝導型を持つカルコパイライト構造半導体を工業的
に生産することは困難であった。
Due to the above problems, the resistance is low and p
It has been difficult to industrially produce chalcopyrite structure semiconductors having a conductive type.

【0005】[0005]

【発明が解決しようとする課題】本発明は、低濃度の不
純物ドーピングにより結晶欠陥等の問題のない低抵抗で
かつp型の伝導型を持つカルコパイライト構造半導体を
提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a chalcopyrite structure semiconductor having a low resistance and a p-type conductivity type, which is free from problems such as crystal defects due to low-concentration impurity doping.

【0006】[0006]

【課題を解決するための手段】かかる状況下において、
本発明者らは上記問題を解決するために鋭意検討した結
果、化学式I−III−VI2 (式中、Iは元素周期表
のIb族の元素を、IIIはIIIb族元素を、VIは
VIb族元素を表す。)で表されるカルコパイライト構
造半導体にIVb族元素またはIIIb族元素のボロン
をドープすると、低濃度のドーピングで低抵抗でp型の
伝導型を持つカルコパイライト構造半導体が得られるこ
とを見いだし、本発明をなすに至った。
In such a situation,
As a result of diligent studies to solve the above problems, the present inventors have found that the chemical formula I-III-VI 2 (wherein I is an element of group Ib in the periodic table, III is an element of group IIIb, and VI is VIb). When a chalcopyrite structure semiconductor represented by a group element) is doped with boron of a group IVb element or a group IIIb element, a chalcopyrite structure semiconductor having a p-type conductivity type with low resistance can be obtained by low concentration doping. As a result, they have completed the present invention.

【0007】すなわち本発明は、化学式I−III−V
2 で表されるカルコパイライト構造半導体にIVb族
元素をドープした化学式I−III−IVX VI2-X
表されることを特徴とするカルコパイライト構造半導
体、およびIIIb族元素のボロンをドープした化学式
I−III−IIIX VI2-X で表されることを特徴と
するカルコパイライト構造半導体に関するものである。
That is, the present invention is of the formula I-III-V
A chalcopyrite structure semiconductor represented by I 2 is doped with a group IVb element, and is represented by a chemical formula I-III-IV X VI 2-X , and a chalcopyrite structure semiconductor is doped with a group IIIb element boron. it relates chalcopyrite structure semiconductor, characterized by being represented by the formula I-III-III X VI 2 -X.

【0008】本発明のカルコパイライト構造半導体と
は、Cu,Ag等の元素周期表Ib族およびAl、G
a、In等の元素周期表IIIb族金属、並びにS、S
e、Te等のカルコゲン元素からなり、カルコパイライ
ト(黄銅鉱)型構造をとる化合物半導体を総称したもの
である。カルコパイライト構造半導体には、CuInS
2 、CuInSe2、CuInTe2、CuGaSe2
CuGaTe2、AgInS2 、AgInSe2、AgI
nTe2、AgGaSe2、AgGaTe2あるいはそれ
らの固溶体等の多くの種類があり、これらは光電変換材
料としての適当なバンドギャップを持っており、光起電
力装置の材料として好ましい。
The chalcopyrite structure semiconductor of the present invention means the periodic table Ib group such as Cu and Ag and Al and G.
Group IIIb metals of the periodic table of elements such as a and In, and S and S
It is a general term for compound semiconductors composed of chalcogen elements such as e and Te and having a chalcopyrite (chalcopyrite) type structure. For chalcopyrite structure semiconductor, CuInS
2 , CuInSe 2 , CuInTe 2 , CuGaSe 2 ,
CuGaTe 2 , AgInS 2 , AgInSe 2 , AgI
There are many types such as nTe 2 , AgGaSe 2 , AgGaTe 2 or solid solutions thereof, and these have a suitable band gap as a photoelectric conversion material and are preferable as a material for a photovoltaic device.

【0009】本発明のカルコパイライト構造半導体は、
VIb族元素中のS,Se,Te等のカルコゲン元素を
IIIb族元素であるボロン、あるいはIV族元素であ
る炭素、珪素等で一部置換すると、価電子帯に空孔を生
ずることとなり、カルコパイライト構造半導体はp型の
伝導型を持つこととなる。また、IIIb族元素あるい
はIVb族元素は、従来のドーパントであるVb族元素
(N、P、Sb、Bi等)に比し、価電子数が少ないた
めにカルコパイライト構造半導体を容易に伝導型がp型
化しやすく、したがって、従来のドーパントであるVb
族元素に比べて少量の不純物のドーピングでp型の伝導
型が可能である。例えば、ドープするボロン、炭素ある
いは珪素のドーピング量は、1014cm-3以上1019
-3以下の範囲で十分p型の伝導型が得られ、従来の1
20cm-3から1024cm-3に較べて非常に少ないドー
ピング量ですむ。ドーピング量が少ないと、結晶欠陥も
少なくなり太陽電池の特性劣化を抑えることができる。
The chalcopyrite structure semiconductor of the present invention is
When a chalcogen element such as S, Se, or Te in the VIb group element is partially replaced by boron, which is a group IIIb element, or carbon, silicon, which is a group IV element, vacancies are generated in the valence band. The pyrite structure semiconductor has p-type conductivity. In addition, since the group IIIb element or the group IVb element has a smaller number of valence electrons than the group Vb element (N, P, Sb, Bi, etc.) which is a conventional dopant, the chalcopyrite structure semiconductor can easily be a conductive type. Vb which is easy to be p-type and therefore is a conventional dopant
A p-type conductivity type is possible by doping a small amount of impurities as compared with the group element. For example, the doping amount of boron, carbon, or silicon to be doped is 10 14 cm −3 or more and 10 19 c
In the range of m -3 or less, a p-type conductivity type is sufficiently obtained,
A very small doping amount is required as compared with 0 20 cm -3 to 10 24 cm -3 . When the doping amount is small, the crystal defects also decrease and the deterioration of the characteristics of the solar cell can be suppressed.

【0010】[0010]

【発明の実施の形態】本発明のカルコパイライト構造半
導体の構成、作製法、およびそれを用いた太陽電池の構
成、作製法について説明する。本発明のカルコパイライ
ト構造半導体の形成法としてはガラス等の基板上にスパ
ッタリング法、抵抗加熱蒸着法、電子線ビーム蒸着法、
分子線ビームエピタキシー法、化学気相成長法、スプレ
ー分解法、電解法、無電解メッキ法、溶液法(CB
D)、塗布法などの方法を選択することができる。II
Ib族元素のボロンあるいはIVb族元素をカルコパイ
ライト構造半導体にドーピング(ドープ)する方法とし
ては、例えば、ボロン、炭素あるいは珪素を含んだ化合
物のガスを上記の方法で得られたカルコパイライト構造
半導体に少量ドーピング(例えば、Arガス雰囲気中に
2 6 をArベースに対して1%から20%程導入
し、500℃から600℃程の温度で熱処理する。)す
るか、ボロン、炭素あるいは珪素を含んだ化合物をカル
コパイライト構造半導体形成原料中に少量ドーピング
(例えば、スパッタリング法でカルコパイライト構造半
導体形成中にB2 6 をArベースに対して1%から1
0%程導入する。)するか、カルコパイライト構造半導
体形成後イオンインプランテーション法によってドープ
する方法(例えば、ボロンイオンを10KeVの加速電
圧でドーピングする。)がある。
BEST MODE FOR CARRYING OUT THE INVENTION The constitution and production method of the chalcopyrite structure semiconductor of the present invention, and the constitution and production method of a solar cell using the same will be described. As a method for forming the chalcopyrite structure semiconductor of the present invention, a sputtering method, a resistance heating vapor deposition method, an electron beam vapor deposition method on a substrate such as glass,
Molecular beam epitaxy, chemical vapor deposition, spray decomposition, electrolysis, electroless plating, solution method (CB
A method such as D) or a coating method can be selected. II
As a method for doping (doping) boron of the group Ib element or group IVb element into the chalcopyrite structure semiconductor, for example, a gas of a compound containing boron, carbon or silicon is added to the chalcopyrite structure semiconductor obtained by the above method. Small amount doping (for example, introducing B 2 H 6 in Ar gas atmosphere to about 1% to 20% with respect to the Ar base and performing heat treatment at a temperature of about 500 ° C. to 600 ° C.), or boron, carbon, or silicon. A small amount of a compound containing the element is doped into a chalcopyrite structure semiconductor forming raw material (for example, 1% to 1% of B 2 H 6 is added to an Ar base during formation of the chalcopyrite structure semiconductor by a sputtering method).
Introduce about 0%. Or a method of performing doping by ion implantation after forming a chalcopyrite structure semiconductor (for example, doping boron ions with an acceleration voltage of 10 KeV).

【0011】また、カルコパイライト構造半導体形成
後、VIb族のイオウやセレンが不足している時は、硫
化水素やセレン化水素を含んだガス中で熱処理して補う
場合もある。図3は本発明のカルコパイライト構造半導
体を用いた光起電力装置の1例を示したものである。本
発明の光起電力装置のカルコパイライト構造半導体の接
合構造は、光電変換機能を有する必要があるため、カル
コパイライト構造p型半導体ーn型半導体(pn)接合
を有する接合構造、あるいはカルコパイライト構造p型
半導体とショットキー接合を有する接合構造を用いるこ
とができる。なおpn接合においてはp型半導体とn型
半導体が同じ結晶構造の材料を用いたホモ接合構造、p
型半導体とn型半導体が異なった結晶構造の材料を用い
たヘテロ接合構造、いずれも使用可能である。図3の本
発明の光起電力装置の構造は、ガラス基盤の表面の少な
くても一部に第一電極を設け、この第一電極の表面の一
部または全面に本発明のカルコパイライト構造p型半導
体層を設け、さらにn型半導体層を設け、n型半導体層
の上に少なくても一部に第二電極を形成した構造となっ
ている。
Further, when the VIb group sulfur and selenium are insufficient after forming the chalcopyrite semiconductor, heat treatment may be performed in a gas containing hydrogen sulfide or hydrogen selenide to compensate. FIG. 3 shows an example of a photovoltaic device using the chalcopyrite structure semiconductor of the present invention. Since the junction structure of the chalcopyrite structure semiconductor of the photovoltaic device of the present invention needs to have a photoelectric conversion function, a junction structure having a chalcopyrite structure p-type semiconductor-n type semiconductor (pn) junction or a chalcopyrite structure. A junction structure having a p-type semiconductor and a Schottky junction can be used. In the pn junction, a homojunction structure in which the p-type semiconductor and the n-type semiconductor use the same crystal structure material, p
A heterojunction structure using a material having a different crystal structure between the n-type semiconductor and the n-type semiconductor can be used. In the structure of the photovoltaic device of the present invention shown in FIG. 3, the first electrode is provided on at least a part of the surface of the glass substrate, and the chalcopyrite structure p of the present invention is provided on part or all of the surface of the first electrode. A type semiconductor layer is provided, an n-type semiconductor layer is further provided, and at least a part of the second electrode is formed on the n-type semiconductor layer.

【0012】第一電極の材料は導電性のある材料であれ
ばいずれも用いることが可能であるが、モリブデンなど
の耐食性と耐熱性に優れた材料であることが望ましい。
図3の半導体pn接合は、p型半導体としては本発明に
よるカルコパイライト構造半導体を用い、n型半導体材
料に用いる材料としては銅インジウムセレン化合物、銅
インジウム硫黄化合物、硫化カドニウム、硫化亜鉛、酸
化亜鉛、ガリウム(アルミニウム)砒素、窒化ガリウム
(アルミニウム)、炭化珪素などの化合物半導体や混
晶、炭素などの半導体をあげることができる。
Any material can be used as the material of the first electrode as long as it is a conductive material, but it is desirable that the material is excellent in corrosion resistance and heat resistance such as molybdenum.
In the semiconductor pn junction of FIG. 3, the chalcopyrite structure semiconductor according to the present invention is used as the p-type semiconductor, and as the material used for the n-type semiconductor material, a copper indium selenium compound, a copper indium sulfur compound, cadmium sulfide, zinc sulfide, zinc oxide is used. Examples thereof include compound semiconductors such as gallium (aluminum) arsenide, gallium nitride (aluminum), and silicon carbide, mixed crystals, and semiconductors such as carbon.

【0013】上記の半導体pn接合の形成方法として、
スパッタリング法、抵抗加熱蒸着法、電子線ビーム蒸着
法、分子線ビームエピタキシー法、化学気相成長法、ス
プレー分解法、電解法、無電解メッキ法、溶液法(CB
D)、塗布法などの方法を用いることができる。必要な
らば、半導体pn接合形成後、硫化水素やセレン化水素
を含んだガス中で熱処理することもできる。
As a method of forming the above semiconductor pn junction,
Sputtering method, resistance heating vapor deposition method, electron beam vapor deposition method, molecular beam epitaxy method, chemical vapor deposition method, spray decomposition method, electrolytic method, electroless plating method, solution method (CB
Methods such as D) and coating methods can be used. If necessary, after forming the semiconductor pn junction, heat treatment can be performed in a gas containing hydrogen sulfide or hydrogen selenide.

【0014】第二電極層の材料は、通常の一般的な電極
材料を用いることができる。光起電力装置や発光素子と
して用いる場合、入力光や出力光を透過させるために、
酸化インジウム(すず)、酸化亜鉛などの透明電極材料
を用いることができる。さらに必要があれば、表面に絶
縁層や保護層、別の半導体素子との接合を設けることが
できる。
As the material of the second electrode layer, a usual and general electrode material can be used. When used as a photovoltaic device or a light emitting element, in order to transmit input light and output light,
Transparent electrode materials such as indium oxide (tin) and zinc oxide can be used. If necessary, an insulating layer, a protective layer, or a junction with another semiconductor element can be provided on the surface.

【0015】[0015]

【実施例1】化学式I−III−IIIX VI2-X で表
されるカルコパイライト構造半導体について、更に実施
例で具体的に説明する。実施例1では、IIIX として
ボロンをドーピングしたカルコパイライト構造半導体C
uIn(Bx,S2-x )について述べる。CuIn(Bx,S
2-x )は、典型的なカルコパイライト構造半導体CuI
nS2 のSの一部をボロンにおきかえた化合物である。
Example 1 The chalcopyrite structure semiconductor represented by the chemical formula I-III-III X VI 2-X will be described in more detail with reference to Examples. In Example 1, a chalcopyrite structure semiconductor C doped with boron as III X is used.
uIn (B x , S 2-x ) will be described. CuIn (B x , S
2-x ) is a typical chalcopyrite structure semiconductor CuI
It is a compound in which part of S in nS 2 is replaced with boron.

【0016】その作製方法は、金属Inと金属Cuのタ
ーゲットを用いたスパッタリング法であり、2%程のB
2 6 を含むArガスを導入しながら、圧力を5mTo
rrに調整することにより、膜厚1μmの金属膜CuI
n:Bを得た。次に、上記で得られた金属膜CuIn:
BをH2 Sが5%含まれたAr雰囲気中で550℃、2
時間の熱処理をし、カルコパイライト構造半導体CuI
n(Bx,S2-x )を得た。
The manufacturing method is a sputtering method using a target of metal In and metal Cu, and B of about 2% is used.
While introducing Ar gas containing 2 H 6 , the pressure is 5 mTo
By adjusting to rr, the metal film CuI having a film thickness of 1 μm
n: B was obtained. Next, the metal film CuIn obtained as described above:
B in an Ar atmosphere containing 5% H 2 S at 550 ° C. for 2
Chalcopyrite structure semiconductor CuI
n (B x , S 2-x ) was obtained.

【0017】比較試料(試料B)として、ボロンがドー
プされていない従来のCuInS2も同時に作製した。
試料Bは、実施例1のCuIn(Bx,S2-x )の作製方法
とB 2 6 のドーピング以外は同じである。図1に実施
例1の試料A:CuIn(Bx,S2-x )と比較試料の試料
B:CuInS2 の抵抗率をCu/In比Xに関してプ
ロットを示した。なお、抵抗率の測定は四端子法で行
い、伝導型の決定は熱起電力の測定によって行った。
As a comparative sample (Sample B), boron was used as a dopant.
Conventional CuInSTwoWas also made at the same time.
Sample B is CuIn (Bx, S2-x)
And B TwoH6The same except for the doping. Implemented in Figure 1
Sample A of Example 1: CuIn (Bx, S2-x) And comparison sample
B: CuInSTwoOf the Cu / In ratio X
Lot indicated. The resistivity is measured by the four-terminal method.
The conductivity type was determined by measuring the thermoelectromotive force.

【0018】図1から明らかなように試料Bはx≦1の
領域で高抵抗であり伝導型はn型であるが、ボロンをド
ープした試料Aはx≦1の領域であっても低抵抗で伝導
型はp型である。なお、2次イオン質量分析法により、
ボロンのドーピング量を測定したところ5×1017cm
-3程度であった。
As is apparent from FIG. 1, the sample B has a high resistance in the region of x ≦ 1 and the conductivity type is n-type, but the sample A doped with boron has a low resistance even in the region of x ≦ 1. The conductivity type is p-type. In addition, by secondary ion mass spectrometry,
When the doping amount of boron is measured, it is 5 × 10 17 cm
It was about -3 .

【0019】[0019]

【実施例2】実施例2は、実施例1と同様に化学式I−
III−IVX VI2-X のIVX として、炭素をドーピ
ングしたカルコパイライト構造半導体CuIn(Cx,S
2-x)について述べる。CuIn(Cx,S2-x)は、典型的
なカルコパイライト構造半導体CuInS2 のSの一部
を炭素におきかえた化合物である。
Example 2 Example 2 is similar to Example 1 in chemical formula I-
III-IV X VI 2-X as IV X , carbon-doped chalcopyrite structure semiconductor CuIn (C x , S
2-x ). CuIn (C x, S 2- x) is a portion of a typical chalcopyrite structure semiconductor CuInS 2 S is a compound replaced with carbon.

【0020】その作製方法は、金属Inと金属Cuと固
体イオウ(S)と液体ネオペンタンを分子線源として用
いた分子線エピタキシー法であり、1×10-6Torr
の圧力、基板温度500℃で膜厚2μmのカルコパイラ
イト構造半導体CuIn(Cx,S2-x)を得た。比較試料
(試料B)として、炭素がドープされていない従来のC
uInS2 も同時に作製した。試料Bは、実施例2のC
uIn(Cx,S2-x)の作製方法とネオペンタンの分子線
源を除いた以外は同じである。
The manufacturing method is a molecular beam epitaxy method using metal In, metal Cu, solid sulfur (S) and liquid neopentane as a molecular beam source, and 1 × 10 −6 Torr.
A chalcopyrite structure semiconductor CuIn (C x , S 2−x ) having a film thickness of 2 μm was obtained at the above pressure and the substrate temperature of 500 ° C. As a comparative sample (Sample B), a conventional C not doped with carbon was used.
uInS 2 was also prepared at the same time. Sample B is C of Example 2.
uIn (C x, S 2- x) except for excluding the molecular beam source manufacturing method and neopentane of the same.

【0021】図2に実施例試料A:CuIn(Cx,
2-x)と比較試料B:CuInS2 の抵抗率をCu/I
n比Xに関してプロットを示した。なお、抵抗率の測定
と伝導型の決定は実施例1と同様の測定法によって行っ
た。図2から明らかなように試料Bはx≦1の領域では
高抵抗で伝導型はn型であるが、炭素をドーピングした
試料Aはx≦1の領域であっても低抵抗で伝導型はp型
である。
FIG. 2 shows an example sample A: CuIn (C x ,
S 2−x ) and the comparative sample B: CuInS 2 having a resistivity of Cu / I
Plots are shown for n ratio X. The measurement of the resistivity and the determination of the conductivity type were performed by the same measurement method as in Example 1. As is clear from FIG. 2, sample B has high resistance and n-type conductivity in the region of x ≦ 1, whereas sample A doped with carbon has low resistance and conductivity type even in the region of x ≦ 1. It is p-type.

【0022】なお、2次イオン質量分析法により、炭素
のドーピング量を測定したところ3×1017cm-3程度
であった。
The carbon doping amount measured by the secondary ion mass spectrometry was about 3 × 10 17 cm -3 .

【0023】[0023]

【実施例3】カルコパイライト構造半導体を用いた光起
電力装置の一実施例として、図3を更に具体的に説明す
る。まず、ガラス基盤上にスパッタリング法によって膜
厚1μmのモリブデンを形成し、その上に、実施例2と
同様にMBE法で膜厚2μmのカルコパイライト構造半
導体CuIn(Cx,S2-x)を得た。次に、通常の溶液法
(CBD)により膜厚0.1μmの硫化カドニウム膜を
形成する。さらに膜厚1μmの酸化インジウムすずをス
パッタリング法によって形成した後、マスクを介して膜
厚2μmのアルミニウム電極を形成した。受光面積は9
mm2 である。
[Embodiment 3] FIG. 3 will be described more specifically as an embodiment of a photovoltaic device using a chalcopyrite structure semiconductor. First, a molybdenum film having a thickness of 1 μm was formed on a glass substrate by a sputtering method, and a chalcopyrite structure semiconductor CuIn (C x , S 2−x ) having a film thickness of 2 μm was formed on the molybdenum film by the MBE method as in Example 2. Obtained. Then, a 0.1 μm-thickness cadmium sulfide film is formed by a normal solution method (CBD). Further, after forming indium tin oxide having a film thickness of 1 μm by a sputtering method, an aluminum electrode having a film thickness of 2 μm was formed through a mask. Light receiving area is 9
mm 2 .

【0024】太陽電池として、入力光がAM1,5(1
00mW/cm2 )のとき、開放電圧700mV,短絡
電流20mA/cm2の光電変換特性を得た。
As a solar cell, the input light is AM1,5 (1
At the time of 00 mW / cm 2 ), photoelectric conversion characteristics of an open circuit voltage of 700 mV and a short circuit current of 20 mA / cm 2 were obtained.

【0025】[0025]

【発明の効果】以上述べたように本発明によって、通常
の化学式I−III−VI2 で表されるカルコパイライ
ト構造半導体に、炭素等のIVb族元素をドープした化
学式I−III−IVX VI2-X のカルコパイライト構
造半導体、およびIIIb族元素のボロンをドープした
化学式I−III−IIIX VI2-X のカルコパイライ
ト構造半導体は、結晶欠陥の少ない低抵抗でp型の伝導
型をもつカルコパイライト構造半導体であり、本発明の
カルコパイライト構造半導体を用いた光起電力装置を得
ることができる。
As described above, according to the present invention, a chalcopyrite structure semiconductor represented by the general chemical formula I-III-VI 2 is doped with a group IVb element such as carbon, and the chemical formula I-III-IV X VI is obtained. The chalcopyrite structure semiconductor of 2-X and the chalcopyrite structure semiconductor of the chemical formula I-III-III X VI 2-X doped with boron of the IIIb group element have a p-type conductivity type with few crystal defects and low resistance. It is a chalcopyrite structure semiconductor, and a photovoltaic device using the chalcopyrite structure semiconductor of the present invention can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】CuIn(Bx,S2-x )とCuInS2 の抵抗率
を比較した図
FIG. 1 is a diagram comparing the resistivity of CuIn (B x , S 2-x ) and CuInS 2 .

【図2】CuIn(Cx,S2-x)とCuInS2 の抵抗率
を比較した図
FIG. 2 is a diagram comparing the resistivity of CuIn (C x , S 2-x ) and CuInS 2 .

【図3】本発明カルコパイライト構造半導体を用いた光
起電力装置の一実施例
FIG. 3 is an embodiment of a photovoltaic device using the chalcopyrite structure semiconductor of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】化学式I−III−IVX VI2-X で表さ
れることを特徴とするカルコパイライト構造半導体。
1. A chalcopyrite structure semiconductor represented by a chemical formula I-III-IV X VI 2-X .
【請求項2】請求項1記載のカルコパイライト構造半導
体において、IVXが炭素または珪素であることを特徴
とするカルコパイライト構造半導体。
2. The chalcopyrite structure semiconductor according to claim 1, wherein IV X is carbon or silicon.
【請求項3】化学式I−III−IIIX VI2-X で表
され、IIIX がボロンであることを特徴とするカルコ
パイライト構造半導体。
3. A chalcopyrite structure semiconductor represented by the chemical formula I-III-III X VI 2-X , wherein III X is boron.
【請求項4】請求項1から請求項3記載のカルコパイラ
イト構造半導体において、IとIIIの化学量論比I/
IIIが1以下であることを特徴とするカルコパイライ
ト構造半導体。
4. The chalcopyrite structure semiconductor according to claim 1, wherein the stoichiometric ratio I / III is I /
A chalcopyrite structure semiconductor characterized in that III is 1 or less.
【請求項5】化学式I−III−IVX VI2-X で表さ
れるカルコパイライト構造半導体が、光エネルギーを電
気エネルギーに変換する半導体材料として用いられてい
ることを特徴とする光起電力装置。
5. A photovoltaic device, wherein the chalcopyrite structure semiconductor represented by the chemical formula I-III-IV X VI 2-X is used as a semiconductor material for converting light energy into electric energy. .
【請求項6】化学式I−III−IIIX VI2-X で表
され、IIIX がボロンであるカルコパイライト構造半
導体が、光エネルギーを電気エネルギーに変換する半導
体材料として用いられていることを特徴とする光起電力
装置
6. A chalcopyrite structure semiconductor represented by the chemical formula I-III-III X VI 2-X , wherein III X is boron, is used as a semiconductor material for converting light energy into electric energy. Photovoltaic device
JP8014091A 1996-01-30 1996-01-30 Semiconductor of chalcopyrite structure and photovolatic device therewith Pending JPH09213978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8014091A JPH09213978A (en) 1996-01-30 1996-01-30 Semiconductor of chalcopyrite structure and photovolatic device therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8014091A JPH09213978A (en) 1996-01-30 1996-01-30 Semiconductor of chalcopyrite structure and photovolatic device therewith

Publications (1)

Publication Number Publication Date
JPH09213978A true JPH09213978A (en) 1997-08-15

Family

ID=11851450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8014091A Pending JPH09213978A (en) 1996-01-30 1996-01-30 Semiconductor of chalcopyrite structure and photovolatic device therewith

Country Status (1)

Country Link
JP (1) JPH09213978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033219A1 (en) * 1997-01-24 1998-07-30 Asahi Kasei Kogyo Kabushiki Kaisha p-TYPE SEMICONDUCTOR, METHOD FOR MANUFACTURING THE SAME, SEMICONDUCTOR DEVICE, PHOTOVOLTAIC ELEMENT, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JPH11330509A (en) * 1998-05-07 1999-11-30 Honda Motor Co Ltd Cbd film forming device
JP2011171652A (en) * 2010-02-22 2011-09-01 Tdk Corp Method of forming compound semiconductor light absorption layer and method of manufacturing compound semiconductor thin-film solar cell
JP2018067590A (en) * 2016-10-18 2018-04-26 国立研究開発法人物質・材料研究機構 Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric generation element using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033219A1 (en) * 1997-01-24 1998-07-30 Asahi Kasei Kogyo Kabushiki Kaisha p-TYPE SEMICONDUCTOR, METHOD FOR MANUFACTURING THE SAME, SEMICONDUCTOR DEVICE, PHOTOVOLTAIC ELEMENT, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JPH11330509A (en) * 1998-05-07 1999-11-30 Honda Motor Co Ltd Cbd film forming device
JP2011171652A (en) * 2010-02-22 2011-09-01 Tdk Corp Method of forming compound semiconductor light absorption layer and method of manufacturing compound semiconductor thin-film solar cell
JP2018067590A (en) * 2016-10-18 2018-04-26 国立研究開発法人物質・材料研究機構 Copper gallium tellurium-based p-type thermoelectric semiconductor and thermoelectric generation element using the same

Similar Documents

Publication Publication Date Title
US5141564A (en) Mixed ternary heterojunction solar cell
US5948176A (en) Cadmium-free junction fabrication process for CuInSe2 thin film solar cells
Masudy‐Panah et al. p‐CuO/n‐Si heterojunction solar cells with high open circuit voltage and photocurrent through interfacial engineering
US8916767B2 (en) Solar cell and method of fabricating the same
EP0787354B1 (en) A method of manufacturing thin-film solar cells
JP3249408B2 (en) Method and apparatus for manufacturing thin film light absorbing layer of thin film solar cell
Chu et al. Large grain copper indium diselenide films
US8197703B2 (en) Method and apparatus for affecting surface composition of CIGS absorbers formed by two-stage process
Zhang et al. Earth-abundant and low-cost CZTS solar cell on flexible molybdenum foil
AU604774B2 (en) Improved photovoltaic heterojunction structures
JP6096790B2 (en) Conductive substrate for photovoltaic cells
US20070289624A1 (en) Cis Compound Semiconductor Thin-Film Solar Cell and Method of Forming Light Absorption Layer of the Solar Cell
EP1492169A2 (en) Solar cell
US8871560B2 (en) Plasma annealing of thin film solar cells
US7854963B2 (en) Method and apparatus for controlling composition profile of copper indium gallium chalcogenide layers
WO1990015445A1 (en) Improved group i-iii-vi2 semiconductor films for solar cell application
JP2008520102A (en) Method and photovoltaic device using alkali-containing layer
US20160027937A1 (en) Semiconductor materials and method for making and using such materials
JP2007335625A (en) Solar cell
Pfisterer The wet-topotaxial process of junction formation and surface treatments of Cu2S–CdS thin-film solar cells
US4342879A (en) Thin film photovoltaic device
CN100428496C (en) Solar battery and preparnig method thereof
JP3311873B2 (en) Manufacturing method of semiconductor thin film
US20140291147A1 (en) Target materials for fabricating solar cells
GB2384621A (en) II-VI and III-V thin film photovoltaic devices

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220