JPH09213298A - Battery and electrode plate for battery - Google Patents

Battery and electrode plate for battery

Info

Publication number
JPH09213298A
JPH09213298A JP8017563A JP1756396A JPH09213298A JP H09213298 A JPH09213298 A JP H09213298A JP 8017563 A JP8017563 A JP 8017563A JP 1756396 A JP1756396 A JP 1756396A JP H09213298 A JPH09213298 A JP H09213298A
Authority
JP
Japan
Prior art keywords
lead
electrode plate
reaction
storage battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8017563A
Other languages
Japanese (ja)
Inventor
Masaya Sawada
真哉 澤田
Kyoichi Kinoshita
恭一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP8017563A priority Critical patent/JPH09213298A/en
Publication of JPH09213298A publication Critical patent/JPH09213298A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a constitution which can prevent electrode plates from being damaged while the capacity of the battery is maintained. SOLUTION: Each pole plate is formed out of a reaction part 11, and of a lead part 12. A notch 13 is provided for the lead part 12 in parallel with a line (a joining line 16) that the reaction part 11 is joined with the lead part 12. A stress releasing hole 14 is provided at the terminal end part of the notch 13. A bending part 15 is a part of the lead part 12, and is in an area which can be flexibly bent with respect to the reaction part 11 because of the provision of the notch 13. The lead part 12 can be connected with a current collector terminal 21 by appropriately bending the bending part 15 with respect to the reaction part 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蓄電池および蓄電
池用電極板に係わり、特に、電極板を有する蓄電池にお
いてそれら電極板の破損を防止する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery and an electrode plate for a storage battery, and more particularly to a technique for preventing damage to the electrode plate in a storage battery having an electrode plate.

【0002】[0002]

【従来の技術】充電することによって繰り返し利用でき
る蓄電池(2次電池)は、様々な分野で広く使用されて
いる。最近では、携帯端末や音響機器などに使用される
小型の蓄電池だけでなく、たとえば、電気自動車用バッ
テリなどのような大型の蓄電池の需要も増加している。
2. Description of the Related Art Storage batteries (secondary batteries) that can be repeatedly used by charging are widely used in various fields. Recently, not only small storage batteries used for mobile terminals and audio equipment, but also large storage batteries such as batteries for electric vehicles are increasing in demand.

【0003】一般的な大型の蓄電池としては、複数の正
極用の電極板と複数の負極用の電極板とを交互に重ね合
わせて並列接続し、それらの電極板を電解液の中に浸す
構成が知られている。
As a general large-sized storage battery, a plurality of positive electrode plates and a plurality of negative electrode plates are alternately superposed and connected in parallel, and these electrode plates are immersed in an electrolytic solution. It has been known.

【0004】図6は、一般的な大型蓄電池の内部構成を
示す図である。各正極用電極板は、反応部1およびリー
ド部2から構成される。同様に、各負極用電極板は、反
応部3およびリード部4から構成される。反応部1とリ
ード部2との間、および反応部3とリード部4との間
は、それぞれ溶接によって電気的に接続されている。電
槽5は、蓄電池の容器であり、その中に電解液が入って
いる。
FIG. 6 is a diagram showing the internal structure of a general large-sized storage battery. Each positive electrode plate includes a reaction section 1 and a lead section 2. Similarly, each of the negative electrode plates is composed of the reaction section 3 and the lead section 4. The reaction part 1 and the lead part 2, and the reaction part 3 and the lead part 4 are electrically connected by welding. The battery case 5 is a container of a storage battery, and the electrolytic solution is contained therein.

【0005】正極用電極板および負極用電極板は、反応
部1と反応部3とが交互に重なりあうように組み合わさ
れる。なお、図6では省略しているが、実際には反応部
1と反応部3とが電気的に接触しないようにそれらの間
にセパレータが設けられる。正極用電極板および負極用
電極板は、交互に重なり合うように組み合わされた状態
で電槽5の中に配置され、反応部1および反応部3が電
解液に浸される。
The electrode plate for the positive electrode and the electrode plate for the negative electrode are assembled so that the reaction parts 1 and 3 are alternately superposed. Although omitted in FIG. 6, a separator is actually provided between the reaction part 1 and the reaction part 3 so that they do not come into electrical contact with each other. The electrode plate for the positive electrode and the electrode plate for the negative electrode are arranged in the battery case 5 in a state of being combined so as to alternately overlap with each other, and the reaction part 1 and the reaction part 3 are immersed in the electrolytic solution.

【0006】反応部3が電解液と反応することによって
生じる電子は、リード部4を介して負極集電端子へ伝導
され、そこから外部へ供給される。外部から流れてくる
電子は、正極集電端子、リード部2を介して反応部1へ
伝導され、そこで電解液と反応して吸収される。集電端
子は、この蓄電池から電力を取り出すための電池端子で
ある。
Electrons generated by the reaction of the reaction part 3 with the electrolytic solution are conducted to the negative electrode current collecting terminal through the lead part 4 and supplied to the outside from there. Electrons flowing from the outside are conducted to the reaction section 1 through the positive electrode current collector terminal and the lead section 2, and react with the electrolytic solution there to be absorbed. The current collecting terminal is a battery terminal for taking out electric power from this storage battery.

【0007】図7は、蓄電池の内部構造を示す図であ
り、電極板と集電端子との接続構成を示す。同図に示す
ように、正極用電極板のリード部2は、集電端子6の側
部に例えばレーザ溶接によって接続される。また、負極
用電極板のリード部4は、同様に、集電端子7に接続さ
れる。そして、各電極板および不図示の電解液を密閉す
るように電槽5の上部に電槽蓋8を固定する。集電端子
6および7は、電槽蓋8を貫通するようにして蓄電池の
外部にその一部を突出させている。
FIG. 7 is a view showing the internal structure of the storage battery, showing the connection configuration of the electrode plate and the current collecting terminal. As shown in the figure, the lead portion 2 of the positive electrode plate is connected to the side portion of the collector terminal 6 by, for example, laser welding. Similarly, the lead portion 4 of the negative electrode plate is connected to the collector terminal 7. Then, the battery case lid 8 is fixed to the upper part of the battery case 5 so as to seal each electrode plate and the electrolytic solution (not shown). The collector terminals 6 and 7 are partly projected outside the storage battery so as to penetrate the battery case lid 8.

【0008】図8は、電極板と集電端子との接続を説明
する図であり、図7の蓄電池を横方向から見たときの正
極側の構成を示している。ここでは、8枚の正極用電極
板を正極用の集電端子に接続する構成を模式的に描いて
いる。同図に示すように、集電端子6は2つの溶接面を
有し、各溶接面にはそれぞれ4枚の正極用電極板のリー
ド部2が束ねられて接続されている。
FIG. 8 is a view for explaining the connection between the electrode plate and the collector terminal, and shows the configuration of the positive electrode side when the storage battery of FIG. 7 is viewed from the lateral direction. Here, a configuration in which eight positive electrode plates are connected to a positive current collector terminal is schematically drawn. As shown in the figure, the collector terminal 6 has two welding surfaces, and the lead portions 2 of the four positive electrode plates are bundled and connected to each welding surface.

【0009】[0009]

【発明が解決しようとする課題】図8を参照しながら説
明したように、8枚の電極板を集電端子6に接続させる
ときには、集電端子6の側面に設けた2つの溶接面にそ
れぞれ4枚の電極板のリード部2が束ねて溶接される。
このとき、各電極板を電槽5内の所定の位置に配置させ
ながらリード部2の先端部を集電端子6の溶接面に接続
させるためには、各電極板のリード部2を反応部1に対
して適当に曲げる必要がある。
As described with reference to FIG. 8, when connecting the eight electrode plates to the current collecting terminal 6, the two welding surfaces provided on the side surfaces of the current collecting terminal 6 are respectively connected. The lead portions 2 of the four electrode plates are bundled and welded.
At this time, in order to connect the tip portion of the lead portion 2 to the welding surface of the collector terminal 6 while arranging each electrode plate at a predetermined position in the battery case 5, the lead portion 2 of each electrode plate is connected to the reaction portion. It is necessary to bend appropriately for 1.

【0010】ところが、集電端子6の溶接面からX方向
に遠い位置に配置される電極板においては、反応部1に
対するリード部2の曲げ角度が大きくなる。すなわち、
たとえば、図8において最も右側に配置されている電極
板においては、反応部1に対するリード部2の曲げ角度
θがかなり大きくなってしまう。
However, in the electrode plate arranged at a position distant from the welding surface of the collector terminal 6 in the X direction, the bending angle of the lead portion 2 with respect to the reaction portion 1 becomes large. That is,
For example, in the electrode plate arranged on the rightmost side in FIG. 8, the bending angle θ of the lead portion 2 with respect to the reaction portion 1 becomes considerably large.

【0011】また、蓄電池としてニッケル水素系を想定
した場合、その電池を充放電するに従って、各電極板の
反応部2に付着してある活物質の微粒化が進行するなど
して反応部1は膨張する。特に、充電時には放電時に比
べて膨張する。各電極板の反応部1が膨張すると、各電
極板どうしの間隔が広がる方向に力が働くので、図8に
おいて左右両端に配置されている各電極板は、それぞれ
外側に向けて(電槽5の内壁に押しつけられるように)
移動させられ、集電端子の溶接面からのX方向の距離が
さらに大きくなる。このことによって、曲げ角度θがさ
らに大きくなるとともにリード部2に張力が加わる。
When a nickel-hydrogen battery is assumed as the storage battery, as the battery is charged and discharged, atomization of the active material adhering to the reaction part 2 of each electrode plate progresses and the reaction part 1 becomes Expands. In particular, it expands during charging as compared with discharging. When the reaction part 1 of each electrode plate expands, a force acts in a direction in which the distance between the electrode plates expands. Therefore, the electrode plates arranged at both left and right ends in FIG. So that it can be pressed against the inner wall of
It is moved, and the distance in the X direction from the welding surface of the collector terminal is further increased. This further increases the bending angle θ and applies tension to the lead portion 2.

【0012】このように、曲げ角度θが大きくなるとと
もにリード部2に張力が加わると、反応部1とリード部
2との間の接合部に亀裂が生じてしまう。リード部の形
状を工夫した技術として、公開実用新案公報−昭59−
84765号が提案されている。上記技術では、リード
部(耳)を、反応部(基板)の上縁の一側部から上方に
短く突出させた後にそこから反応部の上縁に沿うように
側方に長く伸びる形状にしている。そして、そのリード
部の先端部を集電端子に接続するようにしている。
As described above, when the bending angle θ increases and the tension is applied to the lead portion 2, a crack occurs at the joint between the reaction portion 1 and the lead portion 2. As a technique in which the shape of the lead portion is devised, an open utility model publication-Sho 59-
No. 84765 has been proposed. In the above technique, the lead portion (ear) is formed so as to project short upward from one side portion of the upper edge of the reaction portion (substrate) and then extend laterally from there along the upper edge of the reaction portion. There is. The tip of the lead portion is connected to the current collecting terminal.

【0013】この電極板の形状を図9に示す。電極板を
このような形状にすれば、電極板を集電端子に接続する
際に、反応部1の上縁に沿うように側方に長く伸びたリ
ード部(突出部)9が適当に曲げられ、その部分で負荷
が吸収されるので、反応部1とリード部9との接合部に
大きな負荷が加わることはない。
The shape of this electrode plate is shown in FIG. With such a shape of the electrode plate, when the electrode plate is connected to the current collecting terminal, the lead portion (protrusion) 9 extending laterally along the upper edge of the reaction portion 1 is appropriately bent. Since the load is absorbed at that portion, a large load is not applied to the joint portion between the reaction portion 1 and the lead portion 9.

【0014】しかしながら、リード部9は、その形状か
ら明らかなように高さが大きくなってしまい、以下の点
で好ましくない。すなわち、一般に、蓄電池の形状は規
格として定められているので、リード部9の高さを大き
くすれば、その分だけ反応部1の高さを小さくせざるを
得ない。反応部1が小さくなれば、必然的に充放電に際
しての化学反応が生じる面積が狭くなるので、蓄電池の
容量が小さくなってしまう。
However, the height of the lead portion 9 becomes large as is apparent from its shape, which is not preferable in the following points. That is, since the shape of the storage battery is generally defined as a standard, if the height of the lead portion 9 is increased, the height of the reaction portion 1 must be reduced by that amount. If the reaction section 1 becomes smaller, the area in which a chemical reaction occurs during charging and discharging inevitably becomes smaller, so the capacity of the storage battery becomes smaller.

【0015】このように、従来の蓄電池では、蓄電池の
容量を保ちながら、電極板の破損を防ぐことが困難であ
った。本発明の課題は、蓄電池の容量を保ちながら電極
板の破損を防ぐ構成を提供することである。
As described above, in the conventional storage battery, it is difficult to prevent the damage of the electrode plate while maintaining the capacity of the storage battery. An object of the present invention is to provide a structure that prevents damage to the electrode plate while maintaining the capacity of the storage battery.

【0016】[0016]

【課題を解決するための手段】本発明の蓄電池は、電極
反応部とその電極反応部に接合されたリード部とからな
る電極板を有し、その電極板のリード部を集電端子に接
続する構成を前提とする。
A storage battery of the present invention has an electrode plate composed of an electrode reaction part and a lead part joined to the electrode reaction part, and the lead part of the electrode plate is connected to a collector terminal. It is premised on the configuration.

【0017】上記電極板のリード部に切込みを設け、そ
の切込みによって電極反応部に対して柔軟に曲げること
が可能となった部分(曲げ部)を上記集電端子に接続す
る。上記切込みは、上記電極反応部とリード部との接合
部に対して略同一方向に設ける。また、上記切込みの端
部に応力緩和用の孔を設ける。
A notch is provided in the lead portion of the electrode plate, and a portion (bent portion) that can be flexibly bent with respect to the electrode reaction portion by the notch is connected to the current collecting terminal. The notch is provided in substantially the same direction as the joint between the electrode reaction portion and the lead portion. Further, a hole for relaxing stress is provided at the end of the cut.

【0018】上記構成によれば、電極板を集電端子に接
続させるとき、リード部全体を電極反応部に対して曲げ
るのではなく、上記曲げ部のみを電極反応部に対して曲
げるので、そのときの負荷は、上記曲げ部によって吸収
される。すなわち、上記負荷は、リード部と電極反応部
との接合部に加わることはない。したがって、リード部
と電極反応部との接合部の損傷を防ぐことができる。
According to the above structure, when the electrode plate is connected to the current collecting terminal, the entire lead portion is not bent with respect to the electrode reaction portion, but only the bending portion is bent with respect to the electrode reaction portion. The load at that time is absorbed by the bent portion. That is, the load is not applied to the joint portion between the lead portion and the electrode reaction portion. Therefore, it is possible to prevent damage to the joint portion between the lead portion and the electrode reaction portion.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照しながら説明する。本実施形態の蓄電池は、
各電極板のリード部の形状を工夫し、リード部と反応部
との接合部に負荷が加わらないようにしている。そし
て、このことによって、電極板の損傷を防ぐものであ
る。
Embodiments of the present invention will be described below with reference to the drawings. The storage battery of this embodiment is
The shape of the lead portion of each electrode plate is devised so that no load is applied to the joint portion between the lead portion and the reaction portion. And this prevents damage to the electrode plate.

【0020】図1は、本発明の一実施形態の蓄電池用電
極板を示す図である。同図に示すように、この電極板
は、反応部(請求項1〜4の電極反応部に対応する)1
1およびリード部12から構成されており、正極および
負極に共通した構成である。即ち、反応部11は、図6
に示す反応部1または3に対応し、リード部12は、リ
ード部2または4に対応する。
FIG. 1 is a diagram showing an electrode plate for a storage battery according to an embodiment of the present invention. As shown in the figure, this electrode plate is provided with a reaction part (corresponding to the electrode reaction part of claims 1 to 4).
1 and the lead portion 12, which is common to the positive electrode and the negative electrode. That is, the reaction unit 11 is shown in FIG.
The lead portion 12 corresponds to the lead portion 2 or 4 and the reaction portion 1 or 3 shown in FIG.

【0021】リード部12には、反応部11とリード部
12とが接合されているライン(接合ライン16)と平
行に切込み13が設けられている。また、切込み13の
終端部には、応力緩和用の孔14が設けられている。曲
げ部15(図中、斜線で示す領域)は、リード部12の
一部であり、切込み13を設けたことによって、反応部
11に対して柔軟に曲げることが可能となる領域であ
る。図1においては、曲げ部15を紙面に垂直方向に柔
軟に曲げることができる。
The lead portion 12 is provided with a cut 13 parallel to the line (joining line 16) where the reaction portion 11 and the lead portion 12 are joined. Further, a hole 14 for stress relaxation is provided at the terminal end of the cut 13. The bent portion 15 (a hatched area in the drawing) is a part of the lead portion 12, and the cut portion 13 is provided so that the bent portion 15 can be flexibly bent with respect to the reaction portion 11. In FIG. 1, the bending portion 15 can be flexibly bent in a direction perpendicular to the paper surface.

【0022】なお、図1においては、切込み13を接合
ライン16と同一方向に設けているが、必ずしもこの形
状に限定されるものではない。ただし、切込み13を接
合ライン16と略同一方向に設けることが望ましい。
Although the notch 13 is provided in the same direction as the joining line 16 in FIG. 1, the shape is not necessarily limited to this. However, it is desirable to provide the notch 13 in substantially the same direction as the joining line 16.

【0023】図2は、集電端子と電極板との接続構造を
説明する図である。図2では、正極または負極の一方を
示しており、一例として、8枚の電極板が集電端子に接
続される場合を示している。図2(a) は、集電端子と電
極板との接続部の構成を蓄電池の上方から見た図であ
り、同図(b) は、その接続部を蓄電池の側方から見た図
である。図2(b) に示す電極板は、図2(a) において一
番下に描かれている電極板(電極板10)である。
FIG. 2 is a diagram for explaining the connection structure between the collector terminal and the electrode plate. In FIG. 2, one of the positive electrode and the negative electrode is shown, and as an example, a case where eight electrode plates are connected to the collector terminal is shown. Fig. 2 (a) is a view of the configuration of the connection between the current collector terminal and the electrode plate as seen from above the storage battery, and Fig. 2 (b) is a view of the connection from the side of the storage battery. is there. The electrode plate shown in FIG. 2 (b) is the electrode plate (electrode plate 10) drawn at the bottom in FIG. 2 (a).

【0024】本実施形態の蓄電池において、各電極板を
集電端子21に接続させるときは、リード部12の一部
である曲げ部15を反応部11に対して適当に曲げるこ
とによって、その先端部を集電端子21の側部に接続さ
せる。そして、集電端子21の側部にそれぞれ4枚の電
極板のリード部を束ねて接続し、それらを各々レーザ溶
接などによって電気的に接続する。
In the storage battery of the present embodiment, when each electrode plate is connected to the collector terminal 21, the bent portion 15 which is a part of the lead portion 12 is appropriately bent with respect to the reaction portion 11 so that the tip end thereof is bent. The part is connected to the side of the collector terminal 21. Then, the lead portions of the four electrode plates are bundled and connected to the side portions of the collector terminal 21, and they are electrically connected by laser welding or the like.

【0025】上記構成によれば、各電極板を集電端子2
1に接続させる際、反応部11に対してリード部12全
体を曲げる必要はなく、曲げ部15のみを反応部11に
対して曲げればよい。曲げ部15は、リード部12全体
に対して、付け根部17から曲げられる。したがって、
曲げ部15を曲げたときに生じる負荷は、付け根部17
に加わる。ここで、切込み13は、接合ライン16に平
行に設けられているので、曲げ部15を図2(a) に示す
ように曲げたときに付け根部17に加わる負荷(力)
は、リード部12を反応部11に対して曲げるのに必要
な力と垂直方向になる。このため、上記負荷は、付け根
部17において吸収され、リード部12と反応部11と
の接合部には殆ど加わらない。すなわち、曲げ部15以
外の領域のリード部12は、反応部11に対して殆ど曲
げられることはない。したがって、リード部12と反応
部11との接合部が破損することはない。
According to the above construction, each electrode plate is connected to the collector terminal 2
When connecting to No. 1, it is not necessary to bend the entire lead portion 12 with respect to the reaction portion 11, and only the bending portion 15 may be bent with respect to the reaction portion 11. The bent portion 15 is bent from the root portion 17 with respect to the entire lead portion 12. Therefore,
The load generated when the bending portion 15 is bent is the root portion 17
Join. Here, since the notch 13 is provided in parallel with the joining line 16, the load (force) applied to the root portion 17 when the bent portion 15 is bent as shown in FIG. 2 (a).
Is perpendicular to the force required to bend the lead portion 12 with respect to the reaction portion 11. Therefore, the load is absorbed by the base portion 17 and hardly applied to the joint portion between the lead portion 12 and the reaction portion 11. That is, the lead portion 12 in the region other than the bent portion 15 is hardly bent with respect to the reaction portion 11. Therefore, the joint between the lead portion 12 and the reaction portion 11 is not damaged.

【0026】上述したように、曲げ部15を反応部11
に対して曲げたときに生じる負荷は付け根部17に加わ
るが、曲げ部15はリード部12の一部である。このた
め、曲げ部15を反応部11に対して曲げることは、一
枚の金属板(リード部12)を所定箇所(付け根部1
7)において曲げているにすぎない。金属板であれば、
通常、「曲げ」に対する強度は高い。したがって、付け
根部17に負荷が加わっても、その部分が損傷すること
はない。また、切込み13の終端部に応力緩和用の孔1
4を設けてあるので、上記負荷が付け根部17に加わっ
ても、切込み13の終端部が例えば矢印18の方向に裂
けることはない。
As described above, the bent portion 15 is connected to the reaction portion 11
The bending portion 15 is a part of the lead portion 12, although the load generated when the bending portion is bent is applied to the base portion 17. For this reason, bending the bending portion 15 with respect to the reaction portion 11 means that one metal plate (lead portion 12) is bent at a predetermined position (the root portion 1).
It is only bent at 7). If it is a metal plate,
Usually, the strength against "bending" is high. Therefore, even if a load is applied to the root portion 17, the portion will not be damaged. Further, the stress relaxation hole 1 is provided at the end of the notch 13.
Since 4 is provided, even if the above-mentioned load is applied to the root portion 17, the end portion of the notch 13 does not tear in the direction of arrow 18, for example.

【0027】上述した本実施形態の特徴は、蓄電池とし
てニッケル水素系を想定した場合も同じである。ニッケ
ル水素系の蓄電池の場合は、充放電を繰り返すことによ
って各電極板の反応部11が膨張し、外側に配置された
電極板(たとえば、電極板10)は、集電端子21から
遠ざかる方向に電槽内を移動する。このように電極板が
移動すると曲げ部15が引っ張られるが、このことによ
って生じる負荷は、上述したように、付け根部17に加
わり、そこで吸収されるので、リード部12と反応部1
1との接合部には殆ど負荷がかからない。したがって、
リード部12と反応部11との接合部が損傷することは
ない。
The characteristics of this embodiment described above are the same when a nickel-hydrogen battery is assumed as the storage battery. In the case of a nickel-hydrogen storage battery, the reaction part 11 of each electrode plate expands by repeating charging and discharging, and the electrode plate (for example, the electrode plate 10) arranged on the outer side is moved away from the current collecting terminal 21. Move in the battery case. When the electrode plate moves in this way, the bent portion 15 is pulled, but the load caused by this is applied to the root portion 17 and absorbed there, as described above, so that the lead portion 12 and the reaction portion 1 are absorbed.
Almost no load is applied to the joint with 1. Therefore,
The joint between the lead portion 12 and the reaction portion 11 is not damaged.

【0028】また、上記構成によれば、各電極板を集電
端子21に接続させるとき、曲げ部15のみを反応部1
1に対して曲げればよいので、その作業が簡単である。
ここで、複数の電極板の各リード部12を束ねて集電端
子21に接続する際、集電端子21の接続面と各電極板
との間の距離は電極板ごとに異なるので、各曲げ部15
の先端がずれて段差が生じる。この段差は、蓄電池の横
方向(図2(a) または図2(b) において左右方向)に生
じる。
Further, according to the above construction, when each electrode plate is connected to the collector terminal 21, only the bent portion 15 is connected to the reaction portion 1.
The work is easy because it can be bent with respect to 1.
Here, when the lead portions 12 of the plurality of electrode plates are bundled and connected to the current collector terminal 21, the distance between the connection surface of the current collector terminal 21 and each electrode plate is different for each electrode plate. Part 15
The tip of the is displaced and a step is generated. This step occurs in the lateral direction of the storage battery (left-right direction in FIG. 2 (a) or FIG. 2 (b)).

【0029】従来の蓄電池では、図8に示したように、
上記段差は縦方向に生じていた。すなわち、集電端子6
の溶接面から最も遠い位置にある電極板のリード部2を
集電端子6に接続できる長さとし、他の電極板のリード
部2をその長さに揃えると、上記溶接面から近い位置に
ある電極板のリード部2の先端は上方に突出し、図7に
示す電槽蓋8に接触する恐れがあった。従って、従来の
蓄電池においては、各電極板のリード部2を集電端子6
に溶接した後にそれらリード部2の先端部をカットする
工程が必要であった。
In the conventional storage battery, as shown in FIG.
The step was generated in the vertical direction. That is, the collector terminal 6
If the lead part 2 of the electrode plate at the position farthest from the welding surface is made to have a length that can be connected to the current collecting terminal 6 and the lead parts 2 of the other electrode plates are aligned with that length, it is at a position close to the welding surface. The tip of the lead portion 2 of the electrode plate protruded upward, and there was a risk of contacting the battery case lid 8 shown in FIG. 7. Therefore, in the conventional storage battery, the lead portion 2 of each electrode plate is connected to the collector terminal 6
It was necessary to perform a step of cutting the tip portions of the lead portions 2 after welding to the.

【0030】これに対して、本実施形態の蓄電池では、
各電極板の曲げ部15の先端部の段差は横方向なので、
曲げ部15の先端部が電槽蓋などに接触することはな
い。したがって、曲げ部15の先端部をカットする工程
は不要である。
On the other hand, in the storage battery of this embodiment,
Since the step at the tip of the bent portion 15 of each electrode plate is lateral,
The tip of the bent portion 15 does not come into contact with the battery case lid or the like. Therefore, the step of cutting the tip of the bent portion 15 is unnecessary.

【0031】本実施形態の電極板のリード部12は、図
9に示した従来の構成のリード部9と比べてその高さが
小さい。すなわち、図9に示した従来の構成では、リー
ド部9を反応部1の上縁から上方に短く突出させた後に
そこから反応部1の上縁に沿うように側方に伸びる形状
であったが、本実施形態の構成では、切込み13を入れ
ることによって曲げ部15を設けているので、リード部
12を上方に突出させる必要はなく、その高さを小さく
できる。
The height of the lead portion 12 of the electrode plate of the present embodiment is smaller than that of the lead portion 9 of the conventional structure shown in FIG. That is, in the conventional configuration shown in FIG. 9, the lead portion 9 has a shape in which the lead portion 9 is shortly projected upward from the upper edge of the reaction portion 1 and then laterally extends from there along the upper edge of the reaction portion 1. However, in the configuration of the present embodiment, since the bent portion 15 is provided by making the notch 13, it is not necessary to project the lead portion 12 upward, and the height thereof can be reduced.

【0032】ここで、一般に、蓄電池の形状は規格とし
て定められているので、そのことによって電極板の高さ
も概ね決まっている。したがって、リード部12の高さ
を小さくできれば、その分だけ反応部11の高さを大き
くすることができる。反応部11は、充放電に際して化
学反応を起こす領域なので、反応部11の高さが高くな
ればその面積が広くなるので、蓄電池の容量が大きくな
る。
Here, since the shape of the storage battery is generally defined as a standard, the height of the electrode plate is generally determined accordingly. Therefore, if the height of the lead portion 12 can be reduced, the height of the reaction portion 11 can be correspondingly increased. Since the reaction section 11 is a region where a chemical reaction occurs during charging and discharging, the area of the reaction section 11 increases as the height of the reaction section 11 increases, so that the capacity of the storage battery increases.

【0033】また、図9に示した従来の構成では、リー
ド部9が反応部1から突出した後に側方に長く伸びる形
状なので、その長く伸びたリード部9が他の部材にひっ
かかりやすく、蓄電池の組立作業を容易にすることを妨
げていた。これに対して本実施形態の構成によれば、切
込み13によって曲げ部15を設けているので、蓄電池
を組み立てるときに曲げ部15が他の部材にひっかかる
ことは希である。さらに、本実施形態では、切込み13
を設けるだけであるので、図9に示した従来例に比べて
加工コストを低減できる。
Further, in the conventional structure shown in FIG. 9, since the lead portion 9 is shaped so as to extend laterally after projecting from the reaction portion 1, the lead portion 9 that extends for a long time easily catches on another member, and the storage battery It hindered easy assembly work. On the other hand, according to the configuration of the present embodiment, since the bent portion 15 is provided by the notch 13, it is rare that the bent portion 15 is caught on another member when the storage battery is assembled. Further, in the present embodiment, the notch 13
Since it is simply provided, the processing cost can be reduced as compared with the conventional example shown in FIG.

【0034】図3は、蓄電池用電極板の他の実施形態を
示す図である。図3(a) および(b)に示す電極板は、図
1に示した構成と同様に、リード部に対して切込みを入
れることによって曲げ部(図中、斜線で示す)18及び
19を設けている。そして、これらの曲げ部を反応部1
1に対して適当に曲げてその先端部を集電端子に接続す
る。これら2つの形態のうち、特に図3(b) に示す構成
では、リード部の高さをより小さくできるので、その分
だけ反応部11の面積を大きくでき、蓄電池の容量が大
きくなる。
FIG. 3 is a diagram showing another embodiment of the storage battery electrode plate. The electrode plate shown in FIGS. 3 (a) and 3 (b) is provided with bent portions (indicated by diagonal lines in the drawing) 18 and 19 by making cuts in the lead portions, as in the configuration shown in FIG. ing. Then, these bent portions are connected to the reaction portion 1
1 is bent appropriately and its tip is connected to the collector terminal. Of the two forms, particularly in the configuration shown in FIG. 3B, the height of the lead portion can be made smaller, so that the area of the reaction portion 11 can be increased correspondingly, and the capacity of the storage battery becomes larger.

【0035】なお、上記実施形態では、各電極板と集電
端子とを溶接する構成を示したが、本発明はこの構成に
限定されるものではなく、各電極板と集電端子とを電気
的に接続する構成であれば他の形態にも適用できる。た
とえば、図2において、4枚ずつ束ねられた電極板のリ
ード部を各々まとめて集電端子21にネジ止めする構成
であってもよい。
In the above embodiment, the structure in which each electrode plate and the current collecting terminal are welded has been shown, but the present invention is not limited to this structure, and each electrode plate and the current collecting terminal are electrically connected. It can be applied to other forms as long as they are connected to each other. For example, in FIG. 2, the lead portions of the electrode plates, which are bundled four by four, may be collectively screwed to the current collector terminal 21.

【0036】また、切込みを入れる方向および位置は、
前述した実施例には限定されず、他の方向および位置で
あってもよい。たとえば、図4(a) 〜(j) に示す例が挙
げられる。さらに、リード部の突出部は、電極板の端部
以外の、たとえば図5に示すような中央寄りの位置であ
ってもよい。
The direction and position of making the cut are as follows:
The present invention is not limited to the embodiment described above, and other directions and positions may be used. For example, the examples shown in FIGS. 4 (a) to 4 (j) can be given. Further, the protruding portion of the lead portion may be located at a position other than the end portion of the electrode plate, for example, near the center as shown in FIG.

【0037】[0037]

【発明の効果】本発明の蓄電池においては、リード部に
切込みを入れることによって曲げ部を設け、その曲げ部
の先端を集電端子に接続するようにしたので、各電極板
を集電端子に接続させるとき、リード部全体を電極反応
部に対して曲げるのではなく、上記曲げ部のみを電極反
応部に対して曲げるので、そのときの負荷は、上記曲げ
部によって吸収される。したがって、上記負荷はリード
部と電極反応部との接合部に加わることはなく、リード
部と電極反応部との接合部の損傷を防ぐことができる。
In the storage battery of the present invention, since the bent portion is provided by cutting the lead portion and the tip of the bent portion is connected to the current collecting terminal, each electrode plate serves as the current collecting terminal. When connecting, the entire lead portion is not bent with respect to the electrode reaction portion, but only the bending portion is bent with respect to the electrode reaction portion, so that the load at that time is absorbed by the bending portion. Therefore, the load is not applied to the joint portion between the lead portion and the electrode reaction portion, and damage to the joint portion between the lead portion and the electrode reaction portion can be prevented.

【0038】また、リード部に切込みを入れることによ
って曲げ部を設けるので、リード部の高さが小さくな
り、その分だけ反応部を大きくできるので、蓄電池の容
量が大きくなる。
Further, since the bent portion is provided by making a cut in the lead portion, the height of the lead portion can be reduced, and the reaction portion can be enlarged correspondingly, so that the capacity of the storage battery is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態の蓄電池用電極板を示す図である。FIG. 1 is a diagram showing a storage battery electrode plate of the present embodiment.

【図2】集電端子と電極板との接続部の構成を説明する
図である。
FIG. 2 is a diagram illustrating a configuration of a connecting portion between a collector terminal and an electrode plate.

【図3】蓄電池用電極板の他の実施形態を示す図であ
る。
FIG. 3 is a view showing another embodiment of the storage battery electrode plate.

【図4】リード部の切込みの様々な例を示す図である。FIG. 4 is a diagram showing various examples of cuts in a lead portion.

【図5】リード部の突出部の他の形状を示す図である。FIG. 5 is a diagram showing another shape of the protruding portion of the lead portion.

【図6】一般的な大型蓄電池の内部構成を示す図であ
る。
FIG. 6 is a diagram showing an internal configuration of a general large-sized storage battery.

【図7】従来の蓄電池の内部構造を示す図であり、電極
板と集電端子との接続構成を示す。
FIG. 7 is a diagram showing an internal structure of a conventional storage battery, showing a connection configuration of an electrode plate and a current collecting terminal.

【図8】従来の蓄電池における電極板と集電端子との接
続を説明する図である。
FIG. 8 is a diagram illustrating connection between an electrode plate and a current collecting terminal in a conventional storage battery.

【図9】従来の電極板の他の形状を示す図である。FIG. 9 is a view showing another shape of a conventional electrode plate.

【符号の説明】[Explanation of symbols]

1、3 反応部 2、4、9 リード部 5 電槽 6、7 集電端子 8 伝送蓋 10 電極板 11 反応部 12 リード部 13 切込み 14 孔 15、18、19 曲げ部 16 接合ライン 17 付け根部 21 集電端子 1, 3 Reaction part 2, 4, 9 Lead part 5 Battery case 6, 7 Current collecting terminal 8 Transmission lid 10 Electrode plate 11 Reaction part 12 Lead part 13 Notch 14 Holes 15, 18, 19 Bending part 16 Joining line 17 Base part 21 Current collecting terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電極反応部とその電極反応部に接合され
たリード部とからなる電極板を有し、その電極板のリー
ド部を集電端子に接続する構成の蓄電池において、 上記電極板のリード部に切込みを設け、その切込みによ
って電極反応部に対して柔軟に曲げることが可能となっ
た部分を上記集電端子に接続した蓄電池。
1. A storage battery having an electrode plate composed of an electrode reaction part and a lead part joined to the electrode reaction part, wherein the lead part of the electrode plate is connected to a current collecting terminal. A storage battery in which a lead portion is provided with a notch, and a portion which can be flexibly bent with respect to the electrode reaction portion by the notch is connected to the current collecting terminal.
【請求項2】 上記電極反応部と上記リード部との接合
部に対して略同一方向に上記切込みを設けた請求項1に
記載の蓄電池。
2. The storage battery according to claim 1, wherein the notch is provided in substantially the same direction with respect to a joint portion between the electrode reaction portion and the lead portion.
【請求項3】 上記切込みの端部に応力緩和用の孔を設
けた請求項1または2に記載の蓄電池。
3. The storage battery according to claim 1, wherein a hole for stress relaxation is provided at the end of the cut.
【請求項4】 電極反応部と該電極反応部に接合されそ
の電極反応部と蓄電池の集電端子とを接続するリード部
とからなる蓄電池用電極板において、 上記リード部に、上記電極反応部と上記リード部との接
合部に対して略同一方向に切込みを設けた蓄電池用電極
板。
4. An electrode plate for a storage battery, which comprises an electrode reaction part and a lead part joined to the electrode reaction part and connecting the electrode reaction part and a current collecting terminal of the storage battery, wherein the electrode reaction part is provided on the lead part. An electrode plate for a storage battery, in which a notch is provided in substantially the same direction with respect to the joint between the lead and the lead.
JP8017563A 1996-02-02 1996-02-02 Battery and electrode plate for battery Withdrawn JPH09213298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8017563A JPH09213298A (en) 1996-02-02 1996-02-02 Battery and electrode plate for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8017563A JPH09213298A (en) 1996-02-02 1996-02-02 Battery and electrode plate for battery

Publications (1)

Publication Number Publication Date
JPH09213298A true JPH09213298A (en) 1997-08-15

Family

ID=11947389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8017563A Withdrawn JPH09213298A (en) 1996-02-02 1996-02-02 Battery and electrode plate for battery

Country Status (1)

Country Link
JP (1) JPH09213298A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268806A (en) * 1999-03-12 2000-09-29 Sumitomo Electric Ind Ltd Battery terminal
JP2012099633A (en) * 2010-11-02 2012-05-24 Ud Trucks Corp Power storage cell
JP2013105623A (en) * 2011-11-14 2013-05-30 Toyota Industries Corp Electrode for secondary battery, secondary battery and vehicle
JP2013149388A (en) * 2012-01-17 2013-08-01 Toyota Industries Corp Power storage device and vehicle
JP2014220251A (en) * 2009-09-30 2014-11-20 三洋電機株式会社 Square secondary battery
CN107819100A (en) * 2016-09-12 2018-03-20 丰田自动车株式会社 Battery
KR20180051366A (en) * 2016-11-07 2018-05-16 도요타 지도샤(주) Electric power storage device and method of manufacturing the same
JP2018077958A (en) * 2016-11-07 2018-05-17 トヨタ自動車株式会社 Power storage device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268806A (en) * 1999-03-12 2000-09-29 Sumitomo Electric Ind Ltd Battery terminal
JP4557329B2 (en) * 1999-03-12 2010-10-06 住友電気工業株式会社 Battery terminal
JP2014220251A (en) * 2009-09-30 2014-11-20 三洋電機株式会社 Square secondary battery
JP2012099633A (en) * 2010-11-02 2012-05-24 Ud Trucks Corp Power storage cell
JP2013105623A (en) * 2011-11-14 2013-05-30 Toyota Industries Corp Electrode for secondary battery, secondary battery and vehicle
JP2013149388A (en) * 2012-01-17 2013-08-01 Toyota Industries Corp Power storage device and vehicle
CN107819100A (en) * 2016-09-12 2018-03-20 丰田自动车株式会社 Battery
KR20180029906A (en) * 2016-09-12 2018-03-21 도요타 지도샤(주) Battery
JP2018045796A (en) * 2016-09-12 2018-03-22 トヨタ自動車株式会社 battery
US10312493B2 (en) 2016-09-12 2019-06-04 Toyota Jidosha Kabushiki Kaisha Battery
KR20180051366A (en) * 2016-11-07 2018-05-16 도요타 지도샤(주) Electric power storage device and method of manufacturing the same
JP2018077959A (en) * 2016-11-07 2018-05-17 トヨタ自動車株式会社 Power storage device and manufacturing method of power storage device
JP2018077958A (en) * 2016-11-07 2018-05-17 トヨタ自動車株式会社 Power storage device
CN108063211A (en) * 2016-11-07 2018-05-22 丰田自动车株式会社 The manufacturing method of electrical storage device and electrical storage device
US10749204B2 (en) 2016-11-07 2020-08-18 Toyota Jidosha Kabushiki Kaisha Electric power storage device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR102629053B1 (en) Rechargeable battery having current collector
US10665829B2 (en) Rectangular secondary battery and method of manufacturing the same
EP2204863B1 (en) Battery module
KR100599752B1 (en) Secondary battery and electrodes assembly using the same
JP5297471B2 (en) Secondary battery
KR101658024B1 (en) Secondary battery and secondary battery module
JP6070744B2 (en) Battery manufacturing method
JP5424422B2 (en) Battery module
KR100590006B1 (en) Secondary battery and electrodes assembly
JPH09213299A (en) Current collecting structure of storage battery
JP4588331B2 (en) Square battery and manufacturing method thereof
JP6582443B2 (en) Secondary battery and manufacturing method thereof
KR20170106933A (en) Battery package with improved durability
JP2010257945A (en) Secondary battery
KR102606100B1 (en) Secondary battery
CN103227307A (en) Prismatic secondary battery
KR20050121904A (en) Secondary battery and electrodes assembly
KR20050121914A (en) Secondary battery and electrodes assembly
JP2010092598A (en) Battery pack
JP4146665B2 (en) Sealed secondary battery
JP2005100949A (en) Cylindrical battery and its manufacturing method
US8765300B2 (en) Battery manufacturing method, battery, pre-welding positive plate manufacturing method, and pre-welding positive plate
JP2001155712A (en) Cylindrical storage battery
JP2002313309A (en) Electrochemical device and its manufacturing method
JPH09213298A (en) Battery and electrode plate for battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506