JPH09209076A - High strength hot rolled steel plate of (400 to 800)n/mm2 class excellent in workability and its production - Google Patents

High strength hot rolled steel plate of (400 to 800)n/mm2 class excellent in workability and its production

Info

Publication number
JPH09209076A
JPH09209076A JP1995096A JP1995096A JPH09209076A JP H09209076 A JPH09209076 A JP H09209076A JP 1995096 A JP1995096 A JP 1995096A JP 1995096 A JP1995096 A JP 1995096A JP H09209076 A JPH09209076 A JP H09209076A
Authority
JP
Japan
Prior art keywords
less
cooling rate
workability
strength
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1995096A
Other languages
Japanese (ja)
Other versions
JP3425288B2 (en
Inventor
Natsuko Hashimoto
夏子 橋本
Naoki Yoshinaga
直樹 吉永
Masayoshi Suehiro
正芳 末広
Kazuo Koyama
一夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP01995096A priority Critical patent/JP3425288B2/en
Publication of JPH09209076A publication Critical patent/JPH09209076A/en
Application granted granted Critical
Publication of JP3425288B2 publication Critical patent/JP3425288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high strength hot rolled steel plate excellent in workability by producing a steel, containing specific elements by the amounts in weight percentages within specific ranges, by a specific method. SOLUTION: A steel, having a composition consisting of, by weight, 0.05-0.2% C, 0.01-0.5% Mn, 0.01-0.5% Si, 0.005-0.1% Al, <=0.05% P, <=0.01% S, <=0.007% N, 0.05-0.3% Ti, and the balance iron with inevitable impurities, is heated at 1200-1350 deg.C, roughed, and hot-rolled at >=Ar3 finishing temp. Successively, the resultant steel plate is cooled from the finishing temp. down to 600-750 deg.C at a cooling rate in the range of ±5 deg.C/S with respect to the cooling rate determined from equation CR=-200×(0.5×C%+2.5×Ti%)+TS/3-85 [where TS means the desired tensile strength (N/mm<2> )]. Then coiling is performed at a temp. between room temp. and 750 deg.C. By this method, the (400 to 800)N/mm<2> class high strength hot rolled steel plate excellent in workability, in which the ratio of C precipitating as cementite to the total C content, represented by M=(C% as cementite)/(total C%), is regulated to <=0.03, can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加工性に優れた4
00〜800N/mm2 級高強度熱延鋼板及びの製造方法
に関わり、その用途は、自動車、家電、建材等である。
TECHNICAL FIELD OF THE INVENTION The present invention relates to
The present invention relates to a high-strength hot-rolled steel sheet of 0 to 800 N / mm 2 grade and a manufacturing method thereof, and its applications are automobiles, home appliances, building materials and the like.

【0002】[0002]

【従来の技術】近年、自動車、建築等多くの産業分野
で、部材の軽量化の要望が高まっており、それに対応す
るために高強度鋼板が用いられる場合が増えている。そ
して、これらの鋼板が用いられる用途においては、しば
しば高い加工性、特に穴拡げ性が要求される。
2. Description of the Related Art In recent years, in many industrial fields such as automobiles and construction, there is an increasing demand for weight reduction of members, and in order to meet the demand, high strength steel sheets are increasingly used. In applications where these steel sheets are used, high workability, especially hole expandability, is often required.

【0003】従来から、このような高強度熱延鋼板とし
ては、フェライト(F)+マルテンサイト(M)また
は、フェライト(F)+ベイナイト(B)の複合組織に
よる組織強化型の鋼板が多く使われている。しかし、F
+Mの複合組織鋼では、高い強度は得られるものの穴拡
げ性が劣るという問題がある。また、F+B鋼では、特
開昭57−101649号公報に示されているように、
穴拡げ性には優れているものの、穴拡げ性を確保したま
まで700N/mm2 以上の強度を得ることは困難であっ
た。
Conventionally, as such a high-strength hot-rolled steel sheet, a structure strengthening steel sheet having a composite structure of ferrite (F) + martensite (M) or ferrite (F) + bainite (B) is often used. It is being appreciated. But F
In the + M composite structure steel, there is a problem that the hole expandability is inferior although the high strength is obtained. Further, in the case of F + B steel, as disclosed in JP-A-57-101649,
Although it has excellent hole expansibility, it was difficult to obtain a strength of 700 N / mm 2 or more while ensuring the hole expansibility.

【0004】その他、組織の大部分をフェライトにし、
かつTiC析出強化を利用することで700N/mm2
上の強度を確保し、同時に穴拡げ性も確保するものとし
て、特開平6−200351号公報で開示された発明が
ある。しかし、この発明の鋼板は、0.5%以上のMn
による固溶強化が必須であり、本発明のように広い強度
範囲を作り分ける技術でもない。
In addition, most of the structure is made of ferrite,
In addition, there is an invention disclosed in Japanese Patent Laid-Open No. 6-200351 that secures a strength of 700 N / mm 2 or more by utilizing TiC precipitation strengthening and at the same time secures hole expandability. However, the steel sheet of the present invention has a Mn of 0.5% or more.
Solid solution strengthening is essential, and it is not a technique for creating a wide strength range as in the present invention.

【0005】一般に、固溶強化は、高価な合金元素を要
するため、コスト的には不利な強化機構であるとされて
いる。特公昭56−9223号公報で開示された発明で
は、低Mnでも高強度が得られるが、これは、TimB
nによる析出強化を活用するもので、高価なB添加が必
須である。また、本発明のように広い強度範囲を作り分
ける技術でもない。
Generally, solid solution strengthening requires an expensive alloying element, and is therefore considered to be a costly disadvantageous strengthening mechanism. In the invention disclosed in Japanese Patent Publication No. 56-9223, high strength can be obtained even with low Mn.
Since the precipitation strengthening by n is utilized, expensive B addition is essential. In addition, it is not a technique for creating a wide range of strength as in the present invention.

【0006】600〜800N/mm2 級の強度範囲にお
いて穴拡げ性を確保する技術とては、特開平6−172
924号公報の発明がある。これは、ベイネティックフ
ェライトによる組織強化鋼であり、フェライト中のTi
C析出による強化が主である本発明鋼とはその強化機構
が全く異なる。また、低Mn化による効果を狙ったもの
でもない。
As a technique for ensuring hole expandability in the strength range of 600 to 800 N / mm 2 class, Japanese Patent Laid-Open No. 6-172 is known.
There is an invention of Japanese Patent No. 924. This is a structurally strengthened steel with bainitic ferrite.
The strengthening mechanism is completely different from the steel of the present invention, which is mainly strengthened by C precipitation. In addition, the effect of reducing the Mn content is not intended.

【0007】[0007]

【発明が解決しようとする課題】本発明は、高価な合金
元素を用いることなく、600〜800N/mm2 という
広い強度範囲にわたって加工性、特に穴拡げ性に優れる
高強度熱延鋼板とその製造方法を提供することを目的と
するものである。
DISCLOSURE OF THE INVENTION The present invention provides a high-strength hot-rolled steel sheet which is excellent in workability, particularly hole expandability, over a wide strength range of 600 to 800 N / mm 2 without using an expensive alloy element, and its production. It is intended to provide a method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明者等は鋭意検討を行った。その結果、オース
テナイトフォーマーであるMnを低減しα域を広げるこ
とによって、熱延終了から巻取前までの冷却中のTiC
の析出が促進されて、鋼板強度がTiCの析出強化によ
り確保されるとともに、セメンタイトの生成量が減少す
ることから鋼板の穴拡げ性が著しく向上することを見出
した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, by reducing Mn, which is an austenite former, and widening the α region, TiC during cooling from the end of hot rolling to before winding.
It was found that the steel sheet strength is secured by the precipitation strengthening of TiC, and the amount of cementite produced is reduced, so that the hole expandability of the steel sheet is significantly improved.

【0009】また、熱延終了から巻取前までの冷却速度
が大きくなるにつれて、TiCの微細化が促進され、T
iCの強化への寄与が極めて大きくなることを見出し
た。さらに、粗圧延後に曲げ戻し加工を加えることによ
って、材質の長手、幅方向の均質化が促され、コイル内
の材質のばらつきが低減されることを見出した。
Further, as the cooling rate from the end of hot rolling to the time before winding increases, the refinement of TiC is promoted and T
It has been found that the contribution to the strengthening of iC is extremely large. Furthermore, it has been found that by performing bending back processing after rough rolling, homogenization of the material in the longitudinal and width directions is promoted, and variation in the material in the coil is reduced.

【0010】本発明は、このTiCの析出強化を活用す
ることによって、低コストでかつ加工性に優れた高強度
鋼板を広い強度範囲において容易に作り分ける技術を確
立したものであり、その要旨とするところは下記の通り
である。
The present invention establishes a technique for easily producing high-strength steel sheets at low cost and excellent in workability in a wide strength range by utilizing the precipitation strengthening of TiC. The place to do is as follows.

【0011】(1) 重量%で、C:0.05〜0.2
%、Mn:0.01%以上、0.5%未満、Si:0.
01〜0.5%、Al:0.005〜0.1%、P:
0.05%以下、S:0.01%以下、N:0.007
%以下、Ti:0.05〜0.3%を含有し、残部は鉄
および不可避的不純物よりなり、さらに、全C量のうち
セメンタイトとして析出しているCの割合〔M=(C%
as セメンタイト)/(全C%)〕が0.03以下であ
ることを特徴とする加工性に優れた400〜800N/
mm2 級高強度熱延鋼板。
(1) C: 0.05 to 0.2 in% by weight
%, Mn: 0.01% or more and less than 0.5%, Si: 0.
01-0.5%, Al: 0.005-0.1%, P:
0.05% or less, S: 0.01% or less, N: 0.007
% Or less, Ti: 0.05 to 0.3%, the balance consisting of iron and unavoidable impurities, and the proportion of C precipitated as cementite in the total amount of C [M = (C%
as cementite) / (total C%)] is 0.03 or less, which is excellent in workability and is 400 to 800 N /
mm 2 grade high strength hot rolled steel sheet.

【0012】(2) 重量%で、C:0.05〜0.2
%、Mn:0.01%以上、0.5%未満、Si:0.
01〜0.5%、Al:0.005〜0.1%、P:
0.05%以下、S:0.01%以下、N:0.007
%以下、Ti:0.05〜0.3%を含有し、残部は鉄
および不可避的不純物よりなる鋼を、加熱温度:120
0〜1350℃で加熱し、粗圧延後、仕上げ温度がAr
3 以上の熱間圧延を施し、引き続き1〜60℃/sの範
囲内の冷却速度で、かつ所望の引張強さに応じて下記
(1)式から求まる冷却速度に対して±5℃/sの範囲内
の冷却速度で、仕上げ温度から600〜750℃まで冷
却し、その後、巻取温度:室温〜750℃で巻き取り、
全C量のうちセメンタイトとして析出しているCの割合
〔M=(C% as セメンタイト)/(全C%)〕が0.
03以下であることを特徴とする加工性に優れた400
〜800N/mm2 級高強度熱延鋼板の製造方法。 CR=−200 ×( 0.5×C%+ 2.5×Ti%)+TS/3 − 85 ……(1) CR:冷却速度(℃/s)、C%:C濃度、Ti%:T
i濃度、 TS:所望する引張強度(N/mm2
(2) C: 0.05 to 0.2 by weight%
%, Mn: 0.01% or more and less than 0.5%, Si: 0.
01-0.5%, Al: 0.005-0.1%, P:
0.05% or less, S: 0.01% or less, N: 0.007
% Or less, Ti: 0.05 to 0.3%, with the balance being steel consisting of iron and inevitable impurities. Heating temperature: 120
After heating at 0 ~ 1350 ℃ and rough rolling, finish temperature is Ar
3 or more hot rolling is performed, and subsequently, at the cooling rate within the range of 1 to 60 ° C./s, and according to the desired tensile strength,
Cooling is performed from the finishing temperature to 600 to 750 ° C. at a cooling rate within a range of ± 5 ° C./s with respect to the cooling rate obtained from the formula (1), and then winding temperature: room temperature to 750 ° C.
The ratio of C precipitated as cementite in the total amount of C [M = (C% as cementite) / (total C%)] is 0.
400 excellent in workability characterized by being 03 or less
~ 800 N / mm 2 High-strength hot-rolled steel sheet manufacturing method. CR = -200 x (0.5 x C% + 2.5 x Ti%) + TS / 3-85 (1) CR: Cooling rate (° C / s), C%: C concentration, Ti%: T
i concentration, TS: desired tensile strength (N / mm 2 )

【0013】(3) 粗圧延後、粗バーをコイル状に巻
き取り、巻き戻し、その後、仕上圧延に供することを特
徴とする上記(2)記載の加工性に優れた400〜80
0N/mm2 級高強度熱延鋼板の製造方法。 (4) 仕上圧延前に、先行材の後端部と後行材の先端
部を接合して、仕上圧延に供することを特徴とする上記
(2)または(3)記載の加工性に優れた400〜80
0N/mm2 級高強度熱延鋼板の製造方法。
(3) After rough rolling, the rough bar is wound into a coil shape, rewound, and then subjected to finish rolling, which is 400 to 80 excellent in workability according to the above (2).
0N / mm 2 class high strength hot rolled steel sheet manufacturing method. (4) The workability according to (2) or (3) above is excellent in that the rear end portion of the preceding material and the front end portion of the following material are joined to each other before the finish rolling and subjected to the finish rolling. 400-80
0N / mm 2 class high strength hot rolled steel sheet manufacturing method.

【0014】本発明における鋼板及びその製造方法は、
C、Ti量、熱延条件を限定することによって、Mnな
どの高価な合金元素を添加することなく、加工性に優れ
た高強度熱延鋼板を広い強度範囲に亘って提供するもの
である。以下にその限定理由を述べる。
The steel sheet and the manufacturing method thereof according to the present invention are
By limiting the amounts of C, Ti, and hot rolling conditions, a high-strength hot-rolled steel sheet excellent in workability is provided over a wide strength range without adding expensive alloying elements such as Mn. The reasons for the limitation will be described below.

【0015】まず、化学成分について、その限定理由を
説明する。Cは、本発明において最も重要な元素の一つ
である。その量が0.05%以上の範囲では、C量が増
加するのに伴いTiC析出量が増加し強度が高くなる。
しかし、その量が0.2%を超えるとその効果は飽和
し、成形性も低下する。したがって、C添加量の範囲と
しては、0.05〜0.2%とする。強度と成形性のバ
ランスの観点から、0.1〜0.15%とするのが好ま
しい。
First, the reasons for limiting the chemical components will be described. C is one of the most important elements in the present invention. When the amount is 0.05% or more, the TiC precipitation amount increases and the strength increases as the C amount increases.
However, if the amount exceeds 0.2%, the effect is saturated, and the moldability also decreases. Therefore, the range of the amount of C added is set to 0.05 to 0.2%. From the viewpoint of the balance between strength and moldability, it is preferably 0.1 to 0.15%.

【0016】Siは、脱酸のために0.01%以上添加
する。しかし、その添加量が0.5%を超えると溶接性
が劣化する。したがって、Si添加量は0.01〜0.
5%とする。この観点から、更に0.1〜0.3%とす
るのが好ましい。
Si is added in an amount of 0.01% or more for deoxidation. However, if the amount added exceeds 0.5%, the weldability deteriorates. Therefore, the amount of Si added is 0.01 to 0.1.
5%. From this point of view, it is more preferably 0.1 to 0.3%.

【0017】Mnは、MnSを生成し固溶Sによる熱間
割れを防止するため、0.01%以上添加する。しか
し、0.5%以上添加すると、α域が狭くなりTiCの
析出が抑制される。また、粗大なMnSによって穴拡げ
性が低下する。したがって、Mn添加量の範囲としては
0.01〜0.5%未満とする。強度と成形性(穴拡げ
性)のバランスの観点から、0.01〜0.3%とする
のが好ましい。
Mn is added in an amount of 0.01% or more in order to form MnS and prevent hot cracking due to solid solution S. However, if it is added in an amount of 0.5% or more, the α region becomes narrow and the precipitation of TiC is suppressed. Further, coarse MnS reduces the hole expansibility. Therefore, the range of the amount of Mn added is 0.01 to less than 0.5%. From the viewpoint of the balance between strength and formability (hole expandability), it is preferably 0.01 to 0.3%.

【0018】Pは、安価な固溶強化元素であるが、0.
05%超では熱間あるいは冷間加工時の割れの原因とな
る。そこで、Pの含有量は0.05%以下とする。さら
に、厳しい加工性を要求される場合は、0.03%以下
とするのが好ましい。
P is an inexpensive solid solution strengthening element.
If it exceeds 05%, it may cause cracking during hot or cold working. Therefore, the content of P is set to 0.05% or less. Furthermore, when severe workability is required, it is preferably 0.03% or less.

【0019】S量は、0.01%超ではγ域でのTi4
2 2 の析出量が増加するためTiCの析出量が低下
し、強度を確保できない。また、固溶Sとして残存した
場合は熱間割れの原因となる。このため、S量は0.0
1%以下とする。特に、Ti4 2 2 生成抑制の観点
からは、S量は0.005%以下が望ましく、更に、
0.003%以下とすることで、Ti4 2 2 の生成
が更に抑制されて好ましい条件である。
If the amount of S exceeds 0.01%, Ti 4 in the γ region
Since the precipitation amount of C 2 S 2 increases, the precipitation amount of TiC decreases, and the strength cannot be secured. Further, if it remains as solid solution S, it causes hot cracking. Therefore, the amount of S is 0.0
1% or less. Particularly, from the viewpoint of suppressing Ti 4 C 2 S 2 production, the S content is preferably 0.005% or less, and further,
The content of 0.003% or less is a preferable condition because the production of Ti 4 C 2 S 2 is further suppressed.

【0020】Alは、脱酸剤として少なくとも0.00
5%を添加することが必要である。しかし、0.1%を
超えるとコストアップとなるばかりか介在物の増加を招
き、加工性を劣化させる。そこで、Al添加量の範囲と
しては0.005〜0.1%とする。
Al is used as a deoxidizer in at least 0.00
It is necessary to add 5%. However, when it exceeds 0.1%, not only the cost is increased but also the number of inclusions is increased, and the workability is deteriorated. Therefore, the range of the amount of Al added is 0.005 to 0.1%.

【0021】Nは、窒化物の増加に伴い延性の劣化を招
くので、少ないほど望ましい。したがって、0.007
%以下とする。より厳しい加工性が必要な場合は、0.
003%以下とするのが好ましい。
Since N causes deterioration of ductility as the amount of nitride increases, it is preferable that N is small. Therefore, 0.007
% Or less. If stricter workability is required, 0.
It is preferably 003% or less.

【0022】Tiは、本発明において最も重要な元素で
ある。その量が0.05%以上では、Tiの増加に伴い
TiCの析出量が増加し、かつROT冷却速度の上昇に
伴い析出するTiCが微細になり、強度が高くなる。そ
こで、強度レベルに応じて添加する。ただし、その量が
0.3%を超えると、これらの効果は飽和する。したが
って、Ti添加量の範囲は0.05〜0.3%とする。
[0022] Ti is the most important element in the present invention. When the amount is 0.05% or more, the amount of TiC precipitated increases with the increase of Ti, and the TiC precipitated with the increase of the ROT cooling rate becomes finer and the strength increases. Therefore, it is added according to the strength level. However, when the amount exceeds 0.3%, these effects are saturated. Therefore, the range of the added amount of Ti is set to 0.05 to 0.3%.

【0023】また、加工性、特に穴拡げ性を確保するた
めには、全C量のうちセメンタイトとして析出するC量
の割合〔M=(C% as セメンタイト)/(全C%)〕
が0.03以下でなければならない。更に厳しい加工性
(穴広げ性)が求められる場合には、M≦0.01とす
るのが好ましい。
In order to secure workability, particularly hole expandability, the ratio of the amount of C precipitated as cementite in the total amount of C [M = (C% as cementite) / (total C%)]
Must be 0.03 or less. When stricter workability (hole expandability) is required, it is preferable that M ≦ 0.01.

【0024】この(C% as セメンタイト)は、以下の
ようにして求められる。すなわち、非水溶媒によって抽
出した残渣を化学分析に供し、Fe量(=F(g)とす
る)を測定する。このときサンプル全体の抽出量をZ
(g)とすると、(C% as セメンタイト)=F/Z×
12/168×100(%)となる。
This (C% as cementite) is determined as follows. That is, the residue extracted with the non-aqueous solvent is subjected to chemical analysis, and the amount of Fe (= F (g)) is measured. At this time, the extraction amount of the entire sample is Z
If (g), then (C% as cementite) = F / Z x
It becomes 12/168 x 100 (%).

【0025】上記成分を得るための原料は特に限定しな
いが、鉄鉱石を原料として高炉−転炉により成分を調製
する方法以外に、スクラップを原料として電炉で溶製し
てもよい。スクラップを原料の全部または一部として使
用する際には、Cu、Cr、Ni、Sn、Sb、Zn、
Pb、Mo等の元素を、合計で1%未満含有してもよ
い。
The raw materials for obtaining the above components are not particularly limited, but scraps may be melted in an electric furnace in addition to the method of preparing the components by a blast furnace-converter using iron ore as a raw material. When scrap is used as all or part of the raw material, Cu, Cr, Ni, Sn, Sb, Zn,
The total amount of elements such as Pb and Mo may be less than 1%.

【0026】次に、製造プロセスに関する限定理由を述
べる。熱間圧延に供するスラブは、特に限定するもので
はない。すなわち、連続鋳造スラブや薄スラブキャスタ
ーで製造したものなどであれば良い。また、鋳造後に直
ちに熱間圧延を行う、連続鋳造−直接圧延(CC−D
R)のようなプロセスにも適合する。粗圧延の後にコイ
ルボックスでの巻取、巻戻し処理を行ったり、更にその
後、先行の粗バーの後端と後行の粗バーの先端を接合し
仕上圧延を行う連続熱延のようなプロセスを行うと、材
質が均一化し歩留まりも向上する。
Next, the reasons for limitation regarding the manufacturing process will be described. The slab used for hot rolling is not particularly limited. That is, it may be a continuous cast slab or a thin slab caster. In addition, continuous casting-direct rolling (CC-D
Also applicable to processes like R). A process such as continuous hot rolling in which coiling is performed in a coil box and then rewinding is performed after rough rolling, and then the trailing end of the preceding rough bar and the leading end of the following rough bar are joined and finish rolling is performed. By carrying out, the material is made uniform and the yield is improved.

【0027】熱間圧延における加熱温度は、熱延前に生
成されているTiCを再固溶させ、過飽和Tiをできる
だけ多くするために、1200℃以上とすることが必須
である。しかし、1350℃を超えるとその効果は飽和
するだけでコストがかかるので、加熱温度は1350℃
以下とする。TiCの再固溶の効果と製造コストのバラ
ンスの観点から、1300℃未満とするのが好ましい。
仕上圧延における熱延終了温度は、プレス成形性を確保
するためにAr3 変態点以上とする必要がある。
It is essential that the heating temperature in hot rolling is 1200 ° C. or higher in order to re-dissolve TiC formed before hot rolling and increase the supersaturated Ti as much as possible. However, if the temperature exceeds 1350 ° C, the effect will be saturated and the cost will increase, so the heating temperature is 1350 ° C.
The following is assumed. From the viewpoint of the balance between the effect of re-dissolving TiC and the manufacturing cost, the temperature is preferably lower than 1300 ° C.
The hot rolling end temperature in finish rolling needs to be the Ar 3 transformation point or higher in order to ensure press formability.

【0028】粗圧延終了後には、粗バーを一旦コイル状
に巻き取ってもよい。このとき、1000℃以下での加
熱保持を行っても良いし、コイルボックスのような物の
中で恒温保持しても良い。大気中での保持でも良い。表
面性状の観点からは、不活性ガス雰囲気での保持を行う
のが好ましい。このコイルを巻き戻した後に、そのま
ま、Ar3 以上の仕上げ温度で仕上げ圧延を行っても良
いし、先行の粗バーの後端と後行の粗バーの先端を接合
して連続的に仕上げ熱延を行っても構わない。
After the rough rolling is finished, the rough bar may be once wound into a coil. At this time, heating and holding at 1000 ° C. or lower may be performed, or constant temperature holding may be performed in an object such as a coil box. It may be held in the atmosphere. From the viewpoint of surface properties, it is preferable to hold in an inert gas atmosphere. After rewinding this coil, finish rolling may be performed as it is at a finishing temperature of Ar 3 or higher. Alternatively, the trailing end of the preceding rough bar and the leading end of the following rough bar may be joined to continuously finish the heat treatment. You may postpone it.

【0029】粗圧延終了後に、粗バーを一旦コイル状に
巻き取ることなく、先行の粗バーの後端と後行の粗バー
の先端を接合して連続的に仕上げ熱延を行っても構わな
い。このような工程によって材質が均一化し、端部切り
落としの必要が無くなり歩留まりが向上する。また、熱
延板の板厚精度も著しく向上する。
After the rough rolling is finished, the rear end of the preceding rough bar and the leading end of the following rough bar may be joined to each other and the finish hot rolling may be continuously performed without temporarily winding the rough bar into a coil. Absent. By such a process, the material is made uniform, and it is not necessary to cut off the end portion, and the yield is improved. Further, the plate thickness accuracy of the hot rolled plate is significantly improved.

【0030】仕上げ圧延後の冷却速度は、TiCの析出
量とベイナイト量を変えて強度を作り分けるために、1
〜60℃/sの範囲で、かつ、所望の引張強さに応じ
て、引張強さと化学成分とから(1)式で求まる平均冷
却速度CRに対して±5℃の範囲とする。冷却速度を1
℃/s未満にすることは設備上困難であり、かつ、格段
の効果も得られないことから、冷却速度は1℃/s以上
とする。
The cooling rate after finish rolling is 1 in order to change the precipitation amount of TiC and the amount of bainite to make strength different.
-60 ° C / s, and within a range of ± 5 ° C with respect to the average cooling rate CR obtained by the formula (1) from the tensile strength and the chemical composition according to the desired tensile strength. Cooling rate 1
The cooling rate is set to 1 ° C./s or more because it is difficult to set the temperature to less than ° C./s in terms of equipment and no remarkable effect can be obtained.

【0031】一方、60℃/s超の冷却速度を安定に確
保することは難しく、強度のばらつきの原因となること
から、冷却速度の上限は60℃/sとする。また、
(1)式で求まる平均冷却速度CRに対して±5℃の範
囲を超える冷却速度では、狙いとする引張強度を得られ
ないため、仕上げ圧延後の冷却速度は、CR±5℃とす
る。
On the other hand, it is difficult to stably secure a cooling rate of more than 60 ° C./s, which causes variations in strength. Therefore, the upper limit of the cooling rate is 60 ° C./s. Also,
At the cooling rate exceeding the range of ± 5 ° C with respect to the average cooling rate CR obtained by the equation (1), the target tensile strength cannot be obtained, so the cooling rate after finish rolling is CR ± 5 ° C.

【0032】強度に寄与するTi、C量、引張強度と冷
却速度の関係は以下のようにして調べた。0.08%C
−0.3%Mn−0.002%N鋼をベ−スに、Ti含
有量を変化させた鋼片を、1250℃に加熱後、仕上げ
温度908℃で、板厚4mmに仕上げ、その後、種々の冷
却速度で冷却した時の冷却速度、Ti量と引張強度TS
との関係を図1に示す。
The relationship between the amounts of Ti and C that contribute to the strength, the tensile strength and the cooling rate was examined as follows. 0.08% C
-0.3% Mn-0.002% N steel was used as a base, and a steel slab having a changed Ti content was heated to 1250 ° C., and then finished at a finishing temperature of 908 ° C. to a plate thickness of 4 mm, and then, Cooling rate, Ti content and tensile strength TS when cooled at various cooling rates
1 is shown in FIG.

【0033】同じ熱延条件で、0.3%Mn−0.12
%Ti−0.002%N鋼をベ−スに、C含有量を変化
させた鋼片について、同様の調査を行った結果を図2に
示す。これより、Ti、C量の増加に比例して引張強度
(TS)が上昇することが分かる。また図3には、図1
と図2のデータを冷却速度とTSの関係に整理し直した
結果を示す。これより、ROT冷却速度に比例してTS
が上昇していることが分かる。
Under the same hot rolling conditions, 0.3% Mn-0.12
FIG. 2 shows the results of a similar investigation performed on steel slabs in which the C content was changed with the base of% Ti-0.002% N steel. From this, it can be seen that the tensile strength (TS) increases in proportion to the increase in the Ti and C amounts. In addition, in FIG.
2 shows the result of rearranging the data of FIG. 2 into the relationship between the cooling rate and TS. Therefore, TS is proportional to the ROT cooling rate.
You can see that is rising.

【0034】以上の関係を式にまとめると、下記の様に
なる。 CR=−200 ×( 0.5×C%+ 2.5×Ti%)+TS/3 − 85 ……(1) CR:冷却速度(℃/s)、C%:C濃度、Ti%:T
i濃度、 TS:引張強度(N/mm2
The above relationships are summarized in the following equation. CR = -200 x (0.5 x C% + 2.5 x Ti%) + TS / 3-85 (1) CR: Cooling rate (° C / s), C%: C concentration, Ti%: T
i concentration, TS: Tensile strength (N / mm 2 )

【0035】冷却停止温度は、600〜750℃とす
る。冷却停止温度を600℃未満とすることは、特段の
効果が期待できない上に強度のばらつきの原因となるこ
とから、冷却停止温度の下限は600℃とする。一方、
冷却停止温度を750℃超にすると、冷却中に析出する
TiCの量が減少し強度が低下するため、冷却停止温度
の上限は750℃とする。
The cooling stop temperature is 600 to 750.degree. If the cooling stop temperature is less than 600 ° C., no particular effect can be expected and the strength may vary, so the lower limit of the cooling stop temperature is set to 600 ° C. on the other hand,
If the cooling stop temperature exceeds 750 ° C, the amount of TiC precipitated during cooling decreases and the strength decreases, so the upper limit of the cooling stop temperature is 750 ° C.

【0036】巻取温度は、室温〜750℃の範囲とす
る。巻取温度を750℃超にすることは、強化に寄与し
ている微細TiCの粗大化を促し、強度の低下の原因と
なる。また、高温巻取のための設備と酸洗コストの観点
からも望ましくない。そこで、巻取温度の上限は750
℃とする。優れた表面性状が要求される場合は、表面ス
ケールの発生を抑制するために、巻取温度を700℃以
下にするのが好ましい。
The coiling temperature is in the range of room temperature to 750 ° C. When the coiling temperature is higher than 750 ° C., the fine TiC that contributes to the strengthening is promoted to become coarse, which causes a decrease in strength. It is also not desirable from the viewpoint of equipment for high-temperature winding and pickling cost. Therefore, the upper limit of the winding temperature is 750.
° C. When excellent surface properties are required, the winding temperature is preferably 700 ° C. or lower in order to suppress the generation of surface scale.

【0037】更に厳しい表面性状の要求を満たすために
は、600℃以下とするのが更に好ましい。本発明にお
いては、強化に寄与しているTiCが粗大化して、強度
が低下してしまう温度領域未満の750℃以下の温度で
あれば基本的にはどの温度で巻き取っても良いが、室温
未満で巻き取ることは、過剰な設備が必要となるばかり
でなく、特段の効果もないため、巻取温度の下限は室温
とする。
In order to meet more stringent surface quality requirements, the temperature is preferably 600 ° C. or lower. In the present invention, basically, any temperature may be used as long as the temperature is 750 ° C. or lower, which is lower than the temperature range in which TiC contributing to strengthening is coarsened and the strength is reduced. The lower limit of the coiling temperature is room temperature because the coiling at a temperature lower than that requires not only excessive equipment but also no particular effect.

【0038】[0038]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)表1に示す化学成分を有する低炭素鋼を転
炉にて出鋼し、連続鋳造機にてスラブとした後、125
0℃に加熱し、仕上げ温度903℃、板厚2mmとなるよ
うな熱間圧延を行った。表2に示すような種々のROT
冷却速度(ランアウトテーブル (run out table)での平
均冷却速度)で650℃まで冷却した後、620℃でコ
イルに巻き取った。
(Example 1) Low carbon steel having the chemical composition shown in Table 1 was tapped in a converter and made into a slab by a continuous casting machine.
It was heated to 0 ° C. and hot-rolled so that the finishing temperature was 903 ° C. and the plate thickness was 2 mm. Various ROTs as shown in Table 2
After cooling to 650 ° C. at a cooling rate (average cooling rate on a run out table), the coil was wound at 620 ° C.

【0039】[0039]

【表1】 [Table 1]

【0040】このようにして得られた熱延鋼板につい
て、圧延方向の引張試験片(JIS Z2201 記載の5号
試験片)を加工し、JIS Z 2241 記載の試験方法に従
って引張試験を行った。また、穴拡げ試験は1辺100
mmの試験片の中央に径10mmの打ち抜き穴を加工し、そ
の初期穴を頂角60°の円錐ポンチにて押し広げ、割れ
が鋼板を貫通した時点での穴径dの初期穴径10mmに対
する穴拡げ率λ(次式)で評価した。 λ={(d−10)/10}×100(%)
With respect to the hot-rolled steel sheet thus obtained, a tensile test piece in the rolling direction (No. 5 test piece described in JIS Z2201) was processed, and a tensile test was performed according to the test method described in JIS Z 2241. The hole expansion test is 100 per side.
A 10 mm diameter punched hole was machined in the center of a mm test piece, and the initial hole was expanded by a conical punch with an apex angle of 60 °, and the initial hole diameter d was 10 mm when the crack penetrated the steel plate. The hole expansion rate λ (the following formula) was used for evaluation. λ = {(d-10) / 10} × 100 (%)

【0041】以上の試験結果を表2に示す。表2から明
らかなように、Mn量が低く、C、Ti量が適正な鋼
は、上記製造条件で、かつ、狙いの引張強度TSに対し
て、(1)式CR=−200 ×( 0.5×C%+ 2.5×Ti
%)+TS/3− 85 で計算されるROT冷却速度の±5
℃以内に実測のROT冷却速度を確保できているため、
セメンタイトの生成量も少なく(M≦0.03)、穴拡
げ性にも優れていることが分かる。
Table 2 shows the above test results. As is clear from Table 2, steel having a low Mn content and an appropriate C and Ti content is obtained under the above manufacturing conditions and with respect to the target tensile strength TS, by the formula (1) CR = −200 × (0.5 X C% + 2.5 x Ti
%) + TS / 3−85 of ROT cooling rate ± 5
Because the measured ROT cooling rate can be secured within ℃,
It can be seen that the amount of cementite produced is small (M ≦ 0.03) and the hole expandability is excellent.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】(実施例2)表1に示した鋼種CとIにつ
いて、連続鋳造によって製造したスラブを、表3に示し
た種々の温度で1時間加熱し、仕上温度900℃、板厚
5mmとなるような熱間圧延を行った後、鋼Cは25±2
℃/s(希望強度550N/mm2 )、鋼Iは20±3℃
/s(希望強度750N/mm2 )のROT冷却速度で6
80℃まで冷却した後に、600℃でコイルに巻き取っ
た。
(Example 2) For steel types C and I shown in Table 1, slabs produced by continuous casting were heated at various temperatures shown in Table 3 for 1 hour to obtain a finishing temperature of 900 ° C and a plate thickness of 5 mm. Steel C is 25 ± 2 after hot rolling
℃ / s (desired strength 550N / mm 2 ), Steel I is 20 ± 3 ℃
/ S (desired strength 750 N / mm 2 ) at a ROT cooling rate of 6
After cooling to 80 ° C, it was wound into a coil at 600 ° C.

【0045】このようにして得られた熱延鋼板につい
て、実施例1と同様にJIS5号による圧延方向の引張
試験、穴拡げ試験を行った。その結果を表3に示す。こ
れより、加熱温度が1200〜1350℃の範囲内で
は、狙いの強度±20N/mm2 内の強度が得られている
が、加熱温度が1200℃未満になると、強度が狙いの
強度に比べて著しく低下し、穴拡げ性も劣ることが分か
る。
The hot-rolled steel sheet thus obtained was subjected to a tensile test in the rolling direction and a hole expansion test according to JIS 5 in the same manner as in Example 1. Table 3 shows the results. From this, when the heating temperature is in the range of 1200 to 1350 ° C., the target strength of ± 20 N / mm 2 is obtained, but when the heating temperature is less than 1200 ° C., the strength is lower than the target strength. It can be seen that it is remarkably lowered and the hole expandability is also poor.

【0046】[0046]

【表4】 [Table 4]

【0047】(実施例3)表1に示した鋼種B、D、
H、Nのスラブを用いて、製造条件の比較のために次の
ような試作を行った。すなわち、その製造条件は、1
250℃で加熱し、粗圧延終了後コイル状に巻き取り直
ちに巻き戻した後に、仕上げ温度900℃、板厚3mmと
なるような仕上圧延を行い、表4に示したROT冷却速
度で700℃まで冷却した後コイルに巻き取った場合
と、1250度で加熱し、粗圧延終了後巻き取り巻き
戻しの工程を経ることなく、仕上温度910℃、板厚4
mmとなるような熱間圧延を行った後、表4に示したRO
T冷却速度で630℃まで冷却した後460℃でコイル
に巻き取った場合である。それぞれの熱延板について、
長手方向先端から10m、中央部、後端から10mの各
位置から試験片を採取し、実施例1と同じ試験を行った
結果を表4に示す。
(Example 3) Steel types B, D, and
Using H and N slabs, the following prototypes were made for comparison of manufacturing conditions. That is, the manufacturing condition is 1
After heating at 250 ℃, after the rough rolling is finished, it is wound into a coil and immediately rewound, and then finish rolling is performed at a finishing temperature of 900 ℃ and a plate thickness of 3 mm, and at the ROT cooling rate shown in Table 4, up to 700 ℃. After cooling, the coil is wound into a coil and heated at 1250 ° C., and after finishing rough rolling, the finishing temperature is 910 ° C. and the plate thickness is 4 without undergoing the step of winding and rewinding.
After hot rolling such that
This is a case where the material was cooled to 630 ° C. at the T cooling rate and then wound around a coil at 460 ° C. For each hot rolled sheet,
Table 4 shows the results of the same test as in Example 1, in which test pieces were sampled from positions of 10 m from the front end in the longitudinal direction, 10 m from the center, and 10 m from the rear end.

【0048】[0048]

【表5】 [Table 5]

【0049】これより、本発明例では、粗圧延後の巻き
取り巻き戻し工程の有無に関わらず、コイル全長で狙い
の強度±20N/mm2 が確保されているが、巻き取り巻
き戻し工程を加えた場合の方が、コイル材質の均一性に
より優れているのが分かる。
From this, in the present invention example, the target strength of ± 20 N / mm 2 is secured over the entire length of the coil regardless of the presence or absence of the winding and rewinding step after rough rolling, but the winding and rewinding step was added. It can be seen that the case is superior to the uniformity of the coil material.

【0050】[0050]

【発明の効果】本発明によれば、C、Ti量、熱延条件
を限定することによって、Mnなどの高価な合金元素を
添加することなく、400〜800N/mm2 という広い
強度範囲にわたって、加工性に優れた高強度熱延鋼板及
びその製造方法を容易に提供することが可能である。
According to the present invention, by limiting the amounts of C, Ti, and hot rolling conditions, without adding expensive alloying elements such as Mn, a wide strength range of 400 to 800 N / mm 2 can be achieved. It is possible to easily provide a high-strength hot-rolled steel sheet excellent in workability and a manufacturing method thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】引張強度TSとTi添加量、ROT冷却速度の
関係を示す図表である。
FIG. 1 is a table showing the relationship between tensile strength TS, Ti addition amount, and ROT cooling rate.

【図2】引張強度TSとC添加量、ROT冷却速度の関
係を示す図表である。
FIG. 2 is a chart showing the relationship between the tensile strength TS, the amount of C added, and the ROT cooling rate.

【図3】引張強度TSとROT冷却速度の関係を示す図
表である。
FIG. 3 is a table showing the relationship between tensile strength TS and ROT cooling rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 一夫 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Koyama 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technical Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C: 0.05〜0.2%、 Mn:0.01%以上、0.5%未満、 Si:0.01〜0.5%、 Al:0.005〜0.1%、 P :0.05%以下、 S :0.01%以下、 N :0.007%以下、 Ti:0.05〜0.3% を含有し、残部は鉄および不可避的不純物よりなり、さ
らに、全C量のうちセメンタイトとして析出しているC
の割合〔M=(C% as セメンタイト)/(全C%)〕
が0.03以下であることを特徴とする加工性に優れた
400〜800N/mm2 級高強度熱延鋼板。
1. By weight%, C: 0.05 to 0.2%, Mn: 0.01% or more and less than 0.5%, Si: 0.01 to 0.5%, Al: 0.005 -0.1%, P: 0.05% or less, S: 0.01% or less, N: 0.007% or less, Ti: 0.05-0.3%, and the balance is iron and unavoidable. C which is composed of impurities and which is precipitated as cementite in the total amount of C
Ratio [M = (C% as cementite) / (total C%)]
Is 0.03 or less, and is a 400-800 N / mm 2 class high strength hot rolled steel sheet excellent in workability.
【請求項2】 重量%で、 C :0.05〜0.2%、 Mn:0.01%以上、0.5%未満、 Si:0.01〜0.5%、 Al:0.005〜0.1%、 P :0.05%以下、 S :0.01%以下、 N :0.007%以下、 Ti:0.05〜0.3% を含有し、残部は鉄および不可避的不純物よりなる鋼
を、加熱温度:1200〜1350℃で加熱し、粗圧延
後、仕上げ温度がAr3 以上の熱間圧延を施し、引き続
き1〜60℃/sの範囲内の冷却速度で、かつ所望の引
張強さに応じて下記(1)式から求まる冷却速度に対し
て±5℃/sの範囲内の冷却速度で、仕上げ温度から6
00〜750℃まで冷却し、その後、巻取温度:室温〜
750℃で巻き取り、全C量のうちセメンタイトとして
析出しているCの割合〔M=(C% as セメンタイト)
/(全C%)〕が0.03以下であることを特徴とする
加工性に優れた400〜800N/mm2 級高強度熱延鋼
板の製造方法。 CR=−200 × ( 0.5×C%+ 2.5×Ti%)+TS/3 − 85 ……(1) CR:冷却速度(℃/s)、C%:C濃度、Ti%:T
i濃度、 TS:所望する引張強度(N/mm2
2. By weight%, C: 0.05 to 0.2%, Mn: 0.01% or more and less than 0.5%, Si: 0.01 to 0.5%, Al: 0.005 -0.1%, P: 0.05% or less, S: 0.01% or less, N: 0.007% or less, Ti: 0.05-0.3%, and the balance is iron and unavoidable. Steel made of impurities is heated at a heating temperature of 1200 to 1350 ° C., rough rolling is performed, and then hot rolling is performed at a finishing temperature of Ar 3 or more, and subsequently at a cooling rate in the range of 1 to 60 ° C./s, and Depending on the desired tensile strength, at a cooling rate within the range of ± 5 ° C / s with respect to the cooling rate obtained from the formula (1) below, the finishing temperature is 6
After cooling to 00 to 750 ° C., the coiling temperature: room temperature to
Winding at 750 ° C, the proportion of C precipitated as cementite in the total amount of C [M = (C% as cementite)
/ (Total C%)] is 0.03 or less, a method for producing a 400-800 N / mm 2 class high-strength hot-rolled steel sheet with excellent workability. CR = -200 x (0.5 x C% + 2.5 x Ti%) + TS / 3-85 (1) CR: Cooling rate (° C / s), C%: C concentration, Ti%: T
i concentration, TS: desired tensile strength (N / mm 2 )
【請求項3】 粗圧延後、粗バーをコイル状に巻き取
り、巻き戻し、その後、仕上圧延に供することを特徴と
する請求項2記載の加工性に優れた400〜800N/
mm2 級高強度熱延鋼板の製造方法。
3. After rough rolling, the rough bar is wound into a coil shape, rewound, and then subjected to finish rolling, which is 400 to 800 N / which has excellent workability according to claim 2.
mm 2 High-strength hot-rolled steel sheet manufacturing method.
【請求項4】 仕上圧延前に、先行材の後端部と後行材
の先端部を接合して、仕上圧延に供することを特徴とす
る請求項2または3記載の加工性に優れた400〜80
0N/mm2 級高強度熱延鋼板の製造方法。
4. The workability-improving 400 according to claim 2 or 3, wherein the trailing end portion of the preceding material and the leading end portion of the following material are joined to each other before the finishing rolling and subjected to the finishing rolling. ~ 80
0N / mm 2 class high strength hot rolled steel sheet manufacturing method.
JP01995096A 1996-02-06 1996-02-06 400-800N / mm2 class high-strength hot-rolled steel sheet excellent in workability and method for producing the same Expired - Fee Related JP3425288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01995096A JP3425288B2 (en) 1996-02-06 1996-02-06 400-800N / mm2 class high-strength hot-rolled steel sheet excellent in workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01995096A JP3425288B2 (en) 1996-02-06 1996-02-06 400-800N / mm2 class high-strength hot-rolled steel sheet excellent in workability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09209076A true JPH09209076A (en) 1997-08-12
JP3425288B2 JP3425288B2 (en) 2003-07-14

Family

ID=12013491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01995096A Expired - Fee Related JP3425288B2 (en) 1996-02-06 1996-02-06 400-800N / mm2 class high-strength hot-rolled steel sheet excellent in workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3425288B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119260A1 (en) 2013-01-31 2014-08-07 Jfeスチール株式会社 High-strength hot-rolled steel sheet and production method thereof
WO2014119259A1 (en) 2013-01-31 2014-08-07 Jfeスチール株式会社 High-strength hot-rolled steel sheet and manufacturing process therefor
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
WO2014119260A1 (en) 2013-01-31 2014-08-07 Jfeスチール株式会社 High-strength hot-rolled steel sheet and production method thereof
WO2014119259A1 (en) 2013-01-31 2014-08-07 Jfeスチール株式会社 High-strength hot-rolled steel sheet and manufacturing process therefor

Also Published As

Publication number Publication date
JP3425288B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
CN110114500B (en) Plated steel sheet for hot press molding excellent in impact properties, hot press molded member, and method for producing same
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
CN113166893B (en) High-strength steel material having excellent durability and method for producing same
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPH10251794A (en) Hot rolled steel plate for structural purpose, excellent in press formability and surface characteristic, and its production
JP3425288B2 (en) 400-800N / mm2 class high-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP6628018B1 (en) Hot rolled steel sheet
JP4273646B2 (en) High-strength thin steel sheet with excellent workability and manufacturing method thereof
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JP3426465B2 (en) 400-800 N / mm2 class high-strength hot-rolled steel sheet excellent in toughness and workability and method for producing the same
JP3616472B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent workability
JPH1036917A (en) Production of high strength hot-rolled steel plate excellent in stretch-flanging property
JP2000212687A (en) High tensile strength hot rolled steel plate excellent in material uniformity and hole expansibility and its production
JP3293015B2 (en) Cold rolled steel sheet with excellent workability uniformity
JP3425296B2 (en) Manufacturing method of thin hot rolled steel sheet with excellent workability
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JP2001089816A (en) Method of manufacturing high strength hot rolled steel plate
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JP4538898B2 (en) Manufacturing method of hot-rolled steel sheet
JPH10265845A (en) Production of hot rolled alloy steel sheet excellent in cold workability
JP3300639B2 (en) Cold rolled steel sheet excellent in workability and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees