JPH09207211A - Manufacture of consecutive biaxially stretched polyamide film - Google Patents

Manufacture of consecutive biaxially stretched polyamide film

Info

Publication number
JPH09207211A
JPH09207211A JP2022196A JP2022196A JPH09207211A JP H09207211 A JPH09207211 A JP H09207211A JP 2022196 A JP2022196 A JP 2022196A JP 2022196 A JP2022196 A JP 2022196A JP H09207211 A JPH09207211 A JP H09207211A
Authority
JP
Japan
Prior art keywords
film
stretching
temperature
stretched
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022196A
Other languages
Japanese (ja)
Inventor
Tatsuo Tsumiyama
龍男 積山
Atsushi Yamashita
敦志 山下
Koji Sugimoto
孝治 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2022196A priority Critical patent/JPH09207211A/en
Publication of JPH09207211A publication Critical patent/JPH09207211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance mechanical and gas barrier properties by stretching a mixed polymer of a salt consisting of a specific ratio of an aliphatic polyamide, m-xylylene diamine and adipic acid and a salt consisting of hexamethylene diamine and terephthalic acid at a specific temperature and stretching the mixed polymer orthogonally. SOLUTION: An unstretched film is obtained based on a mixed polymer containing 2-80wt.% of a copolymer obtained by polymerizing 85-55wt.% of a salt consisting of 98-20wt.% of an aliphatic polyamide (A), m-xylylene diamine (B) and adipic acid and 15-45wt.% of a salt consisting of hexamethylene diamine and terephthalic acid. Next, this unstretched film is stretched 2-6-fold at the glass transition temperatures or higher of the film material and the melting point or lower of the film material. After that, this stretched film is orthogonally stretched 2-6-fold at stretching temperatures or higher and the melting points of -5 deg.C or lower. The molecular weight of each of the components A, B should preferably stay in the range of 1.8-4.0 as a relative viscosity so that a melt viscosity high enough to maintain a uniform film face is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、混合ポリアミドから逐次
二軸延伸法により良好な機械的性質、優れた透明性、お
よびガスバリヤ−性を有する配向されたフィルムを得る
ことを目的とする。
The present invention aims to obtain an oriented film having good mechanical properties, excellent transparency and gas barrier properties from a mixed polyamide by a sequential biaxial stretching method.

【0002】[0002]

【発明の技術的背景】熱可塑性プラスチックフィルム
は、未延伸フィルムを互に直角に二軸延伸することによ
り物理的、化学的な性質が改善されて実用的に価値ある
フィルムが得られる。この延伸方法は、同時二軸延伸と
逐次二軸延伸とに大別される。両方法を比較すると、逐
次二軸延伸方法は装置が比較的簡単であり、延伸の高速
化が容易なため生産性が高く、工業的に同時二軸延伸法
よりも有利である。
BACKGROUND OF THE INVENTION Thermoplastic films can be practically valuable because their physical and chemical properties are improved by biaxially stretching unstretched films at right angles to each other. This stretching method is roughly classified into simultaneous biaxial stretching and sequential biaxial stretching. Comparing the two methods, the sequential biaxial stretching method is relatively simple in equipment and easy to increase the speed of stretching, and thus has high productivity, and is industrially advantageous over the simultaneous biaxial stretching method.

【0003】[0003]

【発明の目的】しかしながら、ナイロン6、ナイロン6
6などの脂肪族ポリアミドは従来逐次二軸延伸を行うこ
とが極めて困難であるため、逐次二軸延伸性の改良が進
められている。たとえば、特公昭51−29193号公
報には脂肪族ポリアミドとポリメタキシリレンアジパミ
ド(以下MXD・6ナイロンと記す)のブレンドによる
逐次二軸延伸性の改良方法が記載されている。しかし、
この方法は延伸時にフィルムが白化したり、延伸したフ
ィルムの耐ピンホ−ル性が悪いなどの問題がある。ま
た、特公昭57−8647号公報にはナイロン6に他の
ポリアミド形成性モノマ−を共重合する方法が記載され
ているが、この方法ではフィルムの物性が低下するなど
の問題がある。
OBJECT OF THE INVENTION However, nylon 6, nylon 6
Since it has been extremely difficult to perform sequential biaxial stretching of aliphatic polyamides such as 6 in the related art, improvement of the sequential biaxial stretching property has been promoted. For example, Japanese Examined Patent Publication No. 51-29193 describes a method for improving the sequential biaxial stretchability by blending an aliphatic polyamide and polymethaxylylene adipamide (hereinafter referred to as MXD.6 nylon). But,
This method has problems such as whitening of the film during stretching and poor pinhole resistance of the stretched film. Japanese Patent Publication No. 57-8647 discloses a method of copolymerizing nylon 6 with another polyamide-forming monomer, but this method has a problem that the physical properties of the film are deteriorated.

【0004】[0004]

【発明の概要】本発明者らは、かかるポリアミドフィル
ムの欠点を改良すべく検討した結果、本発明に到達し
た。即ち本発明は(A)脂肪族ポリアミド98〜20重
量%、および(B)メタキシリレンジアミンとアジピン
酸とからなる塩85〜55重量%とヘキサメチレンジア
ミンとテレフタル酸とからなる塩15〜45重量%とを
重合させた共重合体2〜80重量%とを含有する混合重
合体を膜状で押し出して未延伸フィルムを得、次いでフ
ィルム材料のガラス転移温度以上でかつフィルム材料の
融点−10℃以下の温度で2〜6倍延伸し、しかる後、
上記延伸方向とほぼ直角方向に上記延伸温度以上かつフ
ィルム材料の融点−5℃以下の温度で2〜6倍延伸する
ことを特徴とする二軸延伸ポリアミドフィルムの製法に
関する。
SUMMARY OF THE INVENTION The present inventors have arrived at the present invention as a result of investigations aimed at improving the drawbacks of such a polyamide film. That is, the present invention relates to (A) an aliphatic polyamide of 98 to 20% by weight, and (B) a salt of metaxylylenediamine and adipic acid of 85 to 55% by weight, and a salt of hexamethylenediamine and terephthalic acid of 15 to 45. A mixed polymer containing 2% to 80% by weight of a copolymer obtained by polymerizing 1% by weight with a copolymer is extruded in a film form to obtain an unstretched film, and then a glass transition temperature of the film material or higher and a melting point of the film material-10. Stretching 2 to 6 times at a temperature of ℃ or less, then,
The present invention relates to a method for producing a biaxially stretched polyamide film, which comprises stretching in a direction substantially perpendicular to the stretching direction at a temperature not lower than the stretching temperature and not higher than the melting point of the film material of -5 ° C by 2 to 6 times.

【0005】[0005]

【発明の具体的説明】本発明で得られた混合ポリアミド
よりなる逐次二軸延伸フィルムは良好な機械的性質、優
れた透明性およびガスバリヤ−性を有する。本発明方法
で得られたフィルムは、また従来知られている脂肪族ポ
リアミドよりなる二軸延伸フィルムの有する優れた特性
を維持し、係るフィルムの大きな特徴である冷凍処理お
よび圧力釜中での蒸気処理も可能である。従って従来ナ
イロン6フィルムの用途である食品包装は勿論、工業材
料、電気材料、金属蒸着などの用途に広く使用すること
ができる。
DETAILED DESCRIPTION OF THE INVENTION The sequentially biaxially stretched film made of the mixed polyamide obtained in the present invention has good mechanical properties, excellent transparency and gas barrier property. The film obtained by the method of the present invention also maintains the excellent properties of a conventionally known biaxially stretched film made of an aliphatic polyamide, and a great feature of such a film is a freezing process and steam in a pressure cooker. Processing is also possible. Therefore, the nylon 6 film can be widely used not only for food packaging, which has been conventionally used for industrial purposes, but also for industrial materials, electric materials, metal vapor deposition and the like.

【0006】本発明で使用する(A)成分である脂肪族
ポリアミドとしてはナイロン6、ナイロン66、ナイロ
ン11、ナイロン12、ナイロン6・10などの単独重
合体、ナイロン6/66共重合体、ナイロン6/12共
重合体、ナイロン6/11共重合体、ナイロン6/6・
10共重合体などの脂肪族コポリアミド、ε−カプロラ
クタムを主成分とし、これとヘキサメチレンジアミンと
フタル酸とのナイロン塩やメタキシリレンジアミンとア
ジピン酸とのナイロン塩を共重合させた少量の芳香族環
を有するコポリアミドなどが代表なものとして挙げられ
る。
The aliphatic polyamide which is the component (A) used in the present invention is a homopolymer of nylon 6, nylon 66, nylon 11, nylon 12, nylon 6/10, nylon 6/66 copolymer, nylon. 6/12 copolymer, nylon 6/11 copolymer, nylon 6/6
10 copolymers such as aliphatic copolyamides, ε-caprolactam as a main component, and a nylon salt of hexamethylenediamine and phthalic acid or a nylon salt of metaxylylenediamine and adipic acid Representative examples include copolyamides having an aromatic ring.

【0007】また、(B)成分の共重合ポリアミドにお
けるヘキサメチレンジアミンとアジピン酸からなる塩が
85重量%以上であるとフィルム中にゲルが多く耐ピン
ホ−ル性が悪化するため好ましくない。また55重量%
以下であるとフィルムの延伸性の改良効果がないため好
ましくない。従って、係る単位は85〜55重量%の範
囲が好ましい。さらに、上記(B)成分におけるジアミ
ン成分おいてメタキシリレンジアミン、ヘキサメチレン
ジアミンが必須成分であるが、更に延伸性の改良効果を
損なわない範囲において、これ以外にブチレンジアミ
ン、2,5ジメチルヘキサメチレンジアミン、ノナメチ
レンジアミン、ウンデカメチレンジアミン、ドデカミチ
レンジアミン、2,2,4(又は2,4,4)−トリメ
チルヘキサメチレンジアミン、ビス−(4,4’−アミ
ノシクロヘキシル)メタン、1,3−ビスアミノメチル
シクロヘキサンなども使用することができる。
If the salt of hexamethylenediamine and adipic acid in the copolyamide as the component (B) is 85% by weight or more, a large amount of gel is contained in the film and the pinhole resistance is deteriorated, which is not preferable. 55% by weight
The following is not preferable because there is no effect of improving the stretchability of the film. Therefore, the unit is preferably in the range of 85 to 55% by weight. Further, metaxylylenediamine and hexamethylenediamine are essential components in the diamine component of the above-mentioned component (B), but to the extent that the effect of improving stretchability is not impaired, butylenediamine and 2,5-dimethylhexadiene are also included. Methylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamylylenediamine, 2,2,4 (or 2,4,4) -trimethylhexamethylenediamine, bis- (4,4'-aminocyclohexyl) methane, 1 , 3-bisaminomethylcyclohexane and the like can also be used.

【0008】また、上記(B)成分におけるジカルボン
酸成分において、アジピン酸、テレフタル酸が必須成分
であるが、フィルムの延伸性を損なわない範囲におい
て、これ以外にグルタル酸、コハク酸、ピペリン酸、ス
ベリン酸、アゼライン酸、セバシン酸、ウンデカン酸、
ドデカン酸、イソフタル酸、ナフタレン酸なども使用す
ることができる。また、これらの(A),(B)成分の
混合重合体にフィルムの性能を損なわない範囲において
他の重合体、帯電防止剤、滑剤、防曇剤、耐ブロッキン
グ剤、安定剤、染料、顔料などを含有してもよい。
Of the dicarboxylic acid components in the above component (B), adipic acid and terephthalic acid are essential components, but other than these, glutaric acid, succinic acid, piperic acid, etc. are used as long as the stretchability of the film is not impaired. Suberic acid, azelaic acid, sebacic acid, undecanoic acid,
Dodecanoic acid, isophthalic acid, naphthalene acid, etc. can also be used. In addition, other polymers, antistatic agents, lubricants, antifog agents, antiblocking agents, stabilizers, dyes, pigments are added to the mixed polymer of these components (A) and (B) within a range not impairing the performance of the film. Etc. may be contained.

【0009】これら(A),(B)の各成分の分子量
は、これら混合物を溶融して押し出した時、均一な膜面
が保たれる程度に高い溶融粘性を与えるよう設定しなけ
ればならないが、又、高すぎると押出操作を困難にする
ので通常は相対粘度で1.8〜4.0の範囲が望まし
い。
The molecular weight of each of these components (A) and (B) must be set so that, when these mixtures are melted and extruded, a high melt viscosity is provided such that a uniform film surface is maintained. Further, if it is too high, the extrusion operation becomes difficult, so that the relative viscosity is preferably in the range of 1.8 to 4.0.

【0010】(A)成分と(B)成分の、配合割合は全
量に対し(A)成分が98〜20重量%である。(A)
成分が98重量%をこえるものは2段目の延伸時に延伸
ムラが生じ、破断の原因になるばかりでなく、得られた
フィルムの厚み不同が大きくなる。20重量%を下回る
ものは(A)成分に由来する特性が導入され得ないので
不適当である。(A)成分に由来する柔軟さを充分保持
し、低温での耐衝撃性を維持するには(A)成分が50
重量%以上の割合が好適である。
The mixing ratio of the component (A) and the component (B) is 98 to 20% by weight of the component (A) based on the total amount. (A)
When the content of the component exceeds 98% by weight, unevenness in stretching occurs during the second stage stretching, which not only causes breakage, but also increases the thickness unevenness of the obtained film. A content of less than 20% by weight is not suitable because the characteristics derived from the component (A) cannot be introduced. In order to maintain sufficient flexibility derived from the component (A) and to maintain impact resistance at low temperature, the component (A) is 50
A proportion of not less than wt% is suitable.

【0011】(A)成分と(B)成分の混合方法には特
に制限はないが、通常はチップ状の両成分をV字型ブレ
ンダ−等を用いて混合した後、溶融し、成形する方法が
用いられるが、予め、二軸押出機などで溶融混練したも
のを使用してもよい。
The method of mixing the components (A) and (B) is not particularly limited, but usually, both chip-shaped components are mixed using a V-shaped blender or the like, and then melted and molded. Is used, but those melt-kneaded with a twin-screw extruder in advance may be used.

【0012】本発明の方法では、未延伸フィルムはTダ
イ法、インフレ−ション法等の溶融法、湿式あるいは乾
式法で製造される。これは実質上無配向のフィルムであ
り、例えば溶融法でTダイによりフィルムを製造する場
合にはフィルム材料を該材料の融点以上に加熱し、Tダ
イからフィルム状に押出し、各組成のガラス転移点以下
好ましくは20〜80℃の温度のロ−ル又は液体で冷却
して製造する。この際ロ−ル又は液体の温度が混合重合
体のガラス転移点以上の温度であると、平滑なフィルム
が得られなかったり、失透し、次の延伸工程で均一な延
伸が難しくなる。尚、本発明でガラス転移点は示差走査
熱量計を使用して求めた。
In the method of the present invention, the unstretched film is produced by a melting method such as a T-die method or an inflation method, or a wet or dry method. This is a substantially non-oriented film. For example, when a film is produced by a T-die by a melting method, the film material is heated to a temperature equal to or higher than the melting point of the material and extruded into a film form from the T-die to obtain a glass transition of each composition. It is manufactured by cooling with a roll or a liquid having a temperature of 20 to 80 ° C. or less. At this time, if the temperature of the roll or liquid is higher than the glass transition point of the mixed polymer, a smooth film cannot be obtained or devitrification occurs, which makes uniform stretching difficult in the next stretching step. In the present invention, the glass transition point was determined using a differential scanning calorimeter.

【0013】逐次二軸延伸はフラットダイを用いて作製
された未延伸フィルムを周速の異なる2つ以上のロ−ル
間でフィルムを縦方向に延伸し、次いでフィルムの両端
をクリップで掴み1段目の延伸方向と直角な方向に延伸
する方法が通常用いられるが、順序を逆にして横延伸を
行った後に縦方向に延伸してもよい。
In the sequential biaxial stretching, an unstretched film produced by using a flat die is stretched in the machine direction between two or more rolls having different peripheral speeds, and then both ends of the film are grasped by clips 1 A method of stretching in a direction perpendicular to the stretching direction of the step is usually used, but the order may be reversed and transverse stretching may be performed, followed by stretching in the longitudinal direction.

【0014】未延伸フィルムの1段目の延伸時の温度は
フィルム材料のガラス転移点以上、好ましくは50℃以
上でフィルム材料の融点以下10℃より低い温度であ
る。このフィルムの延伸温度がフィルムのガラス転移点
より低い温度になると、フィルムを延伸するのに極めて
高い応力を必要とし、しばしばフィルムが破断するか、
失透するかして高倍率延伸が難しい。一方、融点以下1
0℃より高い温度でフィルムを延伸するとフィルムが融
着したり、効果的な配向を有するフィルムが得られな
い。
The temperature at the time of stretching the first stage of the unstretched film is a temperature above the glass transition point of the film material, preferably above 50 ° C. and below the melting point of the film material below 10 ° C. When the stretching temperature of this film is lower than the glass transition temperature of the film, extremely high stress is required to stretch the film, and the film often breaks,
Due to devitrification, it is difficult to stretch at high magnification. On the other hand, below the melting point 1
When the film is stretched at a temperature higher than 0 ° C., the film is fused and a film having an effective orientation cannot be obtained.

【0015】次に一方向に分子配向したフィルムを前記
延伸方向に対してほぼ直角方向に延伸する場合にはフィ
ルムを前記延伸温度より高い温度でフィルムの融点以下
5℃より低い温度でフィルムを延伸する。この温度が前
記延伸温度以下であると、既にフィルムに成形されてい
る配向化および結晶化に抗してフィルムをその配向方向
に対して直角方向に均一に延伸するのが難しくなる。さ
らに得られたフィルムは厚み不同が大きくなる。他方、
フィルムの融点以下5℃より高くなると既に成形してい
るフィルムの配向を崩壊したりして物性の優れたフィル
ムが得られにくくなる。
Next, when the film oriented in one direction is stretched in a direction substantially perpendicular to the stretching direction, the film is stretched at a temperature higher than the stretching temperature and lower than the melting point of the film and lower than 5 ° C. To do. When this temperature is lower than the stretching temperature, it becomes difficult to uniformly stretch the film in the direction perpendicular to the orientation direction against the orientation and crystallization already formed in the film. Further, the obtained film has a large difference in thickness. On the other hand,
When the melting point of the film is lower than 5 ° C. and the temperature is higher than 5 ° C., the orientation of the film that has already been formed is destroyed, and it becomes difficult to obtain a film having excellent physical properties.

【0016】これらのフィルムの延伸速度は少なくとも
500%/分であり、好ましくは少なくとも1000%
/分であり、延伸倍率は2〜6倍、好ましくは2.5〜
5倍である。フィルムの延伸倍率が2倍未満であるとフ
ィルムに延伸斑、厚み不同を生じ易く、充分な配向をフ
ィルムに付与することが難しい。また、延伸倍率が6倍
を越えると、最初の延伸では延伸が可能であるが、次の
最初の延伸方向に対して直角の方向に延伸する際に延伸
が困難になるか、あるいは破断するなどの問題が生じ
る。
The stretching rate of these films is at least 500% / min, preferably at least 1000%.
/ Min, and the draw ratio is 2 to 6 times, preferably 2.5 to
5 times. If the stretching ratio of the film is less than 2 times, uneven stretching and uneven thickness are likely to occur in the film, and it is difficult to impart sufficient orientation to the film. Further, if the stretching ratio exceeds 6 times, the stretching can be performed in the first stretching, but the stretching becomes difficult or breaks when stretching in the direction perpendicular to the next initial stretching direction. Problem arises.

【0017】このようにして得られた二軸延伸フィルム
はそのまま良好な性質を示すが、さらに、特定方向の物
理的特性を向上させるために縦方向または横方向に延伸
してもよい。フィルムに熱的寸法安定性をさらに付与す
るために必要によりこのフィルムを前記フィルムの延伸
温度の高い方の温度より5℃以上高い温度でフィルムの
融点より温度で5分間以下、好ましくは15〜60秒間
熱固定する。熱処理中フィルムは緊張状態あるいは一定
量の弛緩を与えた状態、さらに両者を組み合わせた状態
のいずれかに保持される。この熱処理によりフィルムの
結晶化度が増加し延伸過程で生じたフィルムの歪みが除
去され、フィルムの機械的物性、寸法安定性が良好にな
る。
The biaxially stretched film thus obtained exhibits good properties as it is, but it may be stretched in the machine direction or the transverse direction in order to improve the physical properties in a specific direction. In order to further impart thermal dimensional stability to the film, if necessary, the film is heated at a temperature higher than the higher stretching temperature of the film by 5 ° C. or more and at a temperature lower than the melting point of the film by 5 minutes or less, preferably 15 to 60. Heat set for 2 seconds. During the heat treatment, the film is maintained in a tensioned state, a state in which a certain amount of relaxation is given, or a state in which both are combined. This heat treatment increases the crystallinity of the film, removes the distortion of the film generated during the stretching process, and improves the mechanical properties and dimensional stability of the film.

【0018】このようにして得られたフィルムは優れた
結晶性並びに縦横両方向にバランスした配向特性を有し
ている。上述のようにして得られた二軸延伸ポリアミド
フィルムはポリアミド混合物の組成、成膜条件によって
若干その特徴が異なるが、優れた抗張力、透明性、ガス
バリヤ−性などを併せ持っている。
The film thus obtained has excellent crystallinity and orientation characteristics balanced in both longitudinal and lateral directions. The biaxially stretched polyamide film obtained as described above has excellent characteristics such as tensile strength, transparency and gas barrier property, although its characteristics are slightly different depending on the composition of the polyamide mixture and the film forming conditions.

【0019】従来、線状ポリアミドフィルムを一軸延伸
すると、フィルムは延伸方向に分子配向するとともに水
素結合が形成され、その直角方向の延伸は非常に困難と
されてきたが、本発明の方法によって脂肪族ポリアミド
フィルムの逐次二軸延伸が可能となった。しかもこのフ
ィルムの延伸条件の範囲は極めて広く低倍率から高倍率
まで均一な延伸が可能であるため、所望の物性を有する
フィルムを自由に得ることができる。さらに、得られた
フィルムはナイロン6、ナイロン66のような従来から
ある脂肪族線状ポリアミド二軸延伸フィルムと同様な抗
張力、ヤング率、耐熱性、寸法安定性、透明性並びにガ
スバリヤ−性を有し、食料品、繊維類の包装などの種々
の用途に使用される。
Conventionally, when a linear polyamide film is uniaxially stretched, the film is molecularly oriented in the stretching direction and hydrogen bonds are formed, and it has been very difficult to stretch the film in the direction perpendicular thereto. Sequential biaxial stretching of group III polyamide films has become possible. Moreover, since the stretching condition of this film is extremely wide and uniform stretching from low to high ratio is possible, a film having desired physical properties can be freely obtained. Further, the obtained film has tensile strength, Young's modulus, heat resistance, dimensional stability, transparency and gas barrier property similar to conventional aliphatic linear polyamide biaxially stretched films such as nylon 6 and nylon 66. However, it is used in various applications such as food products and packaging of textiles.

【0020】[0020]

【実施例】以下に実施例を挙げて本発明を説明する。な
お、実施例中の測定項目は下記の方法で測定した。 (1) 相対粘度ηr:98%の濃硫酸を使用し、濃度
1gr/デシリットルとして25℃で測定した。 (2) 融点(Tm)およびガラス転移点(Tg):セ
イコ−電子株式会社製示差走査熱量計を使用し昇温速度
10℃/minの昇温速度で測定した。 (3) フィルムの成形方法:ユニオンプラスチック
(株)製USV25−28Tダイ成膜装置を使用して原
反フィルムを成膜した。次いで該フィルムを岩本製作所
製BIX−703二軸延伸機を使用して二軸延伸フィル
ム作製し、延伸応力を測定し延伸性を評価した。 (3) 酸素透過量:米国MOCON社製OX−TRA
N2/20−MHにより100%RHにて測定した。 (4) 耐ピンホ−ル性:理学工業(株)製ゲルボフレ
ックステスタ−により23℃×65%RHの条件下で1
000サイクル後のピンホ−ルの発生個数を評価した。 (5) ヘ−ズ:スガ試験機(株)製直読ヘ−ズメ−タ
−により測定した。 (6) 破断強度、破断伸度 長さ50mm、幅10mmの試料を東洋ボ−ルドウィン
(株)製、テンシロン/UTM−III−200を使用
して引張速度100mm/分で測定した。
The present invention will be described below with reference to examples. The measurement items in the examples were measured by the following methods. (1) Relative viscosity ηr: Measured at 25 ° C. at a concentration of 1 gr / deciliter using concentrated sulfuric acid of 98%. (2) Melting point (Tm) and glass transition point (Tg): Measured at a heating rate of 10 ° C./min using a differential scanning calorimeter manufactured by Seiko-Electronics Co., Ltd. (3) Film forming method: A raw film was formed using a USV25-28T die film forming apparatus manufactured by Union Plastics Co., Ltd. Next, the film was biaxially stretched using a BIX-703 biaxial stretching machine manufactured by Iwamoto Seisakusho, and the stretching stress was measured to evaluate the stretchability. (3) Oxygen permeation amount: OX-TRA manufactured by MOCON, USA
Measured at 100% RH with N2 / 20-MH. (4) Pinhole resistance: 1 at 23 ° C. × 65% RH using a gelbo flex tester manufactured by Rigaku Kogyo Co., Ltd.
The number of pinholes generated after 000 cycles was evaluated. (5) Haze: Measured with a direct reading haze meter manufactured by Suga Test Instruments Co., Ltd. (6) Breaking strength, breaking elongation A sample having a length of 50 mm and a width of 10 mm was measured at a tensile speed of 100 mm / min using Tensilon / UTM-III-200 manufactured by Toyo Baldwin Co., Ltd.

【0021】[0021]

【参考例】 メタキシリレンジアミン/アジピン酸の等モル塩 10.82kg ヘキサメチレンジアミン/テレフタル酸の等モル塩 4.64kg 水 22.50kg 次亜燐酸ナトリウム 29g からなるポリアミド原料を攪拌機付き70Lオ−トクレ
−ブに仕込み、充分窒素置換した後昇温を開始した。重
合温度が210℃になるまで昇温し、重合圧力を8kgf/
cm2 Gに調圧しながら仕込み水を溜去・濃縮した。重
合温度が210℃に達してから4時間この条件を保持し
前重合を完了した。次いで重合温度を240℃まで昇温
し、重合系内圧力を常圧まで放圧し、この条件で1時間
重合を行い後重合を完了した。得られた重合物を重合槽
下部からストランド状で抜き出し、水冷却しながらペレ
タイザ−でペレット状にカッティングし目的のポリアミ
ド樹脂を得た。得られたポリアミド樹脂の融点は190
℃であった。ガラス転移点は91℃であった。ガラス転
移点は93℃であった。
Reference Example Equimolar salt of metaxylylenediamine / adipic acid 10.82 kg Equimolar salt of hexamethylenediamine / terephthalic acid 4.64 kg Water 22.50 kg Sodium hypophosphite 29 g A polyamide raw material with a stirrer 70 L o- The mixture was charged into a toclave, the atmosphere was sufficiently replaced with nitrogen, and then the temperature was raised. Raise the polymerization temperature to 210 ° C and set the polymerization pressure to 8 kgf /
While adjusting the pressure to cm 2 G, the charged water was distilled off and concentrated. After the polymerization temperature reached 210 ° C., this condition was maintained for 4 hours to complete the prepolymerization. Then, the polymerization temperature was raised to 240 ° C., the internal pressure of the polymerization system was released to normal pressure, and the polymerization was completed for 1 hour under these conditions to complete the post-polymerization. The obtained polymer was drawn out in a strand form from the lower part of the polymerization tank, and cut into pellets with a pelletizer while cooling with water to obtain a target polyamide resin. The melting point of the obtained polyamide resin is 190.
° C. The glass transition point was 91 ° C. The glass transition point was 93 ° C.

【0022】実施例1 脂肪族ポリアミドとしてナイロン6(Tm=223℃、
ガラス転移点=45℃ηr =3.67)と参考例に示す
ポリアミド樹脂とをチップ状で第1表に示し割合に混合
した後、260℃で溶融してTダイより冷却ロ−ル上に
押し出し、厚さ300μの未延伸フィルムを得た。この
未延伸フィルムを第1表に示した条件で二軸延伸した
後、190℃で30秒間定張下で熱固定処理した。得ら
れたフィルムの物性値を第2表に示す。
Example 1 As an aliphatic polyamide, nylon 6 (Tm = 223 ° C.,
Glass transition point = 45 ° C. η r = 3.67) and the polyamide resin shown in Reference Example were mixed in the ratio shown in Table 1 in a chip form, and then melted at 260 ° C. and cooled on a T-die on a cooling roll. To obtain an unstretched film having a thickness of 300 μ. This unstretched film was biaxially stretched under the conditions shown in Table 1, and then heat set at 190 ° C. for 30 seconds under constant tension. The physical properties of the obtained film are shown in Table 2.

【0023】比較例1 実施例1と同一のナイロン6を250℃で溶融してTダ
イより冷却温度55℃のロ−ル上に押し出して未延伸フ
ィルムを作製し、これを第1表に示す条件で二軸延伸し
た後、30秒間定張下で熱固定した。得られたフィルム
の物性値を第2表に示した。
Comparative Example 1 The same nylon 6 as in Example 1 was melted at 250 ° C. and extruded from a T die onto a roll having a cooling temperature of 55 ° C. to prepare an unstretched film, which is shown in Table 1. After biaxial stretching under the conditions, heat setting was performed for 30 seconds under constant tension. The physical properties of the obtained film are shown in Table 2.

【0024】比較例2 実施例1と同一のナイロン6とメタキシリレンジアミン
とアジピン酸の重合物(MXD・6ナイロン:三菱ガス
化学(株)製、商品名:MXナイロン6007)を80
/20(重量比)で混合し、265℃で溶融してTダイ
より冷却温度55℃のロ−ル上に押し出して未延伸フィ
ルムを作製した。これを第1表に示す条件で二軸延伸し
た後、30秒間定張下で熱固定した。得られたフィルム
の物性値を第2表に示した。
Comparative Example 2 The same polymer of nylon 6, metaxylylenediamine and adipic acid (MXD-6 nylon: manufactured by Mitsubishi Gas Chemical Co., Inc., trade name: MX nylon 6007) as in Example 1 was used.
/ 20 (weight ratio), melted at 265 ° C., and extruded from a T die onto a roll having a cooling temperature of 55 ° C. to prepare an unstretched film. This was biaxially stretched under the conditions shown in Table 1 and then heat-set under constant tension for 30 seconds. The physical properties of the obtained film are shown in Table 2.

【0025】実施例2 脂肪族ポリアミドとしてε−カプロラクタムを80重量
%とヘキサメチレンジアンモニウムアジペ−トを20重
量%を共重合させたナイロン6を主成分とする共重合体
(Tm=197℃、ガラス転移点=54℃、ηr =4.
45)と参考例に示すポリアミド樹脂とをチップ状で第
1表に示す割合で混合した。この混合物を押出機を用い
255℃の温度で溶融し、Tダイを通して55℃の温度
に冷却したロ−ル上に押し出し、冷却固化させて未延伸
フィルムを得た。このフィルムを第1表に示した条件で
逐次2軸延伸し、次いで190℃で30秒間定張下で熱
処理し、二軸延伸フィルムを作製した。得られたフィル
ムの物性値を第2表に示した。
Example 2 A copolymer containing nylon 6 as a main component, which was obtained by copolymerizing 80% by weight of ε-caprolactam as an aliphatic polyamide and 20% by weight of hexamethylene diammonium adipate (Tm = 197 ° C.). , Glass transition point = 54 ° C., η r = 4.
45) and the polyamide resin shown in Reference Example were mixed in the form of chips at the ratio shown in Table 1. This mixture was melted at a temperature of 255 ° C. using an extruder, extruded through a T die onto a roll cooled to a temperature of 55 ° C., and cooled and solidified to obtain an unstretched film. This film was sequentially biaxially stretched under the conditions shown in Table 1, and then heat-treated under constant tension at 190 ° C. for 30 seconds to prepare a biaxially stretched film. The physical properties of the obtained film are shown in Table 2.

【0026】比較例3 実施例2の脂肪族ポリアミドに使用したナイロン6を主
成分とする共重合体を押出機で255℃の温度で加熱溶
融し押し出し、温度35℃に冷却したロ−ル上で固化し
未延伸フィルムを得た。これを第1表に示した条件下で
二軸延伸し、次いで定張下180℃で30秒間熱固定し
て二軸延伸フィルムを作製した。このフィルムの物性値
を第2表に示した。
COMPARATIVE EXAMPLE 3 The copolymer containing nylon 6 as the main component used in the aliphatic polyamide of Example 2 was melted by heating at a temperature of 255 ° C. in an extruder, extruded, and cooled to a temperature of 35 ° C. on a roll. To obtain an unstretched film. This was biaxially stretched under the conditions shown in Table 1, and then heat set at 180 ° C. for 30 seconds under constant tension to prepare a biaxially stretched film. The physical properties of this film are shown in Table 2.

【0027】[0027]

【要約】以上述べたように本発明の製法は優れた二軸延
伸性を有し、且つ、本発明による方法で製造された二軸
延伸フィルムは機械的性質に優れ、透明性、ガスバリヤ
−性に優れた産業上有用なフィルムである。
[Summary] As described above, the production method of the present invention has excellent biaxially stretchability, and the biaxially stretched film produced by the method of the present invention has excellent mechanical properties, transparency and gas barrier property. It is an excellent industrially useful film.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 7:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B29L 7:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(A)脂肪族ポリアミド98〜20重量
%、および(B)メタキシリレンジアミンとアジピン酸
とからなる塩85〜55重量%とヘキサメチレンジアミ
ンとテレフタル酸とからなる塩15〜45重量%とを重
合させた共重合体2〜80重量%とを含有する混合重合
体を膜状で押し出して未延伸フィルムを得、次いでフィ
ルム材料のガラス転移温度以上で、かつフィルム材料の
融点−10℃以下の温度で2〜6倍延伸し、しかる後、
上記延伸方向とほぼ直角方向に上記延伸温度以上からフ
ィルム材料の融点−5℃以下の温度で2〜6倍延伸する
ことを特徴とする逐次二軸延伸ポリアミドフィルムの製
法。
1. A salt of (A) 98 to 20% by weight of an aliphatic polyamide and (B) a salt of 85 to 55% by weight of a metaxylylenediamine and adipic acid, and a salt of 15 to 15% of hexamethylenediamine and terephthalic acid. An unstretched film is obtained by extruding a mixed polymer containing 45% by weight and a copolymer obtained by polymerizing 2% to 80% by weight in a film form, and then at a glass transition temperature of the film material or higher and a melting point of the film material. It is stretched 2 to 6 times at a temperature of -10 ° C or lower, and thereafter,
A method for producing a sequential biaxially stretched polyamide film, which comprises stretching in a direction substantially perpendicular to the stretching direction at a temperature not lower than the stretching temperature and not higher than the melting point of the film material of −5 ° C. to 2 to 6 times.
JP2022196A 1996-02-06 1996-02-06 Manufacture of consecutive biaxially stretched polyamide film Pending JPH09207211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022196A JPH09207211A (en) 1996-02-06 1996-02-06 Manufacture of consecutive biaxially stretched polyamide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022196A JPH09207211A (en) 1996-02-06 1996-02-06 Manufacture of consecutive biaxially stretched polyamide film

Publications (1)

Publication Number Publication Date
JPH09207211A true JPH09207211A (en) 1997-08-12

Family

ID=12021120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022196A Pending JPH09207211A (en) 1996-02-06 1996-02-06 Manufacture of consecutive biaxially stretched polyamide film

Country Status (1)

Country Link
JP (1) JPH09207211A (en)

Similar Documents

Publication Publication Date Title
US4228218A (en) Polymer composite material
US6297345B1 (en) Polyamide having excellent stretching properties
JPS6228983B2 (en)
EP0619835A1 (en) Heat stable film composition comprising polyepsiloncaprolactam.
JP3589088B2 (en) Sequential biaxially stretched film
JPS6024814B2 (en) resin composition
JP4889164B2 (en) Polyamide film and method for producing the same
JPH0224362A (en) Mixture produced from metastable amorphous partial crystalline thermoplastic article
JPH06263895A (en) Biaxially oriented polyamide film and its production
JPH04314741A (en) Polyamide film
JPS6161967B2 (en)
JPH09207211A (en) Manufacture of consecutive biaxially stretched polyamide film
JPH0715061B2 (en) Heat-shrinkable polyamide film
JPH0643552B2 (en) Polyamide composition
JP2616221B2 (en) Resin composition
JPH1036665A (en) Biaxially oriented polyamide film
JPS5852821B2 (en) Nylon stretched film and its manufacturing method
JPH11172022A (en) Biaxially oriented polyamide film
JPS6119652B2 (en)
JPH02300237A (en) Polyamide film or fiber
JPH11286544A (en) Polyamide excellent in orienting properties
CN111225941A (en) Polyamide copolymers, process for their preparation and moldings produced therefrom
JP2899369B2 (en) Shrinkable polyamide film and method for producing the same
JPH1036504A (en) Copolyamide film and its production
CN109134848A (en) A kind of multi-component copolymer virtue amide and its preparation method and application