JPH09204828A - Manufacture of nb3al superconducting wire - Google Patents

Manufacture of nb3al superconducting wire

Info

Publication number
JPH09204828A
JPH09204828A JP8012750A JP1275096A JPH09204828A JP H09204828 A JPH09204828 A JP H09204828A JP 8012750 A JP8012750 A JP 8012750A JP 1275096 A JP1275096 A JP 1275096A JP H09204828 A JPH09204828 A JP H09204828A
Authority
JP
Japan
Prior art keywords
wire
superconducting wire
thickness
composite
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8012750A
Other languages
Japanese (ja)
Inventor
Kunihiro Fukuda
州洋 福田
Genzo Iwaki
源三 岩城
Shuji Sakai
修二 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP8012750A priority Critical patent/JPH09204828A/en
Publication of JPH09204828A publication Critical patent/JPH09204828A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting wire excellent in the critical current density characteristic. SOLUTION: A superconducting wire having an excellent superconducting characteristics is manufactured by the jelly roll method, when an Nb/Al laminate composite is formed from an Al sheet having a thickness of below 25μm and an Nb sheet having a thickness of below 100μm, and the obtained composite is subjected to an area reduction process wuth a degree of processing of under 1.5×10<4> so that Al is dispersed in Nb. At this time, a hydrostatic extrusion is adopted in the processing, at least in shaping a single-core wire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する産業分野】本発明は超電導線材、特にN
3 Al系超電導線材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting wire, especially N
The present invention relates to a method for manufacturing a b 3 Al-based superconducting wire.

【0002】[0002]

【従来の技術】超電導核融合装置、電力貯蔵装置あるい
は物性研究用高磁界マグネット等の高い磁界を必要とす
る装置においては、高い磁界における臨界電流密度が高
く、かつ運転中に超伝導線材に作用する電磁力によって
生ずる機械的歪みによる臨界電流密度の劣化が小さいN
3 Al系超電導線材の適用が期待されている。
2. Description of the Related Art In a device requiring a high magnetic field such as a superconducting nuclear fusion device, a power storage device or a high magnetic field magnet for studying physical properties, the critical current density in a high magnetic field is high and the superconducting wire acts on the superconducting wire during operation. The deterioration of the critical current density due to the mechanical strain caused by the generated electromagnetic force is small N
Application of b 3 Al-based superconducting wire is expected.

【0003】Nb3 Alは、Nb−Al平衡状態図か
ら、1600℃以上の高温下においてのみ安定に存在す
る非平衡相であり、それ以下の温度では、化学量論組成
からのずれが大きくなるため、臨界温度Tc及び上部臨
界磁界Bc2 が低下し、高い磁界マグネットへの適用が
困難とされてきた。
From the Nb-Al equilibrium diagram, Nb 3 Al is a nonequilibrium phase that exists stably only at high temperatures of 1600 ° C. or higher, and at temperatures below that, the deviation from the stoichiometric composition becomes large. Therefore, the critical temperature Tc and the upper critical magnetic field Bc 2 are lowered, and it has been difficult to apply to a high magnetic field magnet.

【0004】このような特徴を有するNb3 Alの製法
は、Nb/Al複合体を1600℃以上の高温に加熱
し、それを急冷することでNb3 Al相を得る析出法
と、Nb及びAl相を数10〜数100nmオーダーに
微細化させ、600〜1050℃の比較的低温でNb3
Alを拡散反応させる拡散法に大別できる。
The Nb 3 Al manufacturing method having such characteristics includes a precipitation method in which an Nb / Al composite is heated to a high temperature of 1600 ° C. or higher and then rapidly cooled to obtain an Nb 3 Al phase, and Nb and Al. The phase is refined to the order of several tens to several hundreds of nm, and Nb 3 is formed at a relatively low temperature of 600 to 1050 ° C.
It can be roughly classified into a diffusion method of diffusing Al.

【0005】ここで核融合炉等の大規模マグネットの製
作を考えたとき、マグネットの安定性の問題は重要であ
り、超電導線材にCu、Al等の安定化金属を複合する
必要がある。
Here, when considering the production of a large-scale magnet for a nuclear fusion reactor, the problem of magnet stability is important, and it is necessary to combine a stabilizing metal such as Cu or Al with the superconducting wire.

【0006】前述した析出法は、安定化金属として使用
可能な金属の融点以上の高温熱処理が必要であるため、
安定化金属の複合が困難であり、拡散法をベースとした
方法によるNb3 Alの生成が望まれる。
The above-mentioned precipitation method requires high-temperature heat treatment above the melting point of a metal usable as a stabilizing metal.
Since it is difficult to combine stabilizing metals, it is desired to generate Nb 3 Al by a diffusion-based method.

【0007】拡散法をベースとしたNb3 Al系超電導
線材の製法は、粉末や金法(PM法)クラッドチップ押
出法、Nbチューブ法、ジェリーロール法等が知られて
おり、何れの方法もNb及びAlを極めて微細に加工す
るもので、Nb及びAlの反応拡散距離を小さくでき
る。その中でもジェリーロール法は比較的Nb及びAl
の加工度が小さくてすむため、長尺材を製作しやすいこ
と、また、製造工程、材料コストの面に関しても最も実
用化に近い方法である。
Known methods for producing Nb 3 Al-based superconducting wires based on the diffusion method include powder and gold methods (PM method), clad chip extrusion method, Nb tube method, and jelly roll method. Since Nb and Al are processed extremely finely, the reaction diffusion distance of Nb and Al can be made small. Among them, the jelly roll method is relatively Nb and Al.
Since it requires only a small degree of workability, it is the most practical method in terms of manufacturing long materials, manufacturing steps, and material costs.

【0008】このジェリーロール法によって超電導特性
に優れたNb3 Al系超電導線材を得るには、前述した
ように、Nb及びAl相を微細化し、反応拡散距離を短
くして反応させる必要がある。従来技術では減面加工に
よりNb及びAl相は微細化されるが、熱処理前の横断
面においてNb及びAl相は互いに積層され、層状組織
が残ることがが特徴である。
In order to obtain a Nb 3 Al-based superconducting wire having excellent superconducting properties by this jelly roll method, it is necessary to make the Nb and Al phases finer and to react them by shortening the reaction diffusion distance, as described above. In the conventional technique, the Nb and Al phases are made fine by surface-reduction processing, but the Nb and Al phases are laminated on each other in a cross section before heat treatment, and a layered structure remains.

【0009】[0009]

【発明が解決しようとする課題】熱処理によりNb3
l相はNb及びAl相の界面付近に生成される。100
0℃以下の低温熱処理でNb3 Alを得るにはNb/A
l部分を極めて微細に加工する必要があり、加工後のN
b及びAl相部分の厚さを数10〜数100nmオーダ
ーとする加工が要求される。しかしながら、前述したよ
うな熱処理前の横断面においてNb及びAl相が層状組
織を示している従来技術では、Nb及びAl相部分を数
10〜数100nmオーダーとしてもNb及びAl相の
接触面積が小さくなり、厚さ方向への拡散のみにより反
応が進むため反応速度が遅く、その結果、未反応のNb
及びAl相の残存或いは異相の生成により充分な臨界電
流密度特性が得られない。
Problems to be Solved by the Invention Nb 3 A
The l phase is generated near the interface between the Nb and Al phases. 100
To obtain Nb 3 Al by low temperature heat treatment below 0 ° C, Nb / A
It is necessary to process the l part extremely finely and N after processing
Processing is required so that the thicknesses of the b and Al phase portions are on the order of several tens to several hundreds nm. However, in the prior art in which the Nb and Al phases show a layered structure in the cross section before the heat treatment as described above, the contact area between the Nb and Al phases is small even when the Nb and Al phase portions are on the order of several tens to several hundreds nm. Since the reaction proceeds only by diffusion in the thickness direction, the reaction rate is slow, and as a result, unreacted Nb
Also, sufficient critical current density characteristics cannot be obtained due to the remaining Al phase or the formation of a different phase.

【0010】このようにフィラメントとなるNb/Al
部分が層状組織を示している従来技術ではNb3 Al相
の生成効率がよくないため臨界電流密度が低くなるとい
う問題点を有している。
Nb / Al which becomes a filament in this way
The conventional technique in which the portion has a layered structure has a problem that the critical current density is lowered because the Nb 3 Al phase generation efficiency is not good.

【0011】本発明の目的は、前記した従来技術の欠点
を解消し、臨界電流密度特性の優れたNb3 Al系超電
導線材を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide an Nb 3 Al superconducting wire having excellent critical current density characteristics.

【0012】[0012]

【課題を解決するための手段】従来技術の欠点を解消す
るには、フィラメントのNb/Al複合組織を層状では
なく、Nb中にAlが繊維状に微細に分散したような複
合組織とし、Nb/Al界面の接触面積を増大させて拡
散反応をより早く進行させることが必要である。
In order to solve the drawbacks of the prior art, the Nb / Al composite structure of the filament is not a layered structure, but a composite structure in which Al is finely dispersed in Nb in a fibrous form. It is necessary to increase the contact area of the / Al interface to accelerate the diffusion reaction.

【0013】本発明の要点は、薄く加工されたAl及び
Nbシートを使用してNb/Al積層複合体を形成する
ことで1.5×104 以下の加工度でAlをNb中に分
散させ、Nb/Alの界面の増加によりNb3 Al相の
生成効率を向上させたことにある。更に、Al相のNb
相への分散を効果的に行わせるために単芯線の形成に静
水圧押出しを用いたことにある。
The essential point of the present invention is to form an Nb / Al laminated composite by using thinly processed Al and Nb sheets to disperse Al in Nb at a working ratio of 1.5 × 10 4 or less. , The Nb / Al interface is increased to improve the generation efficiency of the Nb 3 Al phase. Furthermore, Nb of Al phase
This is because the hydrostatic extrusion was used to form the single core wire in order to effectively disperse into the phase.

【0014】[0014]

【発明の実施の形態】金属シート材の厚みが薄くなるに
従い、板厚方向に存在する結晶粒数が少なくなり一般的
な多結晶体と見做すことができなくなる。それが塑性変
形する場合、変形後の異方性が顕著に現れてくる。
BEST MODE FOR CARRYING OUT THE INVENTION As the thickness of a metal sheet material decreases, the number of crystal grains existing in the plate thickness direction decreases, and it cannot be regarded as a general polycrystal. When it is plastically deformed, the anisotropy after deformation becomes noticeable.

【0015】ここで、図5により本発明の作用を説明す
る。
The operation of the present invention will be described with reference to FIG.

【0016】図5(a) はジェリーロール法による積層複
合体形成時(変形前)のNb/Alの層状組織を示すも
ので、Nb1とAl2が交互に積層される。図5(b)
は、この積層複合体に静水圧押出しにより積層半径方向
に等方圧力が作用して変形した結果を示したものであ
り、Nb層3にその異方性によって皺が発生し、Nb層
間のAl層4の厚さが円周方向に不均一となり、部分的
にAl溜りが形成される。これを更に減面加工して得ら
れる組織を図5(c) に示す。図5(b) のAl溜りはNb
層3の皺の増大、屈曲点の応力集中等により更に細分さ
れ、2次元的にNbマトリックス5中に微細なAl相6
がアトランダムに分散した組織、3次元的にはNbマト
リックス5中に微細な減面加工方向に伸びたAl繊維6
がアトランダムに分散した組織となる。
FIG. 5 (a) shows the Nb / Al layered structure at the time of forming a laminated composite by the jelly roll method (before deformation), in which Nb1 and Al2 are alternately laminated. Figure 5 (b)
Shows the result of isotropic pressure acting on the laminated composite in the radial direction of the lamination by hydrostatic extrusion and deformation, and wrinkles were generated in the Nb layer 3 due to its anisotropy, and Al between the Nb layers was formed. The thickness of the layer 4 becomes non-uniform in the circumferential direction, and an Al pool is partially formed. The structure obtained by further surface-reducing this is shown in Fig. 5 (c). The Al pool in Fig. 5 (b) is Nb
The layer 3 is further subdivided by increasing wrinkles in the layer 3, stress concentration at the bending point, etc., and is finely divided into a fine Al phase 6 in the Nb matrix 5.
Having a randomly dispersed structure, and three-dimensionally, Al fibers 6 extending in the direction of fine surface reduction in a Nb matrix 5.
Will be an organization randomly dispersed.

【0017】一方、加工度の増大と共にマトリックス化
したNbが加工硬化し、Alとの変形抵抗差が拡大す
る。変形抵抗差の拡大に伴いAlの分散形態の不均一性
の程度が増大し、減面加工中に断線が起きやすくなる。
加えて、図5(c) に示したようなAl分散粒子形状は、
応力集中が高くなる形状であるため、より減面加工中に
断線が起きやすくなる。厚さ100μm未満のNbシー
ト及び厚さ25μm未満のAlシートを用い、総加工度
を断面積比で1.5×104 以下とすることで線材の加
工性を損なわずに臨界電流密度の大幅な改善が可能な微
細分散組織が得られる。
On the other hand, as the workability increases, the matrix Nb is work hardened, and the difference in deformation resistance with Al increases. As the difference in deformation resistance increases, the degree of non-uniformity of Al dispersed form increases, and wire breakage easily occurs during surface reduction processing.
In addition, the Al-dispersed particle shape as shown in FIG.
Since the stress concentration is high, disconnection is more likely to occur during surface reduction processing. By using an Nb sheet with a thickness of less than 100 μm and an Al sheet with a thickness of less than 25 μm and setting the total workability to a cross-sectional area ratio of 1.5 × 10 4 or less, the critical current density can be significantly increased without impairing the workability of the wire. A finely dispersed structure capable of various improvements can be obtained.

【0018】また、NbやCuのチューブ中にジェリー
ロールによるNb/Al複合体を挿入したとき、複合体
のスプリングバックにより積層部分に必ず空隙が生じ
る。
Further, when the Nb / Al composite by jelly roll is inserted into the tube of Nb or Cu, a void is always generated in the laminated portion due to the spring back of the composite.

【0019】このような状態のものを静水圧押出しする
と、積層複合体の半径方向に等方圧力が作用し、各層が
円周方向に座屈してNb/Al層状組織が不均一となる
ため、単芯線の加工に静水圧押出しを用いることはAl
微細分散組織を得る上で効果的である。
When hydrostatic extrusion is performed in such a state, isotropic pressure acts in the radial direction of the laminated composite, and each layer buckles in the circumferential direction, resulting in nonuniform Nb / Al layered structure. Using hydrostatic extrusion to process a single wire is
It is effective in obtaining a finely dispersed structure.

【0020】ところで、静水圧押出しは、変形抵抗の差
が大きい構成材からなる複合材の押出加工に最適であ
る。しかし、NbとAlの変形抵抗差はかなり大きく、
かつ、Alの融点が低いためNb/Al積層複合体の高
温押出しでは、NbとAlの変形抵抗差が拡大し、不均
一変形が生じ、押出し後の減面加工において断線が起き
易くなると共に、押出加工時の発熱によりNb/Al積
層複合体中のAl層が溶融し、押出し不能となる危険性
がある。このような危険性を回避するために、単芯線材
の押出温度(ビレット加熱温度)は500℃以下とする
ことが望ましい。また、本発明の作用は、Nb/Al積
層複合体中のNb層を皺状に変形させ、Al相溜りを形
成させることにあるが、単芯線材の静水圧押出しの加工
度が小さいと、このAl相溜りが粒状となり、その後の
減面加工において断線の原因となる。この断線を防止す
るためには、押出比が2以上の高加工度押出しによりA
l相溜りを押出加工軸に平行な繊維状に変形させる必要
がある。
By the way, the hydrostatic extrusion is most suitable for extrusion processing of a composite material composed of constituent materials having a large difference in deformation resistance. However, the difference in deformation resistance between Nb and Al is quite large,
Moreover, since the melting point of Al is low, in the high-temperature extrusion of the Nb / Al laminated composite, the difference in deformation resistance between Nb and Al expands, non-uniform deformation occurs, and disconnection easily occurs in the surface-reduction processing after extrusion, There is a risk that the Al layer in the Nb / Al laminated composite body will be melted by the heat generated during the extrusion process, making extrusion impossible. In order to avoid such a risk, it is desirable that the extrusion temperature (billet heating temperature) of the single core wire be 500 ° C. or lower. Further, the function of the present invention is to deform the Nb layer in the Nb / Al laminated composite into a wrinkle shape to form an Al phase pool. However, if the workability of hydrostatic extrusion of the single core wire is small, This Al phase accumulation becomes granular and becomes a cause of disconnection in the subsequent surface reduction processing. In order to prevent this disconnection, the extrusion ratio of 2 or more
It is necessary to transform the l-phase pool into a fiber shape parallel to the extrusion axis.

【0021】本発明には、工業用純Nb、あるいはT
a、Ti、V、Hf、Zrの中の少なくとも一元素を5
原子%以下含んだNb基合金のシート材及び管材が適用
可能である。また、Alシート材としては、Al純度が
99.5%以上の工業用純Al、あるいはCu、Fe、
Ga、Ge、Mg、Mn、Si、Znの中の少なくとも
一元素を30重量%以下含んだAl基合金が適用可能で
ある。
In the present invention, industrial pure Nb or T is used.
At least one element of a, Ti, V, Hf, and Zr is 5
A sheet material and a pipe material of an Nb-based alloy containing not more than atomic% can be applied. Further, as the Al sheet material, industrial pure Al having an Al purity of 99.5% or more, or Cu, Fe,
An Al-based alloy containing 30% by weight or less of at least one element selected from Ga, Ge, Mg, Mn, Si, and Zn is applicable.

【0022】ジェリーロール積層複合体成形用のCu巻
芯及び単芯線、多芯線の成形のためのCu管等には工業
用純Cu、あるいはCr、Fe、Mn、Ni、Sn、T
i、Zrの中の少なく一元素を30重量%以下含んだC
u基合金が適用可能である。
Industrial pure Cu, or Cr, Fe, Mn, Ni, Sn, T for Cu core and single core wire for forming jelly roll laminated composite, Cu tube for forming multi-core wire, etc.
C containing at least 30% by weight of at least one element in i and Zr
A u-based alloy is applicable.

【0023】[0023]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0024】図1は、実施例及び比較例で用いたジェリ
ーロール法によるNb3 Al系超電導線材の製造工程を
示し、図2は、図1中のジェリーロール積層複合体の構
成を示し、図3には単芯線用のビレットの断面構成を示
した。
FIG. 1 shows a manufacturing process of the Nb 3 Al superconducting wire by the jelly roll method used in Examples and Comparative Examples, and FIG. 2 shows the constitution of the jelly roll laminated composite in FIG. The cross-sectional structure of the billet for single core wire is shown in FIG.

【0025】まず、直径6mm、長さ150mmの工業用純
Cu丸棒21を外径8.6mm、内径6.1mm、長さ15
0mmの工業用純Nb管22内に挿入して作製した巻芯
に、表1に示す厚さをもった幅150mm、長さ2400
mmの工業用純Nbシート材23と、表1に示す厚さをも
った幅150mm、長さ2400mmの工業用純Alシート
材24を積層して重ね巻きし、ジェリーロール積層複合
体31を製作した。
First, an industrial pure Cu round bar 21 having a diameter of 6 mm and a length of 150 mm was manufactured to have an outer diameter of 8.6 mm, an inner diameter of 6.1 mm and a length of 15.
A core made by inserting it into a 0 mm industrial pure Nb tube 22 has a width of 150 mm and a length of 2400 with the thickness shown in Table 1.
mm of the industrial pure Nb sheet material 23 and the industrial pure Al sheet material 24 having the thickness shown in Table 1 and having a width of 150 mm and a length of 2400 mm are laminated and wound to form a jelly roll laminated composite 31. did.

【0026】次に、得られたジェリーロール積層複合体
31を、図4に示すように、外径28.5mm、内径25
mm、長さ170mmの工業用純Cu管33中に、外径2
4.6mm、内径22.3mm、長さ150mmの工業用純N
b管32と共に挿入し、両端を封じて単芯線用のビレッ
トを製作し、そのビレットを静水圧押出機を用いて室温
で直径12mmに押出加工した。
Next, as shown in FIG. 4, the obtained jelly-roll laminated composite 31 was manufactured to have an outer diameter of 28.5 mm and an inner diameter of 25.
2 mm outer diameter in a pure Cu tube 33 with a length of 170 mm and a length of 170 mm
Industrial pure N with 4.6 mm, inner diameter 22.3 mm and length 150 mm
The tube was inserted together with the b-tube 32, both ends were sealed to produce a billet for a single core wire, and the billet was extruded to a diameter of 12 mm at room temperature using a hydrostatic extruder.

【0027】次に、その単芯線材をダイスを用いて引抜
加工し、対辺長さ2.77mmの六角断面の単芯線材とし
た。
Next, the single-core wire rod was drawn by using a die to obtain a single-core wire rod having a hexagonal cross section with an opposite side length of 2.77 mm.

【0028】次に、この線材を整直矯正後、長さ150
mmに切断し、洗浄した六角断面の単芯線材48本を、単
芯線材と同寸法の工業用純Cuからなる六角断面の線材
7本を中心に束ね、外径28.4mm、内径23.4mm、
長さ170mmの工業用純Cu管中に挿入し、両端を封じ
て多芯線用のビレットを製作した。
Next, after straightening and straightening this wire, a length of 150 is obtained.
48 single-filamentary wire rods with a hexagonal cross section cut and washed into 7 mm are bundled around 7 hexagonal wire rods made of pure Cu for industrial use having the same dimensions as the single-core wire rod, and the outer diameter is 28.4 mm and the inner diameter is 23. 4 mm,
A billet for a multi-core wire was manufactured by inserting it into an industrial pure Cu tube having a length of 170 mm and sealing both ends.

【0029】このビレットを400℃に加熱後、直径1
2mmに静水圧押出機で押出加工した後、それをダイスを
用いて引抜加工し、表1に示す線径のNb3 Al系超電
導線材を製作した。ツイストピッチは20mmとした。
After heating the billet to 400 ° C., the diameter of 1
After being extruded to 2 mm with a hydrostatic extruder, it was drawn with a die to produce Nb 3 Al-based superconducting wire rods having wire diameters shown in Table 1. The twist pitch was 20 mm.

【0030】かくして得られた各線材の諸元、外部磁場
12Tにおける非銅部臨界電流密度、線材1km当たり
の断線回数及びNb/Al複合組織を比較して表1に示
す。
Table 1 compares the specifications of each wire rod thus obtained, the critical current density of the non-copper part in the external magnetic field 12T, the number of wire breaks per 1 km of the wire rod, and the Nb / Al composite structure.

【0031】実施例、比較例とも図1の工程により積層
複合体のNb、Alシート材の厚みを変化させて作製し
た結果である。なお、外部磁場12Tにおける非銅部臨
界電流密度は、800℃×10時間のNb3 Al相生成
熱処理によって得られた特性であり、1μV/cm基準で
求めた結果である。
Both the examples and the comparative examples show the results obtained by changing the thickness of the Nb and Al sheet materials of the laminated composite by the process of FIG. The non-copper critical current density in the external magnetic field 12T is a characteristic obtained by heat treatment for Nb 3 Al phase generation at 800 ° C. for 10 hours, and is a result obtained on the basis of 1 μV / cm.

【0032】[0032]

【表1】 [Table 1]

【0033】表1の結果から判るように、線材製作にお
けるNbシートの厚みが100μm未満、Alシートの
厚みが25μm未満で、総加工度が1.5×104 以下
のものの非銅部臨界電流密度は600A/mm2 以上とな
り、従来の高磁界用線材として使用実績のあるNb3
n線材と同等の特性が得られた。このときのNb/Al
複合組織は、図5(c) のようにAl相が微細に分散した
組織となるものの、加工度増大により断線回数が急激に
増大してしまった。また、比較例1は実施例3を線径
0.74mmまで伸線した結果を示したもので、Nb/A
l複合組織はAlがより微細に分散した組織となるもの
の、加工度増大により断線回数が急激に増大してしまっ
た。また比較例2ではNb、Alのシート厚さが厚いた
めにNb/Alの層状組織が観察され、低い非銅部臨界
電流密度しか得られなかった。加えて、比較例2では加
工度増大によってNbの加工硬化の影響が顕著になり、
断線が比較例1ほどでないが発生し製作性に問題がある
ことが判った。
As can be seen from the results shown in Table 1, the non-copper critical current of a wire having a Nb sheet thickness of less than 100 μm, an Al sheet thickness of less than 25 μm and a total workability of 1.5 × 10 4 or less. Nb 3 S has a density of 600 A / mm 2 or more and has been used as a conventional wire for high magnetic fields.
The characteristics equivalent to those of the n-wire material were obtained. Nb / Al at this time
Although the composite structure has a structure in which the Al phase is finely dispersed as shown in FIG. 5 (c), the number of wire breakages sharply increases due to an increase in the workability. Further, Comparative Example 1 shows the result of wire drawing of Example 3 to a wire diameter of 0.74 mm, and Nb / A
Although the l-composite structure has a structure in which Al is finely dispersed, the number of wire breakages sharply increases due to an increase in the workability. In Comparative Example 2, a Nb / Al layered structure was observed because the sheet thickness of Nb and Al was large, and only a low non-copper critical current density was obtained. In addition, in Comparative Example 2, the effect of work hardening of Nb becomes remarkable as the workability increases,
It was found that the wire breakage occurred less than in Comparative Example 1 and there was a problem in manufacturability.

【0034】一方、加工度の小さい比較例ではNb/A
l複合組織にNb/Alの層状組織が多く観測され、そ
の結果、低い非銅部臨界電流密度しか得られなかった。
On the other hand, in the comparative example having a small workability, Nb / A
A large number of Nb / Al layered structures were observed in the l composite structure, and as a result, only a low non-copper critical current density was obtained.

【0035】本発明の実施例、比較例においては積層複
合体の内外にNb管が用いられているが、このNb管の
Nbは、Nb/Al積層複合体中のAlが安定化材のC
uマトリックスへ拡散してこれが汚染されることを防止
する目的で適用されたもので、シート状のNbを用いて
も良い。この場合、拡散防止層として別個のシート材を
巻き付ける方法、あるいはNb/Al積層複合体に用い
るNbシート材の長さをAlシート材より拡散防止層形
成の分だけ長くして巻き付ける方法等が適用可能であ
る。
In the examples and comparative examples of the present invention, Nb tubes are used inside and outside the laminated composites. The Nb of the Nb tubes is such that Al in the Nb / Al laminated composite is C as a stabilizer.
It is applied for the purpose of preventing it from diffusing into the u matrix and contaminating it, and sheet-like Nb may be used. In this case, a method of winding a separate sheet material as the diffusion prevention layer, or a method of winding the Nb sheet material used for the Nb / Al laminated composite after making the length of the Nb sheet material longer than that of the Al sheet material by the amount of the diffusion prevention layer formation is applied. It is possible.

【0036】このような拡散防止層には、Nb、Ta、
V、Hf及びこれらの元素からなる合金が適用でき、そ
れらは単一層あるいは異なる材質の複数層で拡散防止層
を構成することも可能である。
Such a diffusion prevention layer includes Nb, Ta,
V, Hf, and alloys of these elements can be applied, and they can be used as a single layer or a plurality of layers made of different materials to form the diffusion prevention layer.

【0037】また、本発明の実施例では、単芯線材の縮
径加工に静水圧押出しを適用したが、これは従来の直接
潤滑押出し、間接潤滑押出しでも良く、引抜き、圧延等
の加工法によっても同様の効果を期待することができ
る。
Further, in the examples of the present invention, hydrostatic extrusion was applied to the diameter reduction processing of the single core wire, but this may be conventional direct lubrication extrusion or indirect lubrication extrusion, depending on the processing method such as drawing or rolling. Can expect the same effect.

【0038】[0038]

【発明の効果】従来のジェリーロール法によるNb3
l系超電導線材では、層状のNb/Al複合組織がフィ
ラメントに観察され、十分な臨界電流密度が得られなか
った。このため、Nb3 Al系超電導線材は耐歪特性に
優れているものの、実際のマグネットには殆ど適用され
ていないのが実情であったが、本発明によれば、高臨界
電流密度のNb3 Al系超電導線材が工業的に製作可能
になったことは、従来のNb3 Al系超電導線材による
超電導マグネットで必要不可欠であった電磁力対策が大
幅に緩和できるようになる。また、超電導マグネットの
製作性を考えた場合、耐歪特性に優れたNb3 Al系超
電導線材が適用可能となり、従来のNb3Sn系超電導
線材の適用では不可能であった化合物相生成熱処理後の
マグネット巻線加工が可能となる。これらの効果によ
り、特に、核融合等の大規模高磁界超電導マグネット製
作のコストを大幅に低減させることが可能である。
EFFECT OF THE INVENTION Nb 3 A by the conventional jelly roll method
In the 1-based superconducting wire, a layered Nb / Al composite structure was observed in the filament, and a sufficient critical current density could not be obtained. Therefore, although the Nb 3 Al-based superconducting wire is excellent in strain resistance, it is not applied to actual magnets. However, according to the present invention, Nb 3 having a high critical current density is used. The fact that the Al-based superconducting wire can be manufactured industrially can greatly alleviate the electromagnetic force measures that are indispensable for the conventional superconducting magnet using the Nb 3 Al-based superconducting wire. Also, considering the manufacturability of superconducting magnets, Nb 3 Al-based superconducting wire with excellent strain resistance can be applied, and after the compound phase formation heat treatment, which was not possible with the conventional Nb 3 Sn-based superconducting wire. It is possible to process the magnet winding. Due to these effects, it is possible to significantly reduce the cost of manufacturing a large-scale high-field superconducting magnet such as nuclear fusion.

【図面の簡単な説明】[Brief description of drawings]

【図1】Nb3 Sn系超電導線材の製作工程を示す図。FIG. 1 is a diagram showing a manufacturing process of an Nb 3 Sn based superconducting wire.

【図2】図1におけるジェリーロール積層複合体の構成
図。
FIG. 2 is a configuration diagram of a jelly roll laminated composite in FIG.

【図3】図1におけるモノフィラメントビレットの構成
図。
FIG. 3 is a configuration diagram of the monofilament billet in FIG.

【図4】実施例で製作したNb3 Sn系超電導線材の断
面構成図。
FIG. 4 is a cross-sectional configuration diagram of an Nb 3 Sn-based superconducting wire manufactured in an example.

【図5】Nb/Al複合組織の変化をスケッチした図。FIG. 5 is a diagram sketching changes in the Nb / Al composite structure.

【符号の説明】[Explanation of symbols]

1 Nbシート 2 Alシート 3 皺状に変形したNb層 4 厚さが不均一となったAl層 5 Nbマトリックス相 6 分散Al相 21 Cu丸棒 22 Nb管 23 Nbシート 24 Alシート 31 ジェリーロール積層複合体 32 Nb管 33 Cu管 41 Nb/Al複合フィラメント 42 Cuマトリックス DESCRIPTION OF SYMBOLS 1 Nb sheet 2 Al sheet 3 Nb layer deformed into wrinkles 4 Al layer with non-uniform thickness 5 Nb matrix phase 6 Dispersed Al phase 21 Cu round bar 22 Nb tube 23 Nb sheet 24 Al sheet 31 Jelly roll lamination Composite 32 Nb tube 33 Cu tube 41 Nb / Al composite filament 42 Cu matrix

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】工業用純NbあるいはNb基合金のシート
材と、工業用純AlあるいはAl基合金のシート材を交
互に積層し、その積層体を工業用純CuあるいはCu基
合金の管の中に挿入した後、減面加工により前記積層体
を芯とした単芯線材を成形し、この単芯線材の複数本を
工業用純CuあるいはCu基合金の管内に挿入した後、
減面加工により多芯線材を製造する工程を含むNb3
l系超電導線材の製造方法において、前記シート材の加
工度が1.5×104 以下でAlをNb中に分散させる
ことを特徴とするNb3 Al系超電導線材の製造方法。
1. An industrial pure Nb or Nb-based alloy sheet material and an industrial pure Al or Al-based alloy sheet material are alternately laminated, and the laminate is formed into an industrial pure Cu or Cu-based alloy tube. After being inserted into the inside, a single-core wire rod having the laminated body as a core is formed by surface-reduction processing, and a plurality of the single-core wire rods are inserted into an industrial pure Cu or Cu-based alloy pipe,
Nb 3 A including the process of manufacturing multifilamentary wire by surface-reduction processing
A method for producing an Nb 3 Al superconducting wire, wherein the sheet material has a workability of 1.5 × 10 4 or less and Al is dispersed in Nb.
【請求項2】厚さが100μm未満のNb系シート材
と、厚さが25μm未満のAl系シート材を交互に積層
することを特徴とする請求項1に記載の製造方法。
2. The manufacturing method according to claim 1, wherein Nb-based sheet materials having a thickness of less than 100 μm and Al-based sheet materials having a thickness of less than 25 μm are alternately laminated.
【請求項3】単芯線材の減面加工を静水圧押出しで行う
ことを特徴とする請求項1または請求項2に記載の製造
方法。
3. The manufacturing method according to claim 1 or 2, wherein the surface-reducing processing of the single-core wire is performed by hydrostatic extrusion.
JP8012750A 1996-01-29 1996-01-29 Manufacture of nb3al superconducting wire Pending JPH09204828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8012750A JPH09204828A (en) 1996-01-29 1996-01-29 Manufacture of nb3al superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8012750A JPH09204828A (en) 1996-01-29 1996-01-29 Manufacture of nb3al superconducting wire

Publications (1)

Publication Number Publication Date
JPH09204828A true JPH09204828A (en) 1997-08-05

Family

ID=11814104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8012750A Pending JPH09204828A (en) 1996-01-29 1996-01-29 Manufacture of nb3al superconducting wire

Country Status (1)

Country Link
JP (1) JPH09204828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042455A (en) * 2005-08-03 2007-02-15 Kobe Steel Ltd MANUFACTURING METHOD FOR Nb3Al SUPERCONDUCTIVE WIRE ROD, PRIMARY COMPOSITE FOR MANUFACTURING Nb3Al SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURING METHOD, AND MULTICORE COMPOSITE FOR MANUFACTURING Nb3Al SUPERCONDUCTIVE WIRE ROD
JP2010504858A (en) * 2006-09-26 2010-02-18 コンポジット マテリアルズ テクノロジー インコーポレイテッド Method for producing improved electrolytic capacitor anode
CN106513458A (en) * 2016-11-10 2017-03-22 无锡市明盛强力风机有限公司 Hydrostatic extrusion forming process for magnesium alloy/aluminum alloy pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042455A (en) * 2005-08-03 2007-02-15 Kobe Steel Ltd MANUFACTURING METHOD FOR Nb3Al SUPERCONDUCTIVE WIRE ROD, PRIMARY COMPOSITE FOR MANUFACTURING Nb3Al SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURING METHOD, AND MULTICORE COMPOSITE FOR MANUFACTURING Nb3Al SUPERCONDUCTIVE WIRE ROD
JP4723306B2 (en) * 2005-08-03 2011-07-13 株式会社神戸製鋼所 Manufacturing method of Nb3Al-based superconducting wire, primary composite material for manufacturing Nb3Al-based superconducting wire and manufacturing method thereof, and multi-core composite material for manufacturing Nb3Al-based superconducting wire
JP2010504858A (en) * 2006-09-26 2010-02-18 コンポジット マテリアルズ テクノロジー インコーポレイテッド Method for producing improved electrolytic capacitor anode
CN106513458A (en) * 2016-11-10 2017-03-22 无锡市明盛强力风机有限公司 Hydrostatic extrusion forming process for magnesium alloy/aluminum alloy pipe

Similar Documents

Publication Publication Date Title
US4611390A (en) Method of manufacturing superconducting compound stranded cable
JP2003217370A (en) Magnesium diboride superconductive wire
WO2007099820A1 (en) PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE ROD, AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP3775304B2 (en) Magnesium diboride superconducting wire manufacturing method
JPH06251645A (en) Wire for nb3x system superconducting wire
JPH09204828A (en) Manufacture of nb3al superconducting wire
JP3428271B2 (en) Nb3Al-based superconducting wire and method for producing the same
JPH09204829A (en) Manufacture of nb3al superconducting wire
JP5598825B2 (en) Nb3Al superconducting wire manufacturing method
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
JP3754522B2 (en) Nb (3) Sn superconducting wire
JP2009059652A (en) BRONZE PROCESS Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS PRECURSOR
JP4045082B2 (en) Superconducting wire
JP3663948B2 (en) Nb3Al compound-based superconducting wire and manufacturing method thereof
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof
JP3178317B2 (en) High strength superconducting wire
JP3603535B2 (en) Method for producing Nb3Al-based superconducting conductor
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JPS58169712A (en) Method of producing composite superconductive wire
JP4476755B2 (en) Method for producing Nb3Sn superconducting wire and composite wire therefor
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPH09204830A (en) Manufacture of nb3al superconducting wire
JP2001052547A (en) Nb3 COMPOUND-BASED SUPERCONDUCTIVE CABLE AND ITS MANUFACTURING METHOD
JP5632767B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire