JPH09199851A - Manufacture of ceramic multilayer board for flip chip use - Google Patents

Manufacture of ceramic multilayer board for flip chip use

Info

Publication number
JPH09199851A
JPH09199851A JP8008780A JP878096A JPH09199851A JP H09199851 A JPH09199851 A JP H09199851A JP 8008780 A JP8008780 A JP 8008780A JP 878096 A JP878096 A JP 878096A JP H09199851 A JPH09199851 A JP H09199851A
Authority
JP
Japan
Prior art keywords
pads
pad
micro
ceramic multilayer
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8008780A
Other languages
Japanese (ja)
Inventor
Akiyoshi Kosakata
明義 小阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP8008780A priority Critical patent/JPH09199851A/en
Publication of JPH09199851A publication Critical patent/JPH09199851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the metallized strength of micro-pads enhance. SOLUTION: This is a manufacturing method wherein the patterns of a multitude of micro-pads 12 for flip chip mounting use are formed of a high- melting point metal paste in a green sheet 11, which is a part which is used as the surface layer of a ceramic multilayer board, and thereafter, all the layers of the green sheets are laminated to fire simultaneously the green sheets. In this case, as the high-melting point metal paste for forming the patterns of the micro-pads 12, one consisting of metal particles of a mean particle diameter of 2μm or larger, preferably 3.5μm or larger, is used, whereby the sintering speed of the micro-pads 12 is slowed down to prevent the excessive sintering of the pads 12 and a reduction in a ceramic vitreous anchor effect is prevented. Moreover, by forming the patterns of the pads 12 in such a way that the angle θof the sectional shape of the peripheral edge parts of the patterns is 30 deg. or larger, a stress concentration into the edges of the peripheral edge parts of said patterns is relaxed to prevent the edge parts from being broken and the metallized strength of the pads 12 is made to enhance coupled with the above vitreous anchor effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セラミック多層基
板の表面にフリップチップ実装用の多数の微小パッドの
パターンを高融点金属ペーストで形成して同時焼成した
フリップチップ用セラミック多層基板の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic multilayer substrate for a flip chip, in which a pattern of a large number of minute pads for flip chip mounting is formed on a surface of a ceramic multilayer substrate with a high melting point metal paste and co-fired. It is a thing.

【0002】[0002]

【従来の技術】近年、半導体パッケージの小型化・高密
度実装化や高速化等の要求を満たすために、パッケージ
の形態がワイヤボンディングタイプから、ベアチップを
直接フェースダウン状態で基板に実装するフリップチッ
プタイプへと変化しつつある。このフリップチップタイ
プの中に、基板表面の微小パッドにチップの電極を直接
半田付けするC4(Controlled Collapse Chip Connect
ion )と呼ばれるパッケージがある。このC4パッケー
ジは、基板表面のパッドを直径200μ以下に微小化し
て単位面積当りのパッド数を多くすることで、単位面積
当りの接続密度を飛躍的に高め、小型化・高密度実装化
に最適なパッケージ形態となっている。このため、セラ
ミックパッケージの分野でもC4パッケージの需要が増
大しつつある。
2. Description of the Related Art In recent years, in order to satisfy demands for miniaturization, high-density mounting, high-speed, etc. of semiconductor packages, flip-chips in which a bare chip is directly mounted on a substrate in a face-down state from a wire bonding type package. It is changing to a type. In this flip chip type, C4 (Controlled Collapse Chip Connect) is used to directly solder the chip electrodes to the micro pads on the substrate surface.
There is a package called ion). This C4 package dramatically increases the connection density per unit area by miniaturizing the pads on the substrate surface to a diameter of 200μ or less and increasing the number of pads per unit area, making it ideal for miniaturization and high-density mounting. It is in the form of a package. Therefore, the demand for C4 packages is also increasing in the field of ceramic packages.

【0003】[0003]

【発明が解決しようとする課題】ところで、C4セラミ
ックパッケージでは、基板表面に印刷・焼成するパッド
の微小化に伴ない、セラミック基板とパッドとの接合面
積も微小になるため、セラミック基板に対するパッドの
接合強度(以下「メタライズ強度」という)がある程度
低下することは避けられないが、パッドのメタライズ強
度が余りにも弱くなりすぎると、チップとセラミック基
板との接合部に作用する応力によりパッドがセラミック
基板から剥離しやすく、接合信頼性が著しく悪くなる。
従って、パッドの微小化と接合信頼性とを両立させるに
は、微小パッドのメタライズ強度そのものを一定レベル
以上(例えば約5kg/mm2 以上)に向上させる必要
があるが、従来のC4セラミックパッケージでは、この
レベルのメタライズ強度を安定的に確保することは困難
であった。
By the way, in the C4 ceramic package, the bonding area between the ceramic substrate and the pad becomes smaller as the pad printed and fired on the surface of the substrate becomes smaller. Although it is unavoidable that the bonding strength (hereinafter referred to as "metallization strength") is reduced to some extent, if the metallization strength of the pad becomes too weak, the pad acts on the ceramic substrate due to the stress that acts on the joint between the chip and the ceramic substrate. Peeled off easily, and the bonding reliability is significantly deteriorated.
Therefore, in order to achieve both the miniaturization of the pad and the bonding reliability, it is necessary to improve the metallization strength of the micropad to a certain level or more (for example, about 5 kg / mm 2 or more), but with the conventional C4 ceramic package. It was difficult to stably secure this level of metallization strength.

【0004】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、微小パッドのメタラ
イズ強度を向上させることができて、パッドの微小化と
接合信頼性とを両立させることができるフリップチップ
用セラミック多層基板の製造方法を提供することにあ
る。
The present invention has been made in view of the above circumstances, and therefore an object thereof is to improve the metallization strength of a micro pad and to achieve both miniaturization of the pad and bonding reliability. It is an object of the present invention to provide a method for manufacturing a ceramic multilayer substrate for flip chips that can be manufactured.

【0005】[0005]

【課題を解決するための手段】前述した従来のC4セラ
ミックパッケージにおいて、微小パッドのメタライズ強
度が弱い原因として次の2つの要因が考えられる。
In the conventional C4 ceramic package described above, the following two factors can be considered as the causes of the weak metallization strength of the fine pads.

【0006】基板表面に印刷するパッドのパターンが
微小であるため、パッドとセラミック基板とを同時焼成
する際にパッドの焼結がセラミック基板よりも早く進行
してしまい、パッドが焼結過剰になってセラミックのガ
ラス質のアンカー効果が少なくなり、パッドとセラミッ
ク基板との接合強度が低下しやすい。
Since the pad pattern printed on the substrate surface is minute, the sintering of the pad progresses faster than that of the ceramic substrate when the pad and the ceramic substrate are co-fired, resulting in excessive sintering of the pad. As a result, the glass viscous anchor effect of the ceramic is reduced, and the bonding strength between the pad and the ceramic substrate is likely to decrease.

【0007】パッドのパターンが微小であるため、パ
ッドのパターン周縁部(図1に示すA部分)の接合強度
が大きく影響する。つまり、パッドのパターン周縁部に
作用する応力がパターン周縁部のエッジ(図1に示すX
部分)に集中するため、その応力集中でパターン周縁部
のエッジが破壊されやすく、しかも、一旦、このエッジ
が破壊されると、これを糸口にしてパッドが比較的簡単
に剥離してしまう。
Since the pad pattern is minute, the bonding strength at the peripheral portion of the pad pattern (portion A shown in FIG. 1) has a great influence. That is, the stress acting on the peripheral edge of the pattern of the pad causes the edge of the peripheral edge of the pattern (X shown in FIG.
Since the stress is concentrated, the edge of the peripheral edge of the pattern is easily broken, and once this edge is broken, the pad is relatively easily peeled off by using this as a thread.

【0008】そこで、本発明は、これら2つのメタライ
ズ強度低下要因を改善するため、セラミック多層基板の
表層になる部分のグリーンシートに、フリップチップ実
装用の多数の微小パッドのパターンを高融点金属ペース
トで形成した後、全層のグリーンシートを積層して同時
焼成するフリップチップ用セラミック多層基板の製造方
法において、前記微小パッドのパターンを形成する高融
点金属ペーストとして金属粒子の平均粒径が2μm以上
のものを使用し、前記微小パッドのパターン周縁部の断
面形状の角度が30°以上となるように形成するもので
ある。
Therefore, according to the present invention, in order to improve these two factors for lowering the metallization strength, a pattern of a large number of fine pads for flip-chip mounting is formed on the green sheet in the surface layer of the ceramic multilayer substrate with a high melting point metal paste. In the method for manufacturing a ceramic multilayer substrate for flip chips, in which all layers of green sheets are laminated and co-fired after the formation, the high melting point metal paste for forming the pattern of the fine pad has an average particle diameter of metal particles of 2 μm or more. The micro pad is formed so that the angle of the cross-sectional shape of the peripheral portion of the pattern is 30 ° or more.

【0009】つまり、微小パッドのパターンを形成する
高融点金属ペーストの金属粒子の粒径が大きくなるほど
微小パッドの焼結が遅くなる点に着目し、金属粒子の平
均粒径が2μm以上の高融点金属ペーストを用いること
で、微小パッドの焼結スピードを従来より遅くして微小
パッドの過剰焼結を防ぎ、セラミックのガラス質のアン
カー効果低下を防止する。
That is, attention is paid to the fact that the larger the particle size of the metal particles of the high melting point metal paste forming the pattern of the fine pad, the slower the sintering of the fine pad, and the high melting point of the metal particles having an average particle size of 2 μm or more. By using the metal paste, the sintering speed of the fine pad is made slower than in the conventional case, the excessive sintering of the fine pad is prevented, and the decrease in the anchor effect of the vitreous nature of the ceramic is prevented.

【0010】更に、微小パッドのパターン周縁部の断面
形状の角度が大きくなるほど、微小パッドのパターン周
縁部のエッジ(図1に示すX部分)への応力集中係数が
小さくなる点に着目し、微小パッドのパターン周縁部の
断面形状の角度を30°以上に拡大することで、微小パ
ッドのパターン周縁部のエッジへの応力集中を緩和する
と共に、微小パッドの接合面の平坦部(図1に示すB部
分)を拡大して微小パッドとセラミックとの接合強度を
高める。
Further, paying attention to the fact that the larger the angle of the cross-sectional shape of the peripheral portion of the pattern of the fine pad, the smaller the stress concentration factor at the edge (X portion shown in FIG. 1) of the peripheral portion of the pattern of the fine pad. By enlarging the angle of the cross-sectional shape of the peripheral edge of the pattern of the pad to 30 ° or more, stress concentration on the edge of the peripheral edge of the pattern of the micro pad is relieved, and the flat portion of the bonding surface of the micro pad (shown in FIG. 1). (Part B) is enlarged to increase the bonding strength between the micro pad and the ceramic.

【0011】[0011]

【発明の実施の形態】本発明の製造方法により製造され
るC4パッケージ用のセラミック多層基板11は、図2
に示すように基板表面に直径200μ以下の多数の微小
パッド12が印刷・焼成されている。このセラミック多
層基板11は、複数枚のアルミナグリーンシートを積層
して1500〜1600℃で焼成して一体化したもので
ある。基板表面の微小パッド12や内層配線パターン、
ビアは、いずれもモリブデン、タングステン等の高融点
金属でスクリーン印刷され、セラミック多層基板11と
同時焼成されている。尚、図示はしないが、基板表面の
微小パッド12にフリップチップの電極をリフロー半田
付けし、更にそのチップの周辺を封止してC4パッケー
ジが組み立てられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A ceramic multilayer substrate 11 for a C4 package manufactured by the manufacturing method of the present invention is shown in FIG.
As shown in FIG. 5, a large number of fine pads 12 having a diameter of 200 μm or less are printed and baked on the surface of the substrate. The ceramic multilayer substrate 11 is formed by laminating a plurality of alumina green sheets and firing them at 1500 to 1600 ° C. to integrate them. Minute pads 12 and inner layer wiring patterns on the substrate surface,
Each of the vias is screen-printed with a refractory metal such as molybdenum or tungsten, and is fired at the same time as the ceramic multilayer substrate 11. Although not shown, the flip-chip electrodes are reflow-soldered to the minute pads 12 on the substrate surface, and the periphery of the chip is sealed to assemble the C4 package.

【0012】次に、セラミック多層基板11の製造方法
を説明する。まず、アルミナのスラリーを用いてドクタ
ーブレード法等によってアルミナグリーンシートを作製
する。そして、基板表層に積層されるアルミナグリーン
シートには、モリブデン、タングステン等の高融点金属
で多数の微小パッド12のパターンを230メッシュの
ステンレス製網を使用してスクリーン印刷する。この
際、微小パッド12のパターンを印刷する高融点金属ペ
ーストとして金属粒子の平均粒径が2μm以上、好まし
くは3.5μm以上のものを使用すると共に、微小パッ
ド12の印刷膜厚が焼成後厚で15μm程度以上となる
ように印刷する。
Next, a method of manufacturing the ceramic multilayer substrate 11 will be described. First, an alumina green sheet is prepared using a slurry of alumina by a doctor blade method or the like. Then, on the alumina green sheet laminated on the surface layer of the substrate, a pattern of a large number of fine pads 12 is screen-printed with a refractory metal such as molybdenum or tungsten using a stainless mesh of 230 mesh. At this time, as the high-melting-point metal paste for printing the pattern of the fine pad 12, one having an average metal particle diameter of 2 μm or more, preferably 3.5 μm or more is used, and the printed thickness of the fine pad 12 is thick after firing. Print so that the thickness is about 15 μm or more.

【0013】また、基板内層に積層されるアルミナグリ
ーンシートには、モリブデン、タングステン等の高融点
金属で内層配線パターンをスクリーン印刷する。尚、各
層のアルミナグリーンシートには、上記スクリーン印刷
工程前に層間を電気的に接続するためのビアホールを形
成し、スクリーン印刷工程で各ビアホールに高融点金属
ペーストを充填する。内層配線パターンやビアを印刷す
る高融点金属ペーストについては、金属粒子の平均粒径
を2μm以上に限定する必要はなく、従来と同じ粒径の
高融点金属ペーストを使用すれば良い。
On the alumina green sheet laminated on the inner layer of the substrate, an inner layer wiring pattern is screen printed with a refractory metal such as molybdenum or tungsten. A via hole for electrically connecting the layers is formed in the alumina green sheet of each layer before the screen printing step, and each via hole is filled with a high melting point metal paste in the screen printing step. Regarding the high melting point metal paste for printing the inner layer wiring pattern and the via, it is not necessary to limit the average particle size of the metal particles to 2 μm or more, and a high melting point metal paste having the same particle size as the conventional one may be used.

【0014】スクリーン印刷工程終了後、各層のアルミ
ナグリーンシートを積層し、熱圧着する。この際、セラ
ミック多層基板11の表面に加えられるプレス圧力によ
り微小パッド12のパターンが図1に示すように表層の
アルミナグリーンシートの中に押し込まれる。そして、
このセラミック多層基板11を還元性雰囲気中にて15
00〜1600℃で焼成し、セラミック多層基板11と
微小パッド12とを同時焼成する。この後、セラミック
多層基板11の入出力端子部に外部リードピン等をろう
付けし、仕上げ処理として微小パッド12の表面にNi
メッキ、Auメッキ等を施す。
After the screen printing process, the alumina green sheets of the respective layers are laminated and thermocompression bonded. At this time, the pattern of the fine pads 12 is pressed into the surface alumina green sheet as shown in FIG. 1 by the pressing pressure applied to the surface of the ceramic multilayer substrate 11. And
This ceramic multilayer substrate 11 is placed in a reducing atmosphere for 15
The ceramic multilayer substrate 11 and the fine pads 12 are fired at the same time at 00 to 1600 ° C. After that, external lead pins or the like are brazed to the input / output terminal portions of the ceramic multilayer substrate 11 to finish the surface of the fine pads 12 with Ni.
Plating, Au plating, etc. are performed.

【0015】このようにして製造されたセラミック多層
基板11について、微小パッド12の引張り強度(メタ
ライズ強度)を評価する試験を行ったので、その試験結
果を次の表1に示す。
A test for evaluating the tensile strength (metallization strength) of the fine pad 12 was carried out on the ceramic multilayer substrate 11 thus manufactured. The test results are shown in Table 1 below.

【0016】[0016]

【表1】 [Table 1]

【0017】この表1の試験は、微小パッド12のパタ
ーンを印刷する高融点金属ペーストの金属粒子の平均粒
径と、微小パッド12のパターン周縁部の断面形状の角
度θとが微小パッド12の引張り強度に及ぼす影響を評
価したものであり、角度θは微小パッド12の印刷膜厚
によって調節される。また、微小パッド12の引張り強
度の測定方法は、図3に示すように、まず(1)セラミ
ック多層基板11をフラックス槽13内のフラックスに
浸した後、(2)該セラミック多層基板11を半田槽1
4内の共晶半田に浸して微小パッド12の表面に共晶半
田をコーティングする。この後、(3)セラミック多層
基板11に残留するフラックスを洗浄し、(4)輪状に
曲げられた導線15を棒状半田16で微小パッド12に
半田付けする。そして、(5)セラミック多層基板11
をホルダ17で固定し、導線15を測定器のフック18
で上方に引張って、微小パッド12がセラミック多層基
板11から剥離するときの引張り力を微小パッド12の
引張り強度として測定する。尚、この試験で用いるセラ
ミック多層基板11のサンプルのサイズは、例えば37
×37×1.2(mm)であり、微小パッド12の大き
さは直径150μmである。
In the test of Table 1, the average particle size of the metal particles of the high-melting-point metal paste for printing the pattern of the fine pad 12 and the angle θ of the cross-sectional shape of the pattern peripheral portion of the fine pad 12 are the values of the fine pad 12. The effect on the tensile strength is evaluated, and the angle θ is adjusted by the printed film thickness of the minute pad 12. Further, as shown in FIG. 3, the method for measuring the tensile strength of the micro pad 12 is as follows: (1) The ceramic multilayer substrate 11 is first immersed in the flux in the flux tank 13, and (2) the ceramic multilayer substrate 11 is soldered. Tank 1
The surface of the fine pad 12 is coated with the eutectic solder by immersing it in the eutectic solder in 4. After that, (3) the flux remaining on the ceramic multilayer substrate 11 is washed, and (4) the conducting wire 15 bent in a ring shape is soldered to the minute pad 12 with the rod-shaped solder 16. And (5) the ceramic multilayer substrate 11
Is fixed with a holder 17, and the lead wire 15 is connected to the hook 18 of the measuring instrument.
Then, the tensile force when the fine pad 12 is peeled off from the ceramic multilayer substrate 11 is measured as the tensile strength of the fine pad 12. The size of the sample of the ceramic multilayer substrate 11 used in this test is, for example, 37
The size of the micro pad 12 is × 37 × 1.2 (mm) and the diameter thereof is 150 μm.

【0018】上記表1の試験結果から次の2つの傾向が
分かる。 微小パッド12のパターンを形成する高融点金属ペー
ストの金属粒子の粒径が大きくなるほど微小パッド12
の引張り強度が大きくなる。この理由は、高融点金属ペ
ーストの金属粒子の粒径が大きくなるほど微小パッド1
2の焼結スピードが遅くなって、微小パッド12の焼結
の進行具合がセラミック多層基板11のそれに近付き、
微小パッド12の過剰焼結が抑えられるためと考えられ
る。微小パッド12の過剰焼結は、セラミックのガラス
質のアンカー効果を低下させ、微小パッド12の引張り
強度を低下させる原因となる。
From the test results in Table 1 above, the following two trends can be seen. The larger the particle size of the metal particles of the refractory metal paste forming the pattern of the fine pad 12, the finer pad 12
The tensile strength of. The reason for this is that the larger the particle size of the metal particles of the high melting point metal paste, the finer the pad 1
The sintering speed of 2 becomes slower, and the progress of sintering of the fine pads 12 approaches that of the ceramic multilayer substrate 11,
It is considered that excessive sintering of the fine pad 12 is suppressed. Excessive sintering of the micro pad 12 reduces the anchor effect of the vitreous material of the ceramic and causes the tensile strength of the micro pad 12 to be reduced.

【0019】微小パッド12のパターン周縁部の断面
形状の角度θが大きくなるほど微小パッド12の引張り
強度が大きくなる。つまり、微小パッド12のパターン
周縁部の断面形状の角度θが大きくなるほど、微小パッ
ド12のパターン周縁部のエッジ(図1に示すX部分)
への応力集中係数αが小さくなって、該エッジに作用す
る応力σ=α×F(F:平均応力)が小さくなり、該エ
ッジが破壊されにくくなる。更に、微小パッド12のパ
ターン周縁部の断面形状の角度θが大きくなるほど、微
小パッド12の接合面の平坦部(図1に示すB部分)が
拡大して微小パッド12とセラミック多層基板11との
接合強度が高まる。
The larger the angle θ of the sectional shape of the peripheral portion of the pattern of the micro pad 12, the greater the tensile strength of the micro pad 12. That is, the larger the angle θ of the cross-sectional shape of the peripheral portion of the pattern of the micro pad 12, the edge of the peripheral portion of the pattern of the micro pad 12 (X portion shown in FIG. 1).
The stress concentration coefficient α to the edge becomes small, the stress σ = α × F (F: average stress) acting on the edge becomes small, and the edge is less likely to be broken. Further, as the angle θ of the cross-sectional shape of the peripheral edge portion of the fine pad 12 becomes larger, the flat portion (the portion B shown in FIG. 1) of the bonding surface of the fine pad 12 expands so that the fine pad 12 and the ceramic multilayer substrate 11 are separated from each other. Bonding strength is increased.

【0020】上記,から判断して、微小パッド12
のパターンを形成する高融点金属ペーストは、金属粒子
の平均粒径が2μm以上、好ましくは3.5μm以上の
ものを使用し、且つ微小パッド12のパターン周縁部の
断面形状の角度θが30°以上(焼成後厚で15μm程
度以上)となるように形成すれば、微小パッド12の引
張り強度(メタライズ強度)が十分な大きさとなり、従
来と比較して接合信頼性を向上させることができる。
尚、金属粒子の平均粒径が4.5μm以上になると、印
刷時のパターンの形状保持をすることが難しくなる。
Judging from the above, the minute pad 12
The high-melting point metal paste forming the pattern (1) has an average particle size of metal particles of 2 μm or more, preferably 3.5 μm or more, and the angle θ of the cross-sectional shape of the peripheral portion of the fine pad 12 is 30 °. If it is formed so as to have the above thickness (about 15 μm or more in thickness after firing), the tensile strength (metallization strength) of the fine pad 12 becomes sufficiently large, and the bonding reliability can be improved as compared with the conventional case.
When the average particle size of the metal particles is 4.5 μm or more, it becomes difficult to maintain the shape of the pattern during printing.

【0021】尚、本発明の適用範囲は、フリップチップ
の接合にリフロー半田を用いるC4パッケージに限定さ
れず、他のフリップチップの接合方式にも適用可能であ
る。
The scope of application of the present invention is not limited to the C4 package using reflow soldering for flip chip bonding, but can be applied to other flip chip bonding methods.

【0022】[0022]

【発明の効果】以上の説明から明らかなように、本発明
によれば、微小パッドのパターンを形成する高融点金属
ペーストとして金属粒子の平均粒径が2μm以上のもの
を使用し、且つ微小パッドのパターン周縁部の断面形状
の角度が30°以上となるように形成するので、微小パ
ッドの過剰焼結を防止できると共に、微小パッドのパタ
ーン周縁部のエッジへの応力集中を緩和できて、微小パ
ッドのメタライズ強度を向上させることができ、パッド
の微小化と接合信頼性とを両立させることができる。
As is apparent from the above description, according to the present invention, as the refractory metal paste forming the pattern of the fine pad, the one having the average particle diameter of metal particles of 2 μm or more is used, and the fine pad is used. Is formed so that the angle of the cross-sectional shape of the pattern peripheral portion is 30 ° or more, it is possible to prevent excessive sintering of the fine pad and reduce stress concentration on the edge of the pattern peripheral portion of the fine pad. The metallization strength of the pad can be improved, and the miniaturization of the pad and the joint reliability can both be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来と本発明のセラミック多層基板の製造方法
の相違を対比して示す図
FIG. 1 is a view showing a difference between a conventional method and a method for manufacturing a ceramic multilayer substrate of the present invention in comparison.

【図2】セラミック多層基板の拡大斜視図FIG. 2 is an enlarged perspective view of a ceramic multilayer substrate.

【図3】微小パッドの引張り強度の測定方法を説明する
FIG. 3 is a diagram illustrating a method for measuring the tensile strength of a micro pad.

【符号の説明】[Explanation of symbols]

11…セラミック多層基板、12…微小パッド。 11 ... Ceramic multilayer substrate, 12 ... Micro pad.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミック多層基板の表層になる部分の
グリーンシートに、フリップチップ実装用の多数の微小
パッドのパターンを高融点金属ペーストで形成した後、
全層のグリーンシートを積層して同時焼成するフリップ
チップ用セラミック多層基板の製造方法において、 前記微小パッドのパターンを形成する高融点金属ペース
トとして金属粒子の平均粒径が2μm以上のものを使用
し、前記微小パッドのパターン周縁部の断面形状の角度
が30°以上となるように形成することを特徴とするフ
リップチップ用セラミック多層基板の製造方法。
1. A pattern of a large number of minute pads for flip-chip mounting is formed on a green sheet of a surface layer of a ceramic multilayer substrate with a high melting point metal paste,
In a method for manufacturing a ceramic multilayer substrate for flip chips, in which green sheets of all layers are laminated and co-fired, a refractory metal paste for forming a pattern of the fine pad is used, which has an average metal particle diameter of 2 μm or more. A method of manufacturing a ceramic multilayer substrate for flip chips, characterized in that the cross-sectional shape of the peripheral portion of the pattern of the fine pad is formed to be 30 ° or more.
JP8008780A 1996-01-23 1996-01-23 Manufacture of ceramic multilayer board for flip chip use Pending JPH09199851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8008780A JPH09199851A (en) 1996-01-23 1996-01-23 Manufacture of ceramic multilayer board for flip chip use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8008780A JPH09199851A (en) 1996-01-23 1996-01-23 Manufacture of ceramic multilayer board for flip chip use

Publications (1)

Publication Number Publication Date
JPH09199851A true JPH09199851A (en) 1997-07-31

Family

ID=11702402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8008780A Pending JPH09199851A (en) 1996-01-23 1996-01-23 Manufacture of ceramic multilayer board for flip chip use

Country Status (1)

Country Link
JP (1) JPH09199851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101166A1 (en) * 2002-05-28 2003-12-04 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered compact having metallized layer and method for preparation thereof
US7302757B2 (en) * 2004-03-30 2007-12-04 International Business Machines Corporation Micro-bumps to enhance LGA interconnections

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101166A1 (en) * 2002-05-28 2003-12-04 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered compact having metallized layer and method for preparation thereof
US7302757B2 (en) * 2004-03-30 2007-12-04 International Business Machines Corporation Micro-bumps to enhance LGA interconnections

Similar Documents

Publication Publication Date Title
JP3239231B2 (en) Ceramic substrate with pad, ceramic substrate with terminal member, and method of manufacturing the same
US4672739A (en) Method for use in brazing an interconnect pin to a metallization pattern situated on a brittle dielectric substrate
US4755631A (en) Apparatus for providing an electrical connection to a metallic pad situated on a brittle dielectric substrate
JPH0653655A (en) Manufacture of circuit board with bump
JPH09199851A (en) Manufacture of ceramic multilayer board for flip chip use
JP3470789B2 (en) Wiring board and method of manufacturing the same
JPH1041626A (en) Ceramic multilayered board for flip chip and its manufacture
JP4290838B2 (en) Wiring board with lead pins and electronic components with lead pins
EP3678196A1 (en) Substrate for mounting electronic components, electronic device, and electronic module
JP2001007155A (en) Flip chip connection structure body
JPH10242327A (en) Electrode structure of ceramic package and manufacturing method thereof
JP3723350B2 (en) Wiring board and manufacturing method thereof
JP4613410B2 (en) Manufacturing method of ceramic circuit board
JP3744678B2 (en) Wiring board mounting structure
JPH02312240A (en) Formation of bump
JP2001077511A (en) Manufacture of ceramic board
JP3252743B2 (en) Ceramic circuit board
JP4129212B2 (en) Semiconductor element storage package and semiconductor device
JP4387475B2 (en) Wiring board
JP3622160B2 (en) Ceramic substrate and manufacturing method thereof
JPH05136216A (en) Semiconductor mounting device
JP2001102492A (en) Wiring board and mounting structure thereof
JPH0240937A (en) Semiconductor package
JPH1093227A (en) Ceramic wiring board
JP3370540B2 (en) Wiring board