JPH09196671A - Method and apparatus for positioning by automatic bidirectional tracking system - Google Patents

Method and apparatus for positioning by automatic bidirectional tracking system

Info

Publication number
JPH09196671A
JPH09196671A JP8008086A JP808696A JPH09196671A JP H09196671 A JPH09196671 A JP H09196671A JP 8008086 A JP8008086 A JP 8008086A JP 808696 A JP808696 A JP 808696A JP H09196671 A JPH09196671 A JP H09196671A
Authority
JP
Japan
Prior art keywords
vehicle
arm
work
coordinate system
fixed station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8008086A
Other languages
Japanese (ja)
Other versions
JP3823230B2 (en
Inventor
Toshiaki Ishise
俊明 石瀬
Nobuo Kon
信夫 今
Jun Irie
潤 入江
Hiroshi Sakurai
洋 桜井
Tsuneyasu Oonishi
常康 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP00808696A priority Critical patent/JP3823230B2/en
Publication of JPH09196671A publication Critical patent/JPH09196671A/en
Application granted granted Critical
Publication of JP3823230B2 publication Critical patent/JP3823230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Numerical Control (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positioning method and a positioning apparatus by an automatic bidirectional tracking system in which a working vehicle performing a required operation by using a freely contractible, expandable and rotatable working arm is automated (unmanned) and robotized so as to perform an operation whose positional accuracy is high. SOLUTION: The coordinate system X, Y of the whole area, to be worked, in which the installation position of a fixed station A sighting a vehicle M is used as the origin X0 , Y0 is decided. A mobile station B which sights the fixed station A is installed at the vehicle M. A local coordinate system (x), (y) in which the mobile station B is used as the origin or a known point and in which one coordinate axis is set in the advance direction of the vehicle M is decided. The mounting position of a working arm at the vehicle M, the angle of rotation of the arm and the horizontal projection length of the arm are measured. The coordinates of a working point at the tip of the arm are computed. The coordinates x2 , y2 of the working point are converted into the total coordinate system. The positions x2 , y2 of the working point in the total coordinate system x0 , y0 is computed in a real-time manner. The vehicle M is guided to a target position, and the working arm is positioned in the target position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、建設の各種工事
に使用される、特に伸縮、回転が自由な作業アームを備
えて地面上を走行移動し作業アームで所要の仕事をする
掘削機、ブルドーザ、削孔機などの作業用車両(車両型
作業機)を自動化(無人化)、ロボット化して位置的精
度の高い仕事を行わせるための双方向自動追尾システム
による位置決め方法と、同方法を実施する位置決め装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excavator and a bulldozer used for various construction works, particularly equipped with a work arm which can be freely expanded and contracted and rotated so as to travel on the ground and perform a required work with the work arm. Implementing a positioning method using a two-way automatic tracking system for automating (unmanned) work vehicles such as drilling machines (vehicle type work machines) and robots to perform work with high positional accuracy, and the same method Positioning device.

【0002】[0002]

【従来の技術】人口構成の高齢化、老齢化のため、建設
業においても各種工事の自動化、ロボット化への期待、
要請が高まっている。建設業の場合は土地又はその定着
物を相手に仕事をするので、製造業の場合とは異なっ
て、ロボットを定位置に置いて対象物(被処理物)をコ
ンベアラインに載せてロボットの位置まで持ってくるこ
とはできない。逆に、ロボットの方を土地又は定着物の
必要位置へ移動させ位置決めする誘導操作が必要にな
る。すなわち、所定の作業位置で所定の方向に向くよう
にロボット(車両)を誘導し、同車両の作業アーム先端
の作業ポイントの位置決めをすることが重要である。
2. Description of the Related Art Due to the aging and aging of the population structure, various construction works are expected to be automated and robotized in the construction industry.
The demand is increasing. In the case of the construction industry, since the work is done on land or its fixed objects, unlike the case of the manufacturing industry, the robot is placed in a fixed position and the object (object to be processed) is placed on the conveyor line to position the robot. You can't bring it up. On the contrary, a guide operation for moving and positioning the robot to the required position of the land or the fixed object is required. That is, it is important to guide the robot (vehicle) so as to face a predetermined direction at a predetermined work position and to position the work point at the tip of the work arm of the vehicle.

【0003】従来、上述の要請に応える位置決め方法乃
至位置決め装置としては、次のようなものが散見され
る。 特開昭62ー212810号公報に記載された自動
案内車両システムは、倉庫や工業プラント内の予定され
た帯域内において無人車両を予定された移動路上を案内
するための自動案内車両システム(AGVS)に関する
もので、操縦機構を制御する駆動コントローラを備える
無人車両と、位置表示器(ビーコン)と、前記複数の位
置表示器それぞれの座標位置を記憶する車両上のメモ
リ、及び車両に予定された移動路を表す経路ベクトルを
記憶するメモリ、前記位置表示器を光学的に走査する手
段、及び前記光学的走査に基づいて車両の位置及び方位
を指示するデータ信号の発生手段とを備える車両上の第
1走行制御部と、前記第1走行制御部のデータ信号によ
り指示される車両位置及び方位の変化を指示するデータ
信号の発生手段を備える車両上の第2走行制御部と、前
記第1及び第2走行制御部により発生された前記データ
信号及び記憶された前記経路ベクトルに応答して車両が
前記の移動路に従うように前記ドライブコントローラに
て前記操縦機構を制御せしめる車両上の駆動手段を備え
た構成である(以下、これをニコライ発明と言う)。 特開平7ー150596号公報に記載されたパワー
ショベルの掘削位置表示装置は、上部旋回体にブームと
アーム及びバケットを有するパワーショベルのバケット
先端位置(掘削位置)の座標を、ブームフートとブーム
トップとを結ぶ線分ブーム長さ、ブームトップとアーム
トップとを結ぶ線分アーム長さ、及びアームトップとバ
ケット先端部とを結ぶ線分バケット長さと、ブーム角、
アーム角、及びバケット角とを用いて演算部で算出し、
該算出値を表示部に表示する掘削表示装置において、バ
ケットの先端部位の座標位置の算出値と実測値との差異
に基づき、前記ブーム角、アーム角及びバケット角を計
測する各角度センサの検出値の係数を補正する手段を前
記演算部に設けた構成である(以下、これを住友発明と
言う)。 特公平7ー21728号公報に記載されたビーム光
利用の作業車誘導装置は、地上側に、車体が走行する設
定走行軌跡の長さ方向に沿って誘導用ビーム光を設定速
度で走査しながら投射するビーム光投射手段が設けら
れ、車体には、前記の誘導用ビーム光を受光する受光手
段と、受光手段の受光情報に基づいて前記車体が前記設
定走行軌跡に沿って自動走行するように誘導する誘導手
段とが設けられている。そして、前記受光手段は、一つ
の誘導用の主受光器と、主受光器からビーム光走査方向
並びにビーム光投射方向に間隔を隔てて位置する一対の
補助受光器とを備え、更に、前記主受光器を中心に旋回
自在に設けられ、前記一対の補助受光器の一方が前記誘
導用ビーム光を受光した時点から前記主受光器が前記誘
導用ビーム光を受光するまでの時間差と、前記主受光器
が前記誘導用受光器の他方が前記誘導用ビーム光を受光
するまでの時間差とに基づいて、前記主受光器の受光面
が前記受光ビーム光投射手段の設置方向を向くように、
前記受光手段を前記主受光器を中心に自動的に旋回操作
する光源追尾手段が設けられた構成である(以下、これ
をクボタ発明と言う)。
Conventionally, as the positioning method and the positioning device which meet the above-mentioned demand, the followings are scattered. The automatic guided vehicle system described in Japanese Patent Laid-Open No. 62-212810 is an automatic guided vehicle system (AGVS) for guiding an unmanned vehicle on a planned moving road within a planned band in a warehouse or an industrial plant. And an unmanned vehicle having a drive controller for controlling a steering mechanism, a position indicator (beacon), a memory on the vehicle for storing coordinate positions of each of the plurality of position indicators, and a scheduled movement of the vehicle. A vehicle onboard comprising a memory for storing a path vector representing a road, means for optically scanning the position indicator, and means for generating a data signal indicating the position and orientation of the vehicle based on the optical scanning. 1 traveling control section, and a data signal generating means for instructing a change in vehicle position and azimuth instructed by the data signal of the first traveling control section. A second traveling control unit on both sides, and the drive controller for causing the vehicle to follow the traveling route in response to the data signal generated by the first and second traveling control units and the stored route vector. In this configuration, a driving means on the vehicle for controlling the steering mechanism is provided (hereinafter referred to as Nikolai invention). An excavation position display device for a power shovel disclosed in Japanese Patent Application Laid-Open No. 7-150596 discloses coordinates of a bucket tip position (excavation position) of a power shovel having a boom, an arm, and a bucket on an upper swing body as a boom foot and a boom top. Line segment boom length, line segment arm length that connects the boom top and arm top, and line segment bucket length that connects the arm top and bucket tip, and the boom angle,
Calculated by the calculation unit using the arm angle and the bucket angle,
In an excavation display device that displays the calculated value on a display unit, detection of each angle sensor that measures the boom angle, the arm angle, and the bucket angle based on the difference between the calculated value of the coordinate position of the tip portion of the bucket and the actual measured value. The calculation unit is provided with a means for correcting the coefficient of the value (hereinafter referred to as the Sumitomo invention). A work vehicle guidance system using beam light described in Japanese Patent Publication No. 7-21728 scans a guidance beam of light at a set speed on the ground side along the length direction of a set travel locus along which a vehicle body runs. Beam light projecting means for projecting is provided, and the vehicle body is provided with a light receiving means for receiving the guiding beam light, and the vehicle body automatically travels along the set traveling locus based on light receiving information of the light receiving means. And guiding means for guiding. The light receiving means includes one guiding main light receiver and a pair of auxiliary light receivers spaced from the main light receiver in the beam light scanning direction and the beam light projection direction. The optical receiver is rotatably provided around the light receiver, and the time difference from the time when one of the pair of auxiliary light receivers receives the guiding light beam to the time when the main light receiving device receives the guiding light beam, and the main light receiving device. Based on the time difference until the other one of the guiding light receivers receives the guiding light beam, the light receiving surface of the main light receiving device faces the installation direction of the received light beam projecting means.
A light source tracking means for automatically turning the light receiving means around the main light receiver is provided (hereinafter, referred to as Kubota invention).

【0004】[0004]

【本発明が解決しようとする課題】従来の上記〜に
開示された位置決め方法乃至位置決め装置は、それぞれ
個性的な技術内容であるが、これらを建設の各種工事に
使用される作業用車両の自動化、ロボット化に採用して
仕事を行わせる場合には、大要、次のような問題点があ
る。 (1)上記のニコライ発明の場合、倉庫や工業プラン
ト内の予定された帯域内において、予定された移動路上
を走行する車両の無人運転、そして、積み荷の運搬等に
は威力を発揮するであろう。しかし、自由な移動路の変
更や作業場所の変更が困難である。一方、建設工事を遂
行する作業用車両のように、作業対象区域は特定され、
作業順序もある程度は決められるが、車両に予定された
移動路を設定しがたく、個々の車両を固有の作業位置へ
誘導して固有の作業をさせることが望ましいのが実情で
あるため、この種の自動案内車両システムの採用は適切
でない。 (2)上記の住友発明の場合は、正に建設工事用車両
の一種であるパワーショベルの掘削位置表示装置である
から、大いに参照されるところであるが、作業対象区域
の全体を見渡した全体座標系の中での位置表示ではない
から、同パワーショベルを作業対象区域全体の中で特定
の位置へ誘導し作業させるような自動化には寄与しな
い。 (3)上記のクボタ発明は、ビーム光利用の誘導シス
テムであり、光源追尾システムを備えているが、双方向
追尾システムではないから、車両を作業区域の目的位置
へ誘導して位置的精度が高い仕事を行わせることまでは
できない。 (4)従って、本発明の目的は、建設の各種工事に使用
される、特には伸縮、回転が自由な作業アームを備えて
地面上を自由に走行移動し、作業アームで所要の仕事を
する掘削機、ブルドーザ、削孔機などの作業用車両を自
動化(無人化)、ロボット化して位置的精度の高い仕事
を行わせるための双方向自動追尾システムによる位置決
め方法と、同方法を実施する位置決め装置を提供するこ
とである。
The conventional positioning methods and positioning devices disclosed in the above-mentioned items have their own technical contents. However, these are automation of work vehicles used for various construction works. However, there are the following problems when adopting robots to perform work. (1) In the case of the above-mentioned Nikolai invention, it is effective in unmanned operation of vehicles traveling on a planned moving road in a planned band in a warehouse or an industrial plant, and in carrying a load. Let's do it. However, it is difficult to change the moving path and work place freely. On the other hand, like work vehicles that perform construction work, the work area is specified,
Although the work order can be determined to some extent, it is difficult to set the planned movement path for the vehicle, and it is the actual situation that it is desirable to guide each vehicle to a unique work position and perform unique work. The adoption of some types of automated guided vehicle systems is not appropriate. (2) In the case of the above Sumitomo invention, since it is just an excavation position display device for a power shovel, which is a type of construction vehicle, it will be referred to a lot, but overall coordinates overlooking the entire work target area. Since it is not a position display in the system, it does not contribute to automation such that the power shovel is guided to a specific position in the entire work area and operated. (3) The above-mentioned Kubota invention is a guidance system using a beam light and is provided with a light source tracking system, but it is not a bidirectional tracking system. Therefore, the vehicle is guided to a target position in the work area and positional accuracy is improved. You can't even do expensive work. (4) Therefore, an object of the present invention is to use for various construction works, in particular, to provide a work arm which can be freely expanded and contracted and rotated so as to freely travel and move on the ground to perform a required work. Positioning method using a two-way automatic tracking system for automating (unmanned) work vehicles such as excavators, bulldozers, and boring machines and robots to perform work with high positional accuracy, and positioning that implements this method It is to provide a device.

【0005】[0005]

【課題を解決するための手段】上述の課題を解決するた
めの手段として、請求項1に記載した発明は、地面上を
走行し移動する車両が伸縮、回転自由な作業アームを備
え、該作業アームで所要の仕事をする場合の双方向自動
追尾システムによる位置決め方法であって、前記車両を
視準する固定局を設置して、該固定局の設置位置を原点
とする作業対象区域全体の座標系(X,Y)を定めるこ
と、前記車両に前記固定局を視準する移動局を設置し
て、該移動局を原点又は既知点とし車両の進行方向に一
つの座標軸をとった局所座標系(x,y)を定めるこ
と、車両の作業アームの取付け位置(x1 ,y1 )、ア
ームの回転角φ、アーム水平投影長さLを測定してアー
ム先端の作業ポイントの座標(x2 ,y2 )を算出する
こと、前記作業ポイントの座標(x2 ,y2 )を前記全
体座標系(X,Y)へ座標変換して全体座標系における
作業ポイントの位置(X2 ,Y2 )をリアルタイムに算
出し、その算出値に基いて車両を目的位置へ誘導し、作
業アームを目的位置へ位置決めすることをそれぞれ特徴
とする。
As a means for solving the above-mentioned problems, the invention described in claim 1 is characterized in that a vehicle traveling on the ground is provided with a work arm which can freely extend and contract and rotate. A positioning method by a bidirectional automatic tracking system when performing a required work with an arm, wherein a fixed station for collimating the vehicle is installed, and coordinates of an entire work target area whose origin is the installation position of the fixed station Defining a system (X, Y), installing a mobile station that collimates the fixed station in the vehicle, and using the mobile station as an origin or a known point, one coordinate axis in the traveling direction of the vehicle. (X, y), the mounting position (x 1 , y 1 ) of the working arm of the vehicle, the rotation angle φ of the arm, and the horizontal projection length L of the arm are measured to determine the coordinates (x 2 , calculating the y 2), the working point The coordinates (x 2, y 2) of the global coordinate system (X, Y) position of the working point in the global coordinate system by coordinate transformation to the (X 2, Y 2) calculated in real time, based on the calculated value And guiding the vehicle to the target position and positioning the working arm to the target position.

【0006】次に、請求項2に記載した発明は、地面上
を走行し移動する車両が伸縮、回転自由な作業アームを
備え、該作業アームで所要の仕事をする場合の双方向自
動追尾システムによる位置決め装置であって、前記車両
を視準するように設置された固定局と、前記車両に設置
された前記固定局を視準する移動局と、演算処理装置と
から成り、固定局と移動局との間で双方向自動追尾が行
われること、前記演算処理装置に、固定局の設置位置を
原点又は既知点とする作業対象区域全体の座標系(X,
Y)、および前記移動局を原点とし車両の進行方向に一
つの座標軸をとった局所座標系(x,y)が設定されて
いること、車両の作業アームの取付け位置(x1
1 )、アームの回転角φ、アームの水平投影長さLの
各測定値をそれぞれ前記演算処理装置へ入力してアーム
先端の作業ポイントの座標(x2 ,y2 )を算出させ、
かくして算出された作業ポイントの座標を前記全体座標
系(X,Y)へ座標変換して全体座標系における作業ポ
イントの位置(X2 ,Y2 )がリアルタイムに算出され
ること、前記演算結果に基き、固定局と移動局との双方
向自動追尾システムにより車両を目的位置へ誘導し、作
業アームが目的位置へ位置決めされることををそれぞれ
特徴とする。
Next, a second aspect of the present invention is a two-way automatic tracking system for a case where a vehicle traveling on the ground and moving is provided with a work arm which can be freely extended and contracted and rotated so that the work arm performs a required work. And a fixed station installed so as to collimate the vehicle, a mobile station that collimates the fixed station installed in the vehicle, and an arithmetic processing unit. Bidirectional automatic tracking is performed with the station, and the coordinate system (X, X,
Y) and a local coordinate system (x, y) having one coordinate axis in the traveling direction of the vehicle with the mobile station as the origin, and the mounting position (x 1 ,
y 1 ), the rotation angle φ of the arm, and the horizontal projection length L of the arm, are input to the arithmetic processing unit to calculate the coordinates (x 2 , y 2 ) of the working point of the arm tip,
The position of the work point (X 2 , Y 2 ) in the global coordinate system is calculated in real time by converting the coordinates of the work point thus calculated into the global coordinate system (X, Y). Based on this, the vehicle is guided to a target position by a bidirectional automatic tracking system of a fixed station and a mobile station, and the working arm is positioned at the target position.

【0007】[0007]

【発明の実施形態及び実施例】請求項1及び2の発明
は、地面上等を走行し移動する車両が伸縮、回転自由な
作業アームを備え、該作業アームで所要の仕事をする掘
削機、ブルドーザ、パワーショベル、削孔機、地盤改良
用の深層混合処理機等の土工機械のほか、タイル貼り機
械、コンクリート壁打設機、床コンクリート打設及び均
し機、天井仕上げ機などの内装工事機械、或いは耕運機
などの農業機械などの作業対象区域内における誘導と位
置制御に好適に実施される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention of claims 1 and 2 is an excavator in which a vehicle traveling on the ground or the like is provided with a work arm that can freely expand and contract and rotate, and which performs a required work with the work arm. In addition to earthmoving machines such as bulldozers, power shovels, boring machines, and deep-mixing machines for ground improvement, interior work such as tile applying machines, concrete wall pouring machines, floor concrete pouring and leveling machines, and ceiling finishing machines. It is suitably implemented for guidance and position control in a work target area such as a machine or an agricultural machine such as a cultivator.

【0008】図1に全体の平面的なシステム概念図を示
したように、双方向自動追尾システムによる車両の位置
決め方法の前提条件として、まず車両Mを視準する固定
局Aを既知点(X0 ,Y0 )に設置し、同じく既知点で
ある基準点Cを固定局Aで視準させることにより,同固
定局Aの設置位置を原点とする作業対象区域全体の座標
系(X,Y)を定め,それを演算処理装置へ入力し記憶
させる。固定局Aの設置場所は、常時移動局を視準する
ことができ、他の施工の妨げにならず、設置した場所迄
の往来が容易な通路を確保できる条件を満たすことが望
ましい。
As shown in the overall system conceptual diagram of FIG. 1, as a precondition for the vehicle positioning method by the bidirectional automatic tracking system, first, the fixed station A collimating the vehicle M is set to a known point (X 0 , Y 0 ), and the reference point C, which is also a known point, is collimated by the fixed station A, so that the coordinate system (X, Y ) And input it to the arithmetic processing unit for storage. It is desirable that the installation location of the fixed station A satisfy the condition that the mobile station can be constantly aimed at, the other station is not hindered, and the passage can be easily reached to the installation location.

【0009】一方、前記車両M上に前記固定局Aを視準
する移動局Bを設置し、図2に示したように該移動局B
の既知点(x0 ,y0 )を原点(車両原点)とし車両の
進行方向(車軸方向)に一つの座標軸yをとった局所座
標系(x,y)を定める。また、前記車軸方向の角度ψ
が0となるように角度原点を調整し設定する。そして、
前記車両M上に設定した局所座標系(x,y)における
作業アームの取付け位置(x1 ,y1 )を求め、更にア
ームの回転角φ、アーム水平投影長さLを測定すると、
これらの測定値に基いて局所座標系におけるアーム先端
の作業ポイントの座標(x2 ,y2 )を次式で算出でき
る。
On the other hand, a mobile station B collimating the fixed station A is installed on the vehicle M, and the mobile station B is installed as shown in FIG.
A known coordinate point (x 0 , y 0 ) is defined as an origin (vehicle origin), and a local coordinate system (x, y) is defined with one coordinate axis y in the traveling direction of the vehicle (axle direction). In addition, the angle ψ
Adjust and set the angle origin so that becomes 0. And
When the mounting position (x 1 , y 1 ) of the work arm in the local coordinate system (x, y) set on the vehicle M is obtained, and the arm rotation angle φ and the arm horizontal projection length L are measured,
Based on these measured values, the coordinates (x 2 , y 2 ) of the working point of the arm tip in the local coordinate system can be calculated by the following formula.

【0010】x2 =x1 +Lcosφ y2 =y1 +Lsinφ 上記作業ポイントの位置座標(x2 ,y2 )を演算処理
装置で前記全体座標系(X,Y)へ座標変換することに
より、全体座標系(X,Y)における作業ポイントの位
置座標(X2 ,Y2 )をリアルタイムに算出できる。座
標変換は、図2に示した局所座標系(x,y)の原点位
置(x0 ,y0 )と、その方向角θ、及び固定局Aの原
点から移動局Bの原点までの距離(水平投影長さ)r,
及び移動局B上に設定した局所座標系(x,y)の全体
座標系(X,Y)における車軸方向角(車体角)ψを求
め、演算処理装置において座標変換の算出が行われる。
X 2 = x 1 + L cos φ y 2 = y 1 + L sin φ The coordinates of the above-mentioned working point (x 2 , y 2 ) are coordinate-converted into the above-mentioned global coordinate system (X, Y) by an arithmetic processing unit, thereby The position coordinates (X 2 , Y 2 ) of the work point in the coordinate system (X, Y) can be calculated in real time. The coordinate conversion is performed by determining the origin position (x 0 , y 0 ) of the local coordinate system (x, y) shown in FIG. 2, its direction angle θ, and the distance from the origin of the fixed station A to the origin of the mobile station B ( Horizontal projection length) r,
Also, the axle direction angle (vehicle body angle) ψ in the overall coordinate system (X, Y) of the local coordinate system (x, y) set on the mobile station B is obtained, and the coordinate conversion is calculated in the arithmetic processing unit.

【0011】前記のr,θ、ψの計測は、固定局Aと移
動局の双方向自動追尾システムと光通信で求められる。
具体的には発明者が既に提案した、例えば特開平5ー3
4430号公報に開示されているように、限定された視
野角の光信号に反応する複数個の受光センサーが回転軸
を取り巻いて配置され、視準線と回転軸とで定まる平面
で分割された二つの部分空間の一方のみから来る光に反
応し、且つ夫々の部分空間全体をカバーするが視準線付
近において若干幅の空白域を確保した配置で設置され、
入射してくる光信号がどの部分空間に属するかを判別す
る回路と、前記回路の判別に基いて光信号が属する部分
空間に向けて視準線を回転させる自動制御系が設置さ
れ、光信号の位置が全方位のどの位置にあっても自動追
尾することが可能に構成されている。従って、前記光信
号に情報を載せることにより、双方向に光通信を行うこ
とが可能にも構成される。
The above-mentioned measurement of r, θ, ψ is required by the two-way automatic tracking system of the fixed station A and the mobile station and the optical communication.
Specifically, the inventor has already proposed, for example, JP-A-5-3.
As disclosed in Japanese Patent No. 4430, a plurality of light receiving sensors that respond to an optical signal with a limited viewing angle are arranged around a rotation axis and are divided by a plane defined by a line of sight and a rotation axis. Reacts to light coming from only one of the two sub-spaces, and covers each sub-space as a whole, but is installed with an arrangement that secures a slight blank area near the line of sight,
A circuit for determining which subspace the incoming optical signal belongs to and an automatic control system for rotating the collimation line toward the subspace to which the optical signal belongs based on the discrimination of the circuit are provided. It is configured to be able to automatically track whatever position is in all directions. Therefore, by carrying information on the optical signal, bidirectional optical communication can be performed.

【0012】前記の双方向自動追尾システムを本発明の
位置決め装置として採用したシステム構成図を図3、図
4に示している。但し、図3、図4は双方向の光通信に
支障のある場合に備えて無線通信システムを併用した構
成になっている。そこで次の手順は、移動局Bを検索モ
ードにして、これを固定局Aから視準することにより双
方向追尾モードにする。そして、車両M(移動局)の全
体座標系での現在位置(X1 ,Y1 )を測定する。固定
局Aから移動局Bを視準することにより移動局Bの方向
角θと、距離rを測定できる。距離rは光波距離計によ
り計測する。局所座標系の原点(X1 ,Y1 )と車体角
ψは次式で表される。
A system configuration diagram in which the above-described bidirectional automatic tracking system is adopted as a positioning device of the present invention is shown in FIGS. However, FIGS. 3 and 4 have a configuration in which a wireless communication system is also used in preparation for a case where bidirectional optical communication is hindered. Therefore, in the next procedure, the mobile station B is set to the search mode and collimated from the fixed station A to set the bidirectional tracking mode. Then, the current position (X 1 , Y 1 ) of the vehicle M (mobile station) in the overall coordinate system is measured. By collimating the mobile station B from the fixed station A, the direction angle θ of the mobile station B and the distance r can be measured. The distance r is measured by a light wave range finder. The origin (X 1 , Y 1 ) of the local coordinate system and the vehicle body angle ψ are expressed by the following equation.

【0013】X1=X0 +r×cosθ Y1=Y0 +r×sinθ ψ=π/2−(θ+φ) 局所座標系の任意位置(x´,y´)の全体座標系での
位置(X,Y)への変換式は、次のように表わされる。
X 1 = X 0 + r × cos θ Y 1 = Y 0 + r × sin θ ψ = π / 2− (θ + φ) A position (X ′, y ′) in the global coordinate system at an arbitrary position (x ′, y ′) in the local coordinate system. , Y) is expressed as follows.

【0014】X−x0 =x´cosψ−y´sinψ Y−y0 =x´sinψ+y´cosψ 但し、図1に示した地盤改良用の深層混合処理機Mにお
ける作業ポイントは掘削攪拌軸の軸芯(シャフトセンタ
ー)で、これは車軸y上を移動するのみであるから、x
´=0となる。その一方、y´は移動局Bからガイドリ
ーダー取付け位置(作業ポイント)までの固定車体長R
を測定し、更に可動長ΔRをストローク計で測ると、y
´=R+ΔR=R´となり、次の変換式で全体座標系に
おける作業ポイントの位置(X2 ,Y2 )を求めること
ができる。
X-x 0 = x'cos ψ-y'sin ψ Y-y 0 = x'sin ψ + y'cos ψ However, the working point in the deep layer mixing processor M for ground improvement shown in FIG. The core (shaft center), which only moves on the axle y, so x
′ = 0. On the other hand, y'is a fixed vehicle body length R from the mobile station B to the guide reader attachment position (working point).
Is measured and the movable length ΔR is measured with a stroke meter, y
Since ′ = R + ΔR = R ′, the position (X 2 , Y 2 ) of the work point in the global coordinate system can be obtained by the following conversion formula.

【0015】X2 =x0 −R´sinψ=x0 +R´c
os(θ+φ−π) Y2 =y0 +R´cosψ=y0 +R´sin(θ+φ
−π) 上記のように算出した全体座標系における作業ポイント
の位置(X2 ,Y2 )及びθの値を固定局Aから移動局
Bへ送信する。前記固定局Aから送信された位置座標
(X2 ,Y2 )及びθの値と、移動局Bで測定したψ及
び車体長さR´に基いて車両の動きやシャフトの微調整
を行い、もってシャフトセンター位置(作業ポイントの
位置)を刻々リアルタイムに算出することができ、作業
ポイントの位置出しが容易にできる。前記算出の演算処
理装置として、図3、図4ではパーソナルコンピュータ
Pと拡張ボックスQが使用されている。拡張ボックスQ
には、掘削攪拌軸Sの移動量(可動長ΔR)を図るスト
ローク計U及び傾斜計Tの計測値(アナログ量)が入力
され、A/D変換が行われる。パーソナルコンピュータ
Pの算出値が固定局から移動局Bへ送信される。
X 2 = x 0 -R'sin ψ = x 0 + R'c
os (θ + φ−π) Y 2 = y 0 + R ′ cos ψ = y 0 + R′sin (θ + φ
−π) The position (X 2 , Y 2 ) of the work point and the value of θ in the overall coordinate system calculated as described above are transmitted from the fixed station A to the mobile station B. Based on the position coordinates (X 2 , Y 2 ) and θ values transmitted from the fixed station A, and ψ and the vehicle body length R ′ measured by the mobile station B, the movement of the vehicle and the fine adjustment of the shaft are performed, Therefore, the shaft center position (work point position) can be calculated in real time, and the work point can be easily located. 3 and 4, a personal computer P and an expansion box Q are used as the calculation processing device. Expansion box Q
In, the measured values (analog amount) of the stroke meter U and the inclinometer T, which measure the movement amount (movable length ΔR) of the excavation stirring shaft S, are input, and A / D conversion is performed. The calculated value of the personal computer P is transmitted from the fixed station to the mobile station B.

【0016】かくして算出された位置を、全体座標系に
おいて当該車両の目的位置(作業位置)と比較コントロ
ールシステムで車両の位置決め制御が行われる。
The position thus calculated is compared with the target position (working position) of the vehicle in the overall coordinate system, and the vehicle positioning control is performed by the comparison control system.

【0017】[0017]

【本発明が奏する効果】本発明に係る双方向自動追尾シ
ステムによる位置決め方法及び位置決め装置によれば、
特に伸縮、回転が自由な作業アームを備えて地面上を走
行移動し作業アームで所要の仕事をする作業用車両(ロ
ボット)上の局所座標系の位置(作業ポイントの位置)
を容易に全体座標系の位置に座標変換できるので、作業
対象区域全体に及ぶロボットの誘導や作業ポイントの位
置決め作業が出来るので、各種の建設工事用機械の自動
化、無人化(ロボット化)に大きく貢献できるのであ
る。
According to the positioning method and the positioning device by the bidirectional automatic tracking system according to the present invention,
In particular, the position of the local coordinate system (work point position) on the work vehicle (robot) that is equipped with a work arm that can be freely expanded and contracted and rotated to travel on the ground and perform the required work with the work arm.
Since it is possible to easily convert the coordinates to the position of the whole coordinate system, it is possible to guide the robot over the entire work area and position the work point, which is great for automation and unmanned (robotization) of various construction machines. You can contribute.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の位置決め方法のシステム全体の平面配
置図である。
FIG. 1 is a plan layout view of an entire system of a positioning method of the present invention.

【図2】全体座標系に対する車両の局所座標系の設定状
態説明図である。
FIG. 2 is an explanatory view of a setting state of a local coordinate system of a vehicle with respect to a global coordinate system.

【図3】本発明の位置決め装置全体の構成図である。FIG. 3 is a configuration diagram of an entire positioning device of the present invention.

【図4】本発明の位置決め装置全体の構成図である。FIG. 4 is a configuration diagram of the entire positioning device of the present invention.

【符号の説明】[Explanation of symbols]

M 車両 A 固定局 B 移動局 P パーソナルコンピュータ M Vehicle A Fixed station B Mobile station P Personal computer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // G05D 1/02 G05B 19/403 P (72)発明者 入江 潤 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 桜井 洋 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内 (72)発明者 大西 常康 東京都中央区銀座八丁目21番1号 株式会 社竹中土木内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI technical display location // G05D 1/02 G05B 19/403 P (72) Inventor Jun Irie Ginza 8-chome, Chuo-ku, Tokyo No. 21-1 Takenaka Civil Engineering Co., Ltd. (72) Inventor Hiroshi Sakurai 21-chome Ginza, Chuo-ku, Tokyo 21-1 Incorporated Takenaka Civil Engineering (72) In-house Tsuneyasu Onishi 8-chome, Ginza, Chuo-ku, Tokyo 21 No. 1 Stock Company, Takenaka Civil Engineering

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 地面上を走行し移動する車両が伸縮、回
転自由な作業アームを備え、該作業アームで所要の仕事
をする場合に、 前記車両を視準する固定局を設置して、該固定局の設置
位置を原点又は既知点とする作業対象区域全体の座標系
(X,Y)を定めること、 前記車両に前記固定局を視準する移動局を設置して、該
移動局を原点とし車両の進行方向に一つの座標軸をとっ
た局所座標系(x,y)を定めること、 車両の作業アームの取付け位置(x1 ,y1 )、アーム
の回転角φ、アーム水平投影長さLを測定してアーム先
端の作業ポイントの座標(x2 ,y2 )を算出するこ
と、 前記作業ポイントの座標(x2 ,y2 )を前記全体座標
系(X,Y)へ座標変換して全体座標系における作業ポ
イントの位置(X2 ,Y2 )をリアルタイムに算出し、
その算出値に基いて車両を目的位置へ誘導し、作業アー
ムを目的位置へ位置決めすることをそれぞれ特徴とす
る、双方向自動追尾システムによる位置決め方法。
1. A vehicle that travels on the ground and is provided with a work arm that can be freely extended and contracted and rotated, and when a required work is performed by the work arm, a fixed station that collimates the vehicle is installed, and Defining a coordinate system (X, Y) of the entire work target area with the installation position of the fixed station as the origin or a known point, installing a mobile station collimating the fixed station in the vehicle, and setting the mobile station as the origin. The local coordinate system (x, y) with one coordinate axis in the traveling direction of the vehicle is defined, the mounting position of the working arm of the vehicle (x 1 , y 1 ), the rotation angle φ of the arm, and the horizontal projection length of the arm. Measuring L to calculate the coordinates (x 2 , y 2 ) of the working point at the arm tip, and converting the coordinates (x 2 , y 2 ) of the working point into the global coordinate system (X, Y). Position of the work point (X 2 , Y 2 ) in the global coordinate system in real time Calculated to
A positioning method using a two-way automatic tracking system, characterized in that the vehicle is guided to a target position based on the calculated value and the work arm is positioned to the target position.
【請求項2】 地面上を走行し移動する車両が伸縮、回
転自由な作業アームを備え、該作業アームで所要の仕事
をする場合の位置決め装置であって、 前記車両を視準するように設置された固定局と、前記車
両に設置された前記固定局を視準する移動局と、演算処
理装置とから成り、固定局と移動局との間で双方向自動
追尾が行われること、 前記演算処理装置に、固定局の設置位置を原点又は既知
点とする作業対象区域全体の座標系(X,Y)、および
前記移動局を原点とし車両の進行方向に一つの座標軸を
とった局所座標系(x,y)が設定されていること、 車両の作業アームの取付け位置(x1 ,y1 )、アーム
の回転角φ、アームの水平投影長さLの各測定値をそれ
ぞれ前記演算処理装置へ入力してアーム先端の作業ポイ
ントの座標(x2 ,y2 )を算出させ、かくして算出れ
た作業ポイントの座標(x2 ,y2 )を前記全体座標系
(X,Y)へ座標変換して全体座標系における作業ポイ
ントの位置(X2 ,Y2 )がリアルタイムに算出される
こと、 前記演算結果に基き、固定局と移動局との双方向自動追
尾システムにより車両を目的位置へ誘導し、作業アーム
が目的位置へ位置決めされることををそれぞれ特徴とす
る、双方向自動追尾システムによる位置決め装置。
2. A positioning device for a vehicle traveling and moving on the ground, which has a work arm that can be freely expanded and contracted and rotated, and which is used to perform a required work by the work arm, and is installed so as to collimate the vehicle. Fixed station, a mobile station that collimates the fixed station installed in the vehicle, and an arithmetic processing unit, and bidirectional automatic tracking is performed between the fixed station and the mobile station. In the processing device, the coordinate system (X, Y) of the entire work target area with the installation position of the fixed station as the origin or a known point, and the local coordinate system with one coordinate axis in the traveling direction of the vehicle with the mobile station as the origin. (X, y) are set, the measurement values of the working arm attachment position (x 1 , y 1 ) of the vehicle, the arm rotation angle φ, and the horizontal projection length L of the arm are respectively calculated by the arithmetic processing unit. And enter the coordinates of the working point at the end of the arm (x 2 , y 2 ) is calculated, and the coordinates (x 2 , y 2 ) of the work point thus calculated are transformed into the global coordinate system (X, Y) to convert the position (X 2 ) of the work point in the global coordinate system. , Y 2 ) is calculated in real time, and based on the calculation result, the vehicle is guided to the target position by the bidirectional automatic tracking system between the fixed station and the mobile station, and the work arm is positioned to the target position. Positioning device with bi-directional automatic tracking system.
JP00808696A 1996-01-22 1996-01-22 Positioning method and apparatus by bidirectional automatic tracking system Expired - Lifetime JP3823230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00808696A JP3823230B2 (en) 1996-01-22 1996-01-22 Positioning method and apparatus by bidirectional automatic tracking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00808696A JP3823230B2 (en) 1996-01-22 1996-01-22 Positioning method and apparatus by bidirectional automatic tracking system

Publications (2)

Publication Number Publication Date
JPH09196671A true JPH09196671A (en) 1997-07-31
JP3823230B2 JP3823230B2 (en) 2006-09-20

Family

ID=11683525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00808696A Expired - Lifetime JP3823230B2 (en) 1996-01-22 1996-01-22 Positioning method and apparatus by bidirectional automatic tracking system

Country Status (1)

Country Link
JP (1) JP3823230B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070696A1 (en) * 2013-11-13 2015-05-21 三一汽车制造有限公司 Boom control method and apparatus and concrete pump truck and spreader
CN105547255A (en) * 2016-02-29 2016-05-04 北京矿冶研究总院 Method for automatically acquiring three-dimensional space form under mine coordinate system by scanner
CN107558530A (en) * 2017-08-09 2018-01-09 中国航空工业集团公司西安飞行自动控制研究所 A kind of auxiliary of fax excavator repaiies slope operation function implementation method
CN107882080A (en) * 2017-11-08 2018-04-06 苏州蓝博控制技术有限公司 Excavator fine work control method, system and excavator
CN109141385A (en) * 2018-06-26 2019-01-04 华南农业大学 Total station exempts from the localization method of horizontalization
CN109813293A (en) * 2019-03-08 2019-05-28 福建省特种设备检验研究院 A kind of crane runway detection method based on 3 mensurations

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070696A1 (en) * 2013-11-13 2015-05-21 三一汽车制造有限公司 Boom control method and apparatus and concrete pump truck and spreader
CN105547255A (en) * 2016-02-29 2016-05-04 北京矿冶研究总院 Method for automatically acquiring three-dimensional space form under mine coordinate system by scanner
CN107558530A (en) * 2017-08-09 2018-01-09 中国航空工业集团公司西安飞行自动控制研究所 A kind of auxiliary of fax excavator repaiies slope operation function implementation method
CN107558530B (en) * 2017-08-09 2020-02-14 中国航空工业集团公司西安飞行自动控制研究所 Method for realizing auxiliary slope repairing operation function of telex excavator
CN107882080A (en) * 2017-11-08 2018-04-06 苏州蓝博控制技术有限公司 Excavator fine work control method, system and excavator
CN109141385A (en) * 2018-06-26 2019-01-04 华南农业大学 Total station exempts from the localization method of horizontalization
CN109141385B (en) * 2018-06-26 2020-04-17 华南农业大学 Positioning method of total station instrument without leveling
CN109813293A (en) * 2019-03-08 2019-05-28 福建省特种设备检验研究院 A kind of crane runway detection method based on 3 mensurations

Also Published As

Publication number Publication date
JP3823230B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
US6044312A (en) Method and apparatus for preparing running course data for an unmanned dump truck
US10168714B2 (en) GNSS and optical guidance and machine control
US5983166A (en) Structure measurement system
AU2011202456B2 (en) Traffic Management System for a Passageway Environment
JPH10311735A (en) Method for monitoring of integrality of gps and inu integrated system
JP2001098585A (en) Excavating work guidance device and excavation control device for construction machine
JP3418682B2 (en) Integrated surveying system for tunnels
AU2014277669B2 (en) Terrain mapping system using virtual tracking features
US11599108B2 (en) Localization system for underground mining applications
JP2001159518A (en) Tool position measuring device of construction machine, yaw angle detecting device, work machine automatic control device and calibration device
CN113377102A (en) Control method, processor and device for excavator and excavator
JP3823230B2 (en) Positioning method and apparatus by bidirectional automatic tracking system
JP7419119B2 (en) working machine
WO2022209303A1 (en) Work machine
JP7500420B2 (en) Work Machine
KR20220157732A (en) Method for state estimation of construction machinary
JP4422927B2 (en) Survey method in civil engineering work
KR20230154656A (en) Construction machinary and location estimation method using the same
KR20230165500A (en) Construction machinary and driving method of the same
JP2023122748A (en) Work position instruction system
CN117824634A (en) Tunneling equipment space pose detection method and device based on multi-heterogeneous information redundancy
Bouvet et al. 3-D localization of pavers in a computer integrated road construction context
Houshangi Extending the capability of Mars Umbilical Technology Demonstrator
JPH07281749A (en) Method for work vehicle operation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4