JPH09196422A - Air conditioner device - Google Patents

Air conditioner device

Info

Publication number
JPH09196422A
JPH09196422A JP8028430A JP2843096A JPH09196422A JP H09196422 A JPH09196422 A JP H09196422A JP 8028430 A JP8028430 A JP 8028430A JP 2843096 A JP2843096 A JP 2843096A JP H09196422 A JPH09196422 A JP H09196422A
Authority
JP
Japan
Prior art keywords
temperature
water
air
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8028430A
Other languages
Japanese (ja)
Other versions
JP2901911B2 (en
Inventor
Yoshiyuki Takano
伊之 高野
Toshio Aoyama
寿男 青山
Manabu Hiraike
学 平池
Ryoichi Nakagawa
良一 中川
Yoshihiro Inumaru
義弘 犬丸
Kazunao Motoshima
一修 元嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON P MAC KK
NIPPON P-MAC KK
Original Assignee
NIPPON P MAC KK
NIPPON P-MAC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON P MAC KK, NIPPON P-MAC KK filed Critical NIPPON P MAC KK
Priority to JP8028430A priority Critical patent/JP2901911B2/en
Publication of JPH09196422A publication Critical patent/JPH09196422A/en
Application granted granted Critical
Publication of JP2901911B2 publication Critical patent/JP2901911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize an energy saving operation and to enable an operation to be carried out under a wider condition by a method wherein any one of a starting or a stopping in operation of a compressor, a mode changing-over operation of a four-way valve or a changing-over of a three-way valve is controlled in response to a result of sensing of a temperature at a heat source water inlet and an indoor air temperature. SOLUTION: At least any one of a starting or a stopping in operation of a compressor 31, a mode changing-over operation of a four-way valve 32 or a changing-over of a three-way valve 8 is controlled by a control device 16 in response to a result of sensing of a first temperature sensing device 14 for sensing a heat source water inlet temperature and a result of sensing of a second temperature sensing device 15 for sensing an indoor air temperature. With such an arrangement as above, when the indoor air temperature is approached to a target indoor air temperature, it is possible to perform the most suitable air conditioning operation in reference to temperatures of heat source water and air to be processed. For example, it becomes possible to perform a proper selective operation of a fan coil operation, a heat pump operation or both a fan coil operation and a heat pump operation and further it is possible to perform an air conditioning operation corresponding to a load with a minimum amount of energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水熱源ヒートポン
プ装置とファンコイルユニットとが一体になった空気調
和ユニットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning unit in which a water heat source heat pump device and a fan coil unit are integrated.

【0002】[0002]

【従来の技術】従来からビル空調などにおいては、水熱
源ヒートポンプ装置やファンコイルユニットを適宜数設
置し、熱源水を循環させて冷房や暖房を行っている場合
が多いが、前者によれば、深夜電力を利用して蓄冷、蓄
熱を行って運転させることが難しく、消費電力の平準化
を図ることが困難であるという問題があり、一方後者に
よれば、冷房と暖房が混在した運転状況を実現する際
に、少なくとも3管路以上の配管を必要とし、設備費、
ランニングコストが嵩むという問題があった。
2. Description of the Related Art Conventionally, in building air-conditioning and the like, there are many cases in which an appropriate number of water heat source heat pump devices and fan coil units are installed and heat source water is circulated for cooling and heating. There is a problem that it is difficult to operate by performing cold storage and heat storage using midnight power, and it is difficult to level the power consumption.On the other hand, according to the latter, there is an operating situation in which cooling and heating are mixed. In order to realize it, at least 3 pipe lines or more are required, and equipment cost,
There was a problem that running costs increased.

【0003】このような問題を解決するための技術とし
て、例えば特公平6−68392号公報、特公平7−1
04019公報においては、水熱源ヒートポンプ装置と
ファンコイルユニットとが一体になった空気調和機器が
開示されている。これら先行開示技術によれば、2管路
で冷房、暖房の混在運転が可能であり、しかも消費電力
の平準化が図れるというメリットがあった。
As a technique for solving such a problem, for example, Japanese Patent Publication No. 6-68392 and Japanese Patent Publication No. 7-1.
In the 04019 publication, an air conditioner in which a water heat source heat pump device and a fan coil unit are integrated is disclosed. According to these prior art disclosures, there is a merit that it is possible to perform a mixed operation of cooling and heating in two pipelines, and moreover, power consumption can be leveled.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこれら先
行開示技術においては、水熱源ヒートポンプ装置の稼働
及び/又はファンコイルユニットの稼働についての具体
的な制御手段が開示されておらず、そのため、さらなる
省エネルギー運転が可能な空気調和機器が望まれてい
た。また冷媒の飽和圧力の関係から熱源水の高温側温度
での空調機運転の制限があり、改善の余地があった。
However, these prior art disclosures do not disclose any specific control means for the operation of the water heat source heat pump device and / or the operation of the fan coil unit, and therefore, further energy saving operation is required. There is a demand for an air conditioner that can achieve this. In addition, due to the saturation pressure of the refrigerant, there was a limit to the operation of the air conditioner at the high temperature side of the heat source water, and there was room for improvement.

【0005】本発明は、かかる点に鑑みてなされたもの
であり、水熱源ヒートポンプ装置とファンコイルユニッ
トとが一体になった空気調和機器において、従来よりも
きめ細かい切替制御を可能としてより一層の省エネルギ
ー運転を実現し、また熱源水の高温側の運転制限を緩和
して、より広範な条件で運転できる空気調和ユニットを
提供することをその目的とする。
The present invention has been made in view of the above points, and in an air conditioner in which a water heat source heat pump device and a fan coil unit are integrated, finer switching control can be performed than in the prior art to further save energy. It is an object of the present invention to provide an air conditioning unit that realizes operation and relaxes the operation restriction on the high temperature side of the heat source water and can operate in a wider range of conditions.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、請求項1によれば、圧縮機、膨脹弁、水対冷媒熱交
換器、冷媒配管に介装される冷房・暖房モード切替用の
四方弁、室内空調用の冷媒対空気熱交換器とが冷媒配管
で接続された構成の水熱源ヒートポンプ装置、及び送風
機を有するユニットケース内に、前記冷媒対空気熱交換
器と室内空調用の水対空気熱交換器とを、前記ユニット
ケースの空気通路内に直列に配置し、前記冷媒対空気熱
交換器と水対空気熱交換器に対していずれか一方あるい
は双方に通水、又は双方への通水を閉止させるための熱
源水通路の切替機能を有する弁と、熱源水入口温度を検
出する第1の温度検出装置と、室内温度を検出する第2
の温度検出装置と、これら第1の温度検出装置及び第2
の温度検出装置の検出結果に基づいて、少なくとも前記
圧縮機の発停、前記四方弁のモード切替、又は前記弁の
切替のいずれかを制御する制御装置とを備えたことを特
徴とする、空気調和ユニットが提供される。
In order to achieve the above object, according to claim 1, a compressor, an expansion valve, a water-refrigerant heat exchanger, and a cooling / heating mode switching provided in a refrigerant pipe. A four-way valve, a water heat source heat pump device in which a refrigerant to air heat exchanger for indoor air conditioning is connected by a refrigerant pipe, and a unit case having a blower, the refrigerant to air heat exchanger and water for indoor air conditioning An air-to-air heat exchanger is arranged in series in the air passage of the unit case, and water is passed through either or both of the refrigerant-to-air heat exchanger and the water-to-air heat exchanger. Having a function of switching the heat source water passage for closing the passage of water, a first temperature detecting device for detecting the heat source water inlet temperature, and a second temperature detecting device for detecting the room temperature
Temperature detecting devices, and the first temperature detecting device and the second temperature detecting device.
On the basis of the detection result of the temperature detection device, at least start and stop of the compressor, mode switching of the four-way valve, or a control device for controlling any of the switching of the valve, characterized in that, the air A harmony unit is provided.

【0007】このような構成を有する空気調和ユニット
によれば、熱源水入口温度を検出する第1の温度検出装
置と、室内温度を検出する第2の温度検出装置との検出
結果に基づいて、圧縮機の発停、前記四方弁のモード切
替、又は前記弁の切替の少なくともいずれかが、制御装
置によって制御されるので、目標室内温度に室温を近づ
けるにあたり、熱源水及び処理する空気の温度を考慮し
て、最適な空調運転を実施することができる。例えばフ
ァンコイル運転、ヒートポンプ運転、あるいはファンコ
イル+ヒートポンプ運転を適宜選択稼働させることが可
能になり、余分な電力を使用せず、負荷に応じた適切な
空調運転を、最小のエネルギーで実施することができ
る。
According to the air conditioning unit having such a configuration, based on the detection results of the first temperature detecting device for detecting the heat source water inlet temperature and the second temperature detecting device for detecting the room temperature, At least one of the start and stop of the compressor, the mode switching of the four-way valve, and the switching of the valve is controlled by the control device, so when bringing the room temperature close to the target room temperature, the temperatures of the heat source water and the air to be treated are controlled. Considering this, the optimum air conditioning operation can be performed. For example, fan coil operation, heat pump operation, or fan coil + heat pump operation can be selected and operated as appropriate, and an appropriate air conditioning operation according to the load can be performed with minimum energy without using extra power. You can

【0008】また請求項2によれば、圧縮機、膨脹弁、
水対冷媒熱交換器、冷媒配管に介装される冷房・暖房モ
ード切替用の四方弁、室内空調用の冷媒対空気熱交換器
とが冷媒配管で接続された構成の水熱源ヒートポンプ装
置、及び送風機を有するユニットケース内に、前記冷媒
対空気熱交換器と、室内空調用の水対空気熱交換器とを
前記空気通路内に直列に配置し、前記冷媒対空気熱交換
器と水対空気熱交換器に対していずれか一方あるいは双
方に通水、又は双方への通水を閉止させるための熱源水
通路の切替機能を有する弁と、目的室の設定温度に室温
を近づけるために、前記圧縮機の発停、四方弁のモード
切替、弁の切替を制御する温度調節機構と、熱源水入口
温度検出装置と、室内温度検出装置とを備え、さらに、
設定温度を挟んで任意の温度幅毎に、複数の基準温度値
の入力を受け付ける機能を有すると共に、一定範囲の熱
源水入口温度毎に、室内温度とこれら各基準温度値とを
比較して前記温度調節機構に指示を与える、CPUを備
えたことを特徴とする、空気調和ユニットが提供され
る。
According to claim 2, a compressor, an expansion valve,
Water-to-refrigerant heat exchanger, cooling and heating mode switching four-way valve installed in the refrigerant pipe, water-heat source heat pump device having a configuration in which a refrigerant-to-air heat exchanger for indoor air conditioning is connected by a refrigerant pipe, and In a unit case having a blower, the refrigerant-to-air heat exchanger and an indoor air-conditioning water-to-air heat exchanger are arranged in series in the air passage, and the refrigerant-to-air heat exchanger and water-to-air. In order to bring the room temperature close to the set temperature of the target room, a valve having a switching function of the heat source water passage for closing the water flow to either or both of the heat exchangers or to the both sides, The temperature control mechanism for controlling the start / stop of the compressor, the mode switching of the four-way valve, and the switching of the valve, a heat source water inlet temperature detecting device, and an indoor temperature detecting device are provided.
It has a function of accepting the input of a plurality of reference temperature values for each arbitrary temperature range across the set temperature, and compares the room temperature and each of these reference temperature values for each heat source water inlet temperature within a certain range. An air conditioning unit is provided, which is equipped with a CPU that gives instructions to a temperature control mechanism.

【0009】この請求項2の空気調和ユニットによれ
ば、設定温度を挟んで任意の温度幅毎に複数の基準温度
値が受け付けられ、しかも一定範囲の熱源水入口温度毎
に、室内温度とこれら各基準温度値とが比較されて温度
調節機構に指示が与えられるので、基本となる熱源水の
温度毎に、常時室内の空気温度を監視して、無駄のない
最適な運転状況を実現できる。例えばファンコイル冷暖
房、水熱源冷暖房、両者の同時運転、送風運転等、条件
に応じた運転が省エネルギー下で実現できる。より具体
的にいえば、例えばファンコイル冷暖房で対処できる場
合にはヒートポンプを機能させない、送風でまかなえる
環境の場合には、熱源水の通水も閉止させる(即ち無駄
な水、通水のためのポンプを使わない)などの、きめこ
まかい制御を実施して極めて高い省エネルギー効果を実
現できる。
According to the air conditioning unit of the second aspect, a plurality of reference temperature values are accepted for each arbitrary temperature width across the set temperature, and the indoor temperature and the indoor temperature are set for each heat source water inlet temperature within a certain range. Since each reference temperature value is compared and an instruction is given to the temperature adjustment mechanism, it is possible to constantly monitor the air temperature in the room for each temperature of the basic heat source water and realize an optimal operating condition without waste. For example, operation according to conditions such as fan coil cooling / heating, water heat source cooling / heating, simultaneous operation of both, and blowing operation can be realized under energy saving. More specifically, for example, the heat pump does not function when it can be dealt with by fan coil cooling and heating, and in the environment where it can be covered by blowing air, it also closes the passage of heat source water (that is, waste water, It is possible to realize an extremely high energy saving effect by implementing detailed control such as (without using a pump).

【0010】また請求項3に記載の空気調和ユニット
は、室内からの還気を吸込空気としてユニットケースの
空気通路内に通流させると共に、通流中に処理した空気
を給気として室内に供給する空気調和のためのユニット
であって、圧縮機、膨脹弁、水対冷媒熱交換器、冷媒配
管に介装される冷房・暖房モード切替用の四方弁、室内
空調用の冷媒対空気熱交換器とが冷媒配管で接続された
構成の水熱源ヒートポンプ装置、及び送風機を有するユ
ニットケース内に、前記冷媒対空気熱交換器と、室内空
調用の水対空気熱交換器とを前記空気通路内に直列に配
置し、前記冷媒対空気熱交換器と水対空気熱交換器に対
していずれか一方あるいは双方に通水、又は双方への通
水を閉止させるための熱源水通路の切替機能を有する弁
と、目的室の設定温度(Ts)に室温を近づけるため
に、前記圧縮機の発停、四方弁のモード切替、弁の切替
を制御する温度調節機構と、熱源水入口温度検出装置
と、室内温度検出装置とを備え、さらに、温度調節機構
の特性最小値(L4)<温度調整最小値(L3)<前記
設定温度(Ts)<温度調整最大値(L2)<温度調節
機構の特性最大値(L1)の関係を有するこれら、温度
調節機構の特性最小値(L4)、温度調整最小値(L
3)、設定温度(Ts)、温度調整最大値(L2)、温
度調節機構の特性最大値(L1)の入力を受け付ける機
能を有すると共に、一定範囲の熱源水入口温度毎に、室
内温度とこれら各入力値とを比較して前記温度調節機構
に指示を与える、CPUを備えたことを特徴とする、空
気調和ユニットが提供される。
Further, in the air conditioning unit according to a third aspect of the present invention, the return air from the room is made to flow into the air passage of the unit case as intake air, and the air processed during the flow is supplied to the room as air supply. It is a unit for air conditioning, which is a compressor, an expansion valve, a water-refrigerant heat exchanger, a cooling / heating mode switching four-way valve installed in a refrigerant pipe, and a refrigerant-air heat exchange for indoor air conditioning. In a unit case having a water heat source heat pump device configured to be connected by a refrigerant pipe, and a blower, the refrigerant-to-air heat exchanger, and a water-to-air heat exchanger for indoor air conditioning in the air passage A heat source water passage switching function for closing water flow to either or both of the refrigerant-to-air heat exchanger and the water-to-air heat exchanger, or closing the water flow to both. The valve you have and the set temperature of the target room In order to bring the room temperature closer to (Ts), a temperature adjusting mechanism for controlling the start / stop of the compressor, mode switching of the four-way valve, and valve switching, a heat source water inlet temperature detecting device, and an indoor temperature detecting device are provided, Furthermore, there is a relationship of the minimum characteristic value (L4) of the temperature adjusting mechanism <the minimum temperature adjusting value (L3) <the set temperature (Ts) <the maximum temperature adjusting value (L2) <the maximum characteristic value (L1) of the temperature adjusting mechanism. These are the minimum characteristic value (L4) of the temperature adjustment mechanism, the minimum temperature adjustment value (L
3) has a function of accepting inputs of set temperature (Ts), maximum temperature adjustment value (L2), and maximum characteristic value (L1) of the temperature adjustment mechanism, and the indoor temperature and these for each heat source water inlet temperature within a certain range. There is provided an air conditioning unit comprising a CPU that compares each input value and gives an instruction to the temperature adjusting mechanism.

【0011】この請求項3の空気調和ユニットでも、請
求項2の空気調和ユニットと同様、例えばファンコイル
による冷暖房、ヒートポンプによる水熱源冷暖房、両者
の同時運転、送風運転等、条件に応じた運転が省エネル
ギー下で実現できる。もちろんファンコイル冷暖房で対
処できる場合にはヒートポンプを機能させなかったり、
送風でまかなえる環境の場合には、熱源水の通水も閉止
させて、無駄な水や、通水のためのポンプを使わないな
どの、きめこまかい制御を実施することが可能できる。
In the air conditioning unit according to the third aspect, as in the air conditioning unit according to the second aspect, for example, operation according to conditions such as cooling / heating with a fan coil, water heat source cooling / heating with a heat pump, simultaneous operation of both, and blowing operation. It can be realized under energy saving. Of course, if the fan coil cooling and heating can handle it, the heat pump may not function,
In the case of an environment that can be covered by blowing air, it is possible to close the flow of heat source water and perform detailed control such as wasting water or not using a pump for water flow.

【0012】さらにまた以上の各空気調和ユニットにお
いて、水熱源ヒートポンプ装置に用いる冷媒を、請求項
4に記載したように、HFC−134aにすれば、なお
好ましい成果が得られる。即ちHFC−134aは、こ
の種のヒートポンプ装置に用いられている従来の代表的
な冷媒であるR−22よりも飽和圧力が低く、例えば6
0℃における飽和圧力は、R−22が25kgf/cm
2であるのに対し、HFC−134aは17kgf/c
2である。従って、例えばR−22を使用する場合、
冷媒配管の肉厚を厚くしたり、圧縮機の耐久性を高くし
なければならなかったが、HFC−134aを使用する
ことにより、熱源水が60℃における圧縮機の稼働が可
能になり、その結果広範囲の熱源水を使用することがで
き、2管式の冷温水配管における冬期の冷房運転も可能
となる。
Further, in each of the above-mentioned air conditioning units, if the refrigerant used for the water heat source heat pump device is HFC-134a as described in claim 4, further preferable results can be obtained. That is, HFC-134a has a lower saturation pressure than R-22, which is a typical conventional refrigerant used in this type of heat pump device, and has a saturation pressure of, for example, 6%.
The saturation pressure at 0 ° C. is R-22 of 25 kgf / cm.
2 , HFC-134a is 17 kgf / c
m 2 . Therefore, for example, when using R-22,
Although it was necessary to increase the thickness of the refrigerant pipe and increase the durability of the compressor, by using HFC-134a, the compressor can be operated at heat source water of 60 ° C. As a result, a wide range of heat source water can be used, and the cooling operation in the winter in the two-pipe cold / hot water pipe is also possible.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づき説明すれば、図1は、本実施形態にかかる空気調
和ユニット1の構成の概要を示しており、この空気調和
ユニット1は、ユニットケース2内に、ヒートポンプ部
(HP)3とファンコイル部(FC)4を備えている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of a configuration of an air conditioning unit 1 according to the present embodiment. A heat pump unit (HP) 3 and a fan coil unit (FC) 4 are provided in the unit case 2.

【0014】前記ヒートポンプ部(HP)3は、冷媒配
管されて冷媒が循環する圧縮機31、冷房モード・暖房
モードを切り替えるための四方弁32、熱源水と冷媒と
の熱交換を行う水対冷媒熱交換器33、膨張弁34、及
び前記冷媒とユニットケース2内の空気通路内を流れる
空気との熱交換を行う冷媒対空気熱交換器35によっ
て、可逆式の水熱源ヒートポンプ構成を有している。
The heat pump unit (HP) 3 includes a compressor 31 in which a refrigerant is circulated to circulate the refrigerant, a four-way valve 32 for switching between a cooling mode and a heating mode, and a water-to-refrigerant for exchanging heat between the heat source water and the refrigerant. The heat exchanger 33, the expansion valve 34, and the refrigerant-to-air heat exchanger 35 that exchanges heat between the refrigerant and the air flowing in the air passage in the unit case 2 have a reversible water heat source heat pump configuration. There is.

【0015】即ち、冷房運転時に冷媒対空気熱交換器3
5が蒸発器として機能する場合には、四方弁32の切り
換えによって、圧縮機31→四方弁32→水対冷媒熱交
換器33(凝縮器)→膨張弁34→冷媒対空気熱交換器
(蒸発器)35→四方弁32→圧縮機31の冷媒循環路
が形成され、暖房運転時に冷媒対空気熱交換器34が凝
縮器として機能する場合には、四方弁32の切り換えに
よって、圧縮機31→四方弁32→冷媒対空気熱交換器
35(蒸発器)→膨張弁34→水対冷媒熱交換器33
(凝縮器)→四方弁32→圧縮機31の冷媒循環器が形
成されるようになっている。
That is, during the cooling operation, the refrigerant-air heat exchanger 3
When 5 functions as an evaporator, by switching the four-way valve 32, compressor 31 → four-way valve 32 → water-refrigerant heat exchanger 33 (condenser) → expansion valve 34 → refrigerant-air heat exchanger (evaporator). 35 → four-way valve 32 → a refrigerant circulation path of the compressor 31 is formed, and when the refrigerant-to-air heat exchanger 34 functions as a condenser during heating operation, by switching the four-way valve 32, the compressor 31 → Four-way valve 32 → refrigerant-to-air heat exchanger 35 (evaporator) → expansion valve 34 → water-to-refrigerant heat exchanger 33
(Condenser) → four-way valve 32 → compressor 31 to form a refrigerant circulator.

【0016】一方ファンコイルユニット部(FCU)4
は、前記熱源水が流れるコイルを介して、この熱源水と
フィルタ5を通過してユニットケース2内の空気通路内
を流れる空気(例えば還気RA)とを熱交換する水対空
気熱交換器41を有している。そしてこの水対空気熱交
換器41と前記冷媒対空気熱交換器35とは、空気通路
内で直列に配置されており、空気通路を通過する空気
は、給気SAとして、ファン6によって目的室内に供給
される。また水対空気熱交換器41と水対冷媒熱交換器
33とは、水対空気熱交換器41が上流側に位置するよ
うに、熱源水配管によって接続されている。
On the other hand, a fan coil unit (FCU) 4
Is a water-to-air heat exchanger that exchanges heat between the heat source water and the air (for example, return air RA) passing through the filter 5 and the air passage in the unit case 2 via a coil through which the heat source water flows. Has 41. The water-to-air heat exchanger 41 and the refrigerant-to-air heat exchanger 35 are arranged in series within the air passage, and the air passing through the air passage is supplied by the fan 6 by the fan 6 as the supply air SA. Is supplied to. The water-to-air heat exchanger 41 and the water-to-refrigerant heat exchanger 33 are connected by a heat source water pipe so that the water-to-air heat exchanger 41 is located on the upstream side.

【0017】前記熱源水は、例えば蓄熱槽(図示せず)
から往管7を通じて空気調和ユニット1内へと供給さ
れ、この往管7から三方弁8を介して、前記ファンコイ
ルユニット部(FCU)4の水対空気熱交換器41に供
給されたり、あるいはヒートポンプ部(HP)3の水対
冷媒熱交換器33にのみ供給されたり、又はその双方へ
の通水が停止されるようになっている。即ち、三方弁8
の切替によって、水対空気熱交換器41と水対冷媒熱交
換器33への双方の供給、水対冷媒熱交換器33のみへ
の供給、又はその何れにも供給しないことが自在となっ
ている。
The heat source water is, for example, a heat storage tank (not shown).
From the forward pipe 7 into the air conditioning unit 1 and then from the forward pipe 7 to the water-to-air heat exchanger 41 of the fan coil unit (FCU) 4 via the three-way valve 8, or The heat is supplied to only the water-to-refrigerant heat exchanger 33 of the heat pump unit (HP) 3, or the water flow to both is stopped. That is, the three-way valve 8
By switching between the two, it is possible to freely supply both the water-to-air heat exchanger 41 and the water-to-refrigerant heat exchanger 33, supply only to the water-to-refrigerant heat exchanger 33, or supply neither. There is.

【0018】より詳述すれば、往管7における各空気調
和ユニット1への熱源水入口管部分に三方弁8が取り付
けられており、この三方弁8の一方の出口管9を水対空
気熱交換器41の入口に、他方の出口管10を水対冷媒
熱交換器33の入口にそれぞれ接続すると共に、水対空
気熱交換器41の出口管11を水対冷媒熱交換器33の
入口に接続し、水対冷媒熱交換器33の出口管12を還
管5に接続してある。かかる構成により、三方弁8を切
換動作することによって、三方弁8→水対空気熱交換器
41→水対冷媒熱交換器33へ通水すること、三方弁8
→水対冷媒熱交換器33へ通水すること、水対空気熱交
換器41と水対冷媒熱交換器33のいずれにも熱源水を
通水させないことが任意に形成できる。
More specifically, a three-way valve 8 is attached to a heat source water inlet pipe portion to each air conditioning unit 1 in the forward pipe 7, and one outlet pipe 9 of the three-way valve 8 is connected to water-air heat. The outlet pipe 10 of the other side is connected to the inlet of the water-refrigerant heat exchanger 33, and the outlet pipe 11 of the water-air heat exchanger 41 is connected to the inlet of the water-refrigerant heat exchanger 33. The outlet pipe 12 of the water-to-refrigerant heat exchanger 33 is connected to the return pipe 5. With such a configuration, by switching the three-way valve 8, water is passed from the three-way valve 8 to the water-to-air heat exchanger 41 to the water-to-refrigerant heat exchanger 33.
→ It is possible to arbitrarily form the passage of water to the water-to-refrigerant heat exchanger 33 and the passage of heat source water to neither the water-to-air heat exchanger 41 nor the water-to-refrigerant heat exchanger 33.

【0019】三方弁8は、図2に示した構成を有してお
り、図示されるようにこの三方弁8は、その中心部から
三方向へと3つの接続管路8a、8b、8cを有するバ
ルブケース8dと、このバルブケース8d内の中心部空
間内に回転自在に設けられた弁体8eとを有している。
この弁体8eには、アングル形状の通路がその内部に形
成されている。これら3つの接続管路8a、8b、8c
は、接続管路8a、8bが相互に対向しており、接続管
路8c、これら接続管路8a、8bに対して直交する位
置関係にある。そして接続管路8aは出口管9と、接続
管路8bは出口管10と、接続管路8cは往管7の熱源
水入口管部分とにそれぞれ接続されている。なお、8f
は、前記弁体8eを回転させるためのモータである。
The three-way valve 8 has the structure shown in FIG. 2, and as shown in the figure, the three-way valve 8 has three connecting pipe lines 8a, 8b, 8c extending in three directions from the center thereof. It has a valve case 8d that it has, and a valve body 8e that is rotatably provided in the central space inside this valve case 8d.
An angle-shaped passage is formed inside the valve body 8e. These three connecting conduits 8a, 8b, 8c
The connecting conduits 8a and 8b face each other, and the connecting conduit 8c and the connecting conduits 8a and 8b are in a positional relationship orthogonal to each other. The connecting pipe 8a is connected to the outlet pipe 9, the connecting pipe 8b is connected to the outlet pipe 10, and the connecting pipe 8c is connected to the heat source water inlet pipe portion of the forward pipe 7. 8f
Is a motor for rotating the valve body 8e.

【0020】三方弁8は以上のように構成されており、
前記三方弁8の切り換えによる熱源水の通流路の切り換
えと、圧縮機31の発停制御との組み合わせによって、
次のような運転モードを選択できる(番号は、部材の引
用番号を表す)。 運転モード 三方弁8の水路 圧縮機31の発停 FCUだけの運転 8a→9(図3) OFF FCU+HPの運転 8a→9(図3) ON HPだけの運転 8b→10(図2) ON 温水時の冷房運転 8b→10(図2) ON 送風運転 閉止(図4) OFF
The three-way valve 8 is constructed as described above,
By combining the switching of the flow path of the heat source water by switching the three-way valve 8 and the start / stop control of the compressor 31,
The following operation modes can be selected (the number represents the reference number of the member). Operation mode Waterway of three-way valve 8 Start / stop of compressor 31 Operation with FCU only 8a → 9 (Fig. 3) OFF Operation with FCU + HP 8a → 9 (Fig. 3) Operation with only HP 8b → 10 (Fig. 2) ON Hot water Cooling operation 8b → 10 (Fig. 2) ON Blower operation Closed (Fig. 4) OFF

【0021】なおここで、温水時の冷房運転とは、暖房
シーズンにおいて温水を蓄熱している状態で、ある空気
調和ユニット1では冷房運転をすることが必要とされる
場合である。最近のビルではOA機器類の発熱によっ
て、暖房シーズンでもある特定の室だけを冷房すること
が求められる場合が多いので、そのような温水時の冷房
運転モードも提供しているのである。また送風運転と
は、空気を加熱または冷却することなく送風だけを必要
とする場合であり、扇風機効果や換気作用を得る場合に
有利となる。なおこの送風運転時においては、弁体8e
の通路の開口部は、接続管路8a、8bのいずれにもか
からない位置になっている(図4)。
Here, the cooling operation at the time of hot water is a case where it is necessary to perform the cooling operation in a certain air conditioning unit 1 while the hot water is storing heat in the heating season. In a recent building, it is often required to cool only a specific room, which is in the heating season, due to the heat generated by OA devices, so such a cooling operation mode for hot water is also provided. In addition, the air blowing operation is a case where only air blowing is required without heating or cooling the air, which is advantageous in obtaining a fan effect or a ventilation effect. In addition, during this blowing operation, the valve body 8e
The opening of the passage is located so that it does not touch any of the connecting pipelines 8a and 8b (FIG. 4).

【0022】従って、例えばメンテナンス等によって、
空気調和ユニット1を停止する場合にも、三方弁8を切
り換えて閉止させるだけでよく、往管7の管路を開閉す
る二方弁を別途設ける必要はないものである。なお送風
運転時においては、前記したように空気調和ユニット1
内への熱源水の供給そのものを停止させず、例えば図2
に示したように、三方弁8において水対冷媒熱交換器3
3側へと流路を開放し、かつ圧縮機31を停止させれ
ば、加熱、冷却を伴わない送風運転が行えるが、通水さ
せている以上、例えば熱源水を揚水、送水するための適
宜のポンプ(図示せず)を作動させて電力を消費してい
る。従って三方弁8を閉止位置(図4)にして通水その
ものを停止させることにより、余分なエネルギー消費を
抑えることができる。
Therefore, for example, due to maintenance or the like,
Even when the air conditioning unit 1 is stopped, it is only necessary to switch the three-way valve 8 to close it, and it is not necessary to separately provide a two-way valve for opening and closing the conduit of the outward pipe 7. In addition, during the air blowing operation, as described above, the air conditioning unit 1
For example, as shown in FIG.
As shown in FIG. 3, in the three-way valve 8, the water-refrigerant heat exchanger 3
If the flow path is opened to the 3 side and the compressor 31 is stopped, the air blowing operation without heating and cooling can be performed, but as long as water is passed, for example, heat source water is appropriately pumped and sent. The pump (not shown) is operated to consume electric power. Therefore, by stopping the water flow itself by setting the three-way valve 8 to the closed position (FIG. 4), it is possible to suppress excessive energy consumption.

【0023】また以上のような三方弁8の切り換えは、
モータ8fの作動によって遠隔にて操作でき、しかも弁
体8eは略ボール形状をなしているので、そのような操
作、切り換えが容易であって、構成も簡素化されてい
る。
The switching of the three-way valve 8 as described above is
Since the valve 8e can be operated remotely by the operation of the motor 8f and the valve 8e has a substantially ball shape, such operation and switching is easy and the structure is simplified.

【0024】そして往管7と三方弁8との間には、熱源
水の入口温度を検出する温度検出装置14が設けられ、
またユニットケース2の空気通路には、この空気通路を
流れる空気の入口温度を検出する温度検出装置15が設
けられている。そしてこれら各温度検出装置14、15
の信号は、制御装置16へと入力されるようになってい
る。
A temperature detector 14 for detecting the inlet temperature of the heat source water is provided between the outward pipe 7 and the three-way valve 8.
Further, the air passage of the unit case 2 is provided with a temperature detecting device 15 for detecting the inlet temperature of the air flowing through the air passage. And each of these temperature detection devices 14, 15
Signal is input to the control device 16.

【0025】制御装置16は、図5に示したように、圧
縮機31の発停、四方弁32のモード切替、及び三方弁
8の切替を制御するCPU17を備えており、前記温度
検出装置14、15の信号と、目的室の室温の設定温度
(Ts)と、前記温度調節機構の特性最小値(L4)、
温度調整最小値(L3)、温度調整最大値(L2)、温
度調節機構の特性最大値(L1)の入力を受け付ける機
能を有している。但し、L4<L3<Ts<L2<L1
である。
As shown in FIG. 5, the controller 16 has a CPU 17 for controlling the start / stop of the compressor 31, the mode switching of the four-way valve 32, and the switching of the three-way valve 8, and the temperature detecting device 14 is provided. , 15 signals, the room temperature set temperature (Ts) of the target room, and the minimum characteristic value (L4) of the temperature adjustment mechanism,
It has a function of accepting inputs of the minimum temperature adjustment value (L3), the maximum temperature adjustment value (L2), and the maximum characteristic value (L1) of the temperature adjustment mechanism. However, L4 <L3 <Ts <L2 <L1
It is.

【0026】ここで温度調節機構の特性最小値(L4)
と特性最大値(L1)は、運転モード切換点となるもの
であり、熱源水の温度条件により、目的室の室温の設定
温度(Ts)に合わせるために適した運転モードで温度
制御を行って運転させるが、当該モードで制御しきれず
に、室内温度が特性最小値(L4)又は特性最大値(L
1)に達した場合に、運転モード自体を切り換えて対応
させるようになっている。
Here, the minimum characteristic value (L4) of the temperature control mechanism
And the characteristic maximum value (L1) are the operation mode switching points, and temperature control is performed in an operation mode suitable for adjusting to the set temperature (Ts) of the room temperature of the target room depending on the temperature condition of the heat source water. Although it is operated, the indoor temperature cannot be fully controlled in the mode and the indoor temperature is the minimum characteristic value (L4) or the maximum characteristic value (L4).
When the condition 1) is reached, the operation mode itself is switched to deal with it.

【0027】また温度調整最小値(L3)、温度調整最
大値(L2)は、温度制御許容範囲を定めるものであ
り、熱源水の温度条件により、目的室の室温の設定温度
(Ts)に合わせるために適した運転モードで空調機を
運転している際に、この許容範囲の温度を室内から検出
した場合、設定温度(Ts)に近づけるために圧縮機3
1の運転・停止、又は熱源水の閉止等を行う、運転モー
ド内での温度制御許容範囲となる。
The temperature adjustment minimum value (L3) and the temperature adjustment maximum value (L2) define the temperature control allowable range, and are adjusted to the room temperature set temperature (Ts) of the target room depending on the temperature condition of the heat source water. When operating the air conditioner in an operation mode suitable for that purpose, if a temperature within this allowable range is detected from the room, the compressor 3 is brought to approach the set temperature (Ts).
It becomes the temperature control permissible range in the operation mode in which the operation / stop of 1 or the closing of the heat source water is performed.

【0028】そして前記したように、前記制御装置16
では、例えば、入力された目的室の設定温度(Ts)に
室温を近づけるために、前記温度検出装置14、15の
信号に基づいて、圧縮機31の発停、冷媒回路における
四方弁32のモード切替、熱源水回路における三方弁8
の切替を、CPU17が行う。
As described above, the control device 16
Then, for example, in order to bring the room temperature close to the input set temperature (Ts) of the target room, the mode of the four-way valve 32 in the refrigerant circuit is started and stopped based on the signals of the temperature detection devices 14 and 15. Three-way valve 8 in switching and heat source water circuit
The CPU 17 performs the switching of.

【0029】本実施形態にかかる空気調和ユニット1
は、以上のように構成されており、次にその制御の例に
ついて説明する。
The air conditioning unit 1 according to this embodiment
Is configured as described above, and an example of the control will be described next.

【0030】1)5℃≦熱源水入口温度≦7℃のとき モード:空気調和ユニットの吸込み温度、即ち空気通
路内に導入される還気(RA)が、設定温度Tsより高
く、更に温度調節機構(サーモスタット)特性値の最大
値L1より高いと、水対空気熱交換器41側に熱源水を
通水するように三方弁8を制御して、ファンコイルユニ
ット部(FCU)4を冷房運転させ、同時に圧縮機31
を稼働させてヒートポンプ部(HP)3も冷房運転させ
る。そしてて室温が温度調整最小値L3まで低下する
と、圧縮機31を停止させてファンコイルユニット部
(FCU)4のみを運転させる。ここで室温が上昇して
温度調整最大値L2に達した際には、再び圧縮機31が
稼働されてファンコイルユニット部(FCU)4とヒー
トポンプ部(HP)3の双方による冷房運転となり、以
後、L2とL3との間でヒートポンプ・ファンコイル冷
房運転とファンコイル冷房運転とを繰り返す。この制御
の様子を図6に示した。
1) When 5 ° C. ≦ heat source water inlet temperature ≦ 7 ° C. Mode: The suction temperature of the air conditioning unit, that is, the return air (RA) introduced into the air passage is higher than the set temperature Ts, and the temperature is further adjusted. When it is higher than the maximum value L1 of the mechanism (thermostat) characteristic value, the three-way valve 8 is controlled so as to pass the heat source water to the water-to-air heat exchanger 41 side, and the fan coil unit (FCU) 4 is cooled. At the same time, the compressor 31
To operate the heat pump unit (HP) 3 for cooling. When the room temperature lowers to the minimum temperature adjustment value L3, the compressor 31 is stopped and only the fan coil unit (FCU) 4 is operated. Here, when the room temperature rises and reaches the temperature adjustment maximum value L2, the compressor 31 is operated again to perform the cooling operation by both the fan coil unit unit (FCU) 4 and the heat pump unit (HP) 3, and thereafter. , L2 and L3, the heat pump / fan coil cooling operation and the fan coil cooling operation are repeated. The state of this control is shown in FIG.

【0031】モード:ファンコイル冷房運転中に室内
負荷が減り、空気調和ユニットの吸込み温度が、温度調
節機構(サーモスタット)特性最小値L4に達した場合
は、熱源水を閉止させて、送風運転とする。そして室温
が上昇し、温度調整最大値L2に達した際には、三方弁
8を水対空気熱交換器41側に熱源水を通水するように
制御して、ファンコイルユニット部(FCU)4を冷房
運転させる。その時は圧縮機31は稼働してないのでヒ
ートポンプは機能してない。以後、L2とL3との間
で、ファンコイル冷房運転と送風運転を繰り返す。この
制御の様子を図7に示した。
Mode: When the indoor load is reduced during the fan coil cooling operation and the suction temperature of the air conditioning unit reaches the temperature control mechanism (thermostat) characteristic minimum value L4, the heat source water is closed to perform the blowing operation. To do. Then, when the room temperature rises and reaches the temperature adjustment maximum value L2, the three-way valve 8 is controlled so as to pass the heat source water to the water-to-air heat exchanger 41 side, and the fan coil unit unit (FCU). 4 is cooled. At that time, since the compressor 31 is not operating, the heat pump is not functioning. Thereafter, the fan coil cooling operation and the air blowing operation are repeated between L2 and L3. The state of this control is shown in FIG.

【0032】2)7℃<熱源水入口温度≦Ts−3℃の
とき モード:空気調和ユニット1の吸込み温度が、設定温
度Tsより低く、温度調節機構(サーモスタット)特性
値の最小値L4に達すると、三方弁8を水対冷媒熱交換
器33側に熱源水を通水するように切替えて、四方弁3
2をONにして暖房モードにセットし、ヒートポンプ部
(HP)3を暖房モードに切換え、ヒートポンプ暖房運
転を行う。その後、室温が上昇して温度調整最大値L2
に達すると、三方弁8を熱源水を閉止させるように切換
えて送風運転させる。以後、L2とL3との間で、ヒー
トポンプ暖房運転と送風運転を繰り返す。ここで送風運
転のままで室温がL1まで上昇した場合は前記モード
で制御すし、L2とL3との間でファンコイル冷房運転
と送風運転とを繰り返す(図7)。
2) When 7 ° C. <heat source water inlet temperature ≦ Ts−3 ° C. Mode: The suction temperature of the air conditioning unit 1 is lower than the set temperature Ts and reaches the minimum value L4 of the temperature control mechanism (thermostat) characteristic value. Then, the three-way valve 8 is switched to pass the heat source water to the water-refrigerant heat exchanger 33 side, and the four-way valve 3
2 is turned ON to set the heating mode, the heat pump unit (HP) 3 is switched to the heating mode, and the heat pump heating operation is performed. Then, the room temperature rises and the temperature adjustment maximum value L2
When the temperature reaches, the three-way valve 8 is switched so as to close the heat source water and the blower operation is performed. After that, the heat pump heating operation and the blowing operation are repeated between L2 and L3. Here, when the room temperature rises to L1 in the blow operation, the control is performed in the above mode, and the fan coil cooling operation and the blow operation are repeated between L2 and L3 (FIG. 7).

【0033】負荷が増大し、モードで制御しても室温
が上昇し、L1に達した場合は、前記モードに切換
え、L2とL3との間でヒートポンプ・ファンコイル冷
房運転とファンコイル冷房運転とを繰り返す(図7)。
When the load increases and the room temperature rises even if controlled in the mode and reaches L1, the mode is switched to the above mode, and the heat pump / fan coil cooling operation and the fan coil cooling operation are performed between L2 and L3. Is repeated (FIG. 7).

【0034】3)Ts−3℃<熱源水入口温度≦Ts+
3℃のとき 熱源入口水温が上記条件で、室温が低下し、温度調節機
構(サーモスタット)最小特性値L4以下になった際に
は、前記モードで制御し、L2とL3との間で、ヒー
トポンプ暖房運転と送風運転を繰り返す(図8)。
3) Ts−3 ° C. <heat source water inlet temperature ≦ Ts +
When the temperature of the water at the inlet of the heat source is 3 ° C. and the room temperature is lowered to become the temperature control mechanism (thermostat) minimum characteristic value L4 or less, the heat pump is controlled in the above mode and between the heat pumps L2 and L3. The heating operation and the blowing operation are repeated (Fig. 8).

【0035】モード:負荷が減少し、モード制御し
ても室温が上昇し、L1に達した場合には、熱源水を水
対冷媒熱交換器33に通水するように三方弁8を切換え
て、四方弁32を冷房モードに切換えて、ヒートポンプ
冷房運転とする。ここで室温が温度調整最小値L3に達
した場合は、三方弁8を切換えて熱源水の通水を閉止さ
せると共に、圧縮機31も止めて送風運転となる。以
後、L2とL3との間でヒートポンプ冷房運転と送風運
転との繰返し運転となる(図8)。
Mode: When the load decreases and the room temperature rises even after the mode control and reaches L1, the three-way valve 8 is switched so as to pass the heat source water to the water-refrigerant heat exchanger 33. , The four-way valve 32 is switched to the cooling mode to perform the heat pump cooling operation. Here, when the room temperature reaches the temperature adjustment minimum value L3, the three-way valve 8 is switched to stop the passage of the heat source water, and the compressor 31 is also stopped to start the blowing operation. After that, the heat pump cooling operation and the blowing operation are repeated between L2 and L3 (FIG. 8).

【0036】4)Ts+3℃<熱源水入口温度≦50℃
のとき モード:室温が温度調節機構(サーモスタット)最小
特性値L4より低いと、三方弁8を水対空気熱交換器4
1に通水するように切替えし、更に四方弁32もONに
して暖房モードに制御して、ヒートポンプ・ファンコイ
ル暖房運転とする(図9)。室温が温度調整最大値L2
に達した際には圧縮機31を止めてファンコイル暖房運
転とする。以後、L2とL3との間で、ヒートポンプ・
ファンコイル暖房運転とファンコイル暖房運転との繰返
し運転となる。
4) Ts + 3 ° C. <heat source water inlet temperature ≦ 50 ° C.
Mode: When the room temperature is lower than the minimum characteristic value L4 of the temperature control mechanism (thermostat), the three-way valve 8 is set to the water-air heat exchanger 4
The water is switched to 1 and the four-way valve 32 is also turned on to control the heating mode to perform the heat pump / fan coil heating operation (FIG. 9). Room temperature is the maximum temperature adjustment value L2
When it reaches, the compressor 31 is stopped and the fan coil heating operation is started. After that, between L2 and L3, the heat pump
The fan coil heating operation and the fan coil heating operation are repeated.

【0037】モード:負荷が減少し、ファンコイル暖
房運転で室温が上昇して、温度調節機構(サーモスタッ
ト)特性最大値L1に達した際には、熱源水を閉止して
送風運転とする。室温が下がりL3に達すると、熱源水
を水対空気熱交換器に通水してファンコイル暖房運転に
切り換える。以後、L2とL3との間でファンコイル暖
房運転と送風運転との繰返し運転となる(図9)。
Mode: When the load decreases and the room temperature rises in the fan coil heating operation and the temperature control mechanism (thermostat) characteristic maximum value L1 is reached, the heat source water is closed to start the blow operation. When the room temperature falls to reach L3, the heat source water is passed through the water-to-air heat exchanger to switch to fan coil heating operation. After that, the fan coil heating operation and the air blowing operation are repeated between L2 and L3 (FIG. 9).

【0038】暖房時期において内部発熱の増大によって
室温がL1まで上昇すると、三方弁8を水対冷媒空気熱
交換器33に通水し、四方弁32をOFFにして冷房モ
ードに切換えてヒートポンプ冷房運転とすることによ
り、前記モードの運転となる(図9)。この時には熱
回収が行われている。
When the room temperature rises to L1 due to an increase in internal heat generation during the heating period, the three-way valve 8 is passed through the water-refrigerant air heat exchanger 33, the four-way valve 32 is turned off, and the cooling mode is switched to the heat pump cooling operation. By doing so, the operation in the mode is performed (FIG. 9). At this time, heat is being recovered.

【0039】5)50℃<熱源水入口温度≦60℃のと
き 熱源水温度条件が上記の時に、室温が低くL4に達した
際には、モードの運転を行うため熱源水を水対空気熱
交換器41に通水するように三方弁8を切換えてファン
コイル暖房運転を行い、室温がL2に達した場合は、熱
源水を閉止して送風運転とし、L2とL3との間でファ
ンコイル暖房運転と送風運転との繰返し運転とする(図
10)。
5) When 50 ° C. <heat source water inlet temperature ≦ 60 ° C. Under the above heat source water temperature conditions, when the room temperature is low and reaches L4, the heat source water is heated to water-to-air heat to perform the mode operation. When the fan coil heating operation is performed by switching the three-way valve 8 so as to pass water to the exchanger 41, and when the room temperature reaches L2, the heat source water is closed to perform the blow operation, and the fan coil is operated between L2 and L3. The heating operation and the blowing operation are repeated (FIG. 10).

【0040】暖房時期において内部発熱の増大によって
室温がL1まで上昇すると、三方弁8を水対冷媒空気熱
交換器33に通水し、四方弁32を冷房モードに切換え
てヒートポンプ冷房運転とすることで、前記モードの
運転となる(図10)。この時に熱回収が行われてい
る。そして送風運転時に室温が下がり、L4に達した場
合は前記モードの運転を行う(図10)。
When the room temperature rises to L1 due to an increase in internal heat generation during the heating period, the three-way valve 8 is passed through the water-refrigerant air heat exchanger 33, and the four-way valve 32 is switched to the cooling mode for the heat pump cooling operation. Then, the operation in the mode is performed (FIG. 10). At this time, heat is being recovered. Then, when the room temperature drops during the blowing operation and reaches L4, the operation in the mode is performed (FIG. 10).

【0041】6)60℃<熱源水入口温度<70℃のと
き 熱源水温度条件が上記の時に、室温が低くL4に達した
際には、モードの運転を行うため熱源水を水対空気熱
交換器41に通水するように三方弁8を切換えてファン
コイル暖房運転を行い、室温がL2に達した場合は、熱
源水を閉止して送風運転とし、L2とL3との間でファ
ンコイル暖房運転と送風運転との繰返し運転となる(図
11)。なおヒートポンプ冷房運転は、特に水対冷媒熱
交換器33は高温となるため、機能部品を保護するため
ヒートポンプ運転はさせないようにした)。
6) When 60 ° C. <heat source water inlet temperature <70 ° C. Under the above heat source water temperature conditions, when the room temperature is low and reaches L4, the heat source water is heated to water-to-air heat to perform the mode operation. When the fan coil heating operation is performed by switching the three-way valve 8 so as to pass water to the exchanger 41, and when the room temperature reaches L2, the heat source water is closed to perform the blow operation, and the fan coil is operated between L2 and L3. The heating operation and the blowing operation are repeated (Fig. 11). In the heat pump cooling operation, since the water-refrigerant heat exchanger 33 has a high temperature, the heat pump operation is not performed in order to protect the functional components).

【0042】7)その他、熱源水<5℃、熱源水≧70
℃の時は適宜の保護装置を働かせ、空気調和ユニット1
本体に水が流れないように、三方弁8で閉止させて空調
機は送風運転のままとなる。
7) Other, heat source water <5 ° C., heat source water ≧ 70
When the temperature is ℃, operate an appropriate protection device and air conditioner unit 1
To prevent water from flowing into the main body, the three-way valve 8 is closed and the air conditioner remains in the blowing operation.

【0043】以上説明したように、本実施形態にかかる
空気調和ユニット1によれば、一定幅の熱源水の温度毎
に、きめ細かい制御が行え、ヒートポンプ部(HP)3
とファンコイルユニット部(FCU)4のいずれか一
方、あるいは双方の冷房、暖房運転と、通水を閉止して
の送風運転とを巧みに切替えることで、無駄なエネルギ
ーを行わず、最適な空調が実施できる。なお以上説明し
た熱源水の温度幅毎の運転状況、及びそのときの三方弁
8の状態をまとめると、次の表1に示したようになる。
As described above, according to the air conditioning unit 1 of the present embodiment, fine control can be performed for each temperature of the heat source water of a certain width, and the heat pump section (HP) 3
By optimally switching between cooling and heating operation of either or both of the fan coil unit unit (FCU) 4 and ventilation operation with water flow closed, wasteful energy is not generated and optimal air conditioning is performed. Can be implemented. The operating conditions for each temperature range of the heat source water and the state of the three-way valve 8 at that time are summarized as shown in Table 1 below.

【0044】[0044]

【表1】 [Table 1]

【0045】しかも本実施形態においては、冷媒として
HFC−134aを用いているので、熱源水が60℃の
ときでも、圧縮機31の稼働が可能であるから、従来よ
りも制御できる温度幅が大きくなっている。なお前記実
施形態では、熱源水温度の幅を、例えば設定温度「Ts
−3℃」のように設定していたが、この温度範囲は任意
に変更、設定できるものである。
Moreover, in this embodiment, since HFC-134a is used as the refrigerant, the compressor 31 can be operated even when the heat source water is 60 ° C., so that the temperature range that can be controlled is larger than in the conventional case. Has become. In the above embodiment, the width of the heat source water temperature is set to, for example, the set temperature “Ts
Although it was set as "-3 ° C", this temperature range can be arbitrarily changed and set.

【0046】[0046]

【発明の効果】本願請求項1〜4に記載の空気調和ユニ
ットによれば、余分な電力を使用せず、負荷に応じた適
切な空調運転を、最小のエネルギーで実施することがで
きる。例えばファンコイル冷暖房、水熱源冷暖房、両者
の同時運転、送風のみの運転等、条件に応じた運転が省
エネルギー下で実現できる。特に請求項2、3の空気調
和ユニットでは、複数の基準温度の入力によって、きめ
細かい制御運転が可能である。また請求項4によれば、
従前の機器等を用いてユニットを構成しても、熱源水が
60℃における圧縮機の稼働がそのまま可能になり、広
範囲の熱源水を使用することができ、2管式の冷温水配
管における冬期の冷房運転も可能となる。
According to the air conditioning unit according to the first to fourth aspects of the present application, it is possible to perform an appropriate air conditioning operation according to the load with a minimum energy without using extra electric power. For example, operation according to conditions, such as fan coil cooling / heating, water heat source cooling / heating, simultaneous operation of both, operation of only blowing, can be realized under energy saving. Particularly, in the air conditioning unit according to claims 2 and 3, fine control operation can be performed by inputting a plurality of reference temperatures. According to claim 4,
Even if the unit is configured using conventional equipment, the compressor can be operated at 60 ° C for heat source water as it is, a wide range of heat source water can be used, and two-pipe cold / hot water pipes can be used in the winter season. The air conditioning operation of can also be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態にかかる空気調和ユニットの内部構造
を示す説明図である。
FIG. 1 is an explanatory diagram showing an internal structure of an air conditioning unit according to an embodiment.

【図2】図1の空気調和ユニットに用いた三方弁におい
てヒートポンプ部側に通水しているときの状態を示す断
面図である。
FIG. 2 is a cross-sectional view showing a state of the three-way valve used in the air conditioning unit of FIG. 1 when water is being passed to the heat pump section side.

【図3】図1の空気調和ユニットに用いた三方弁におい
てファンコイル部側に通水しているときの状態を示す断
面図である。
3 is a cross-sectional view showing a state in which water is being passed to the fan coil portion side in the three-way valve used in the air conditioning unit of FIG.

【図4】図1の空気調和ユニットに用いた三方弁におい
て通水を閉止しているときの状態を示す断面図である。
4 is a cross-sectional view showing a state in which water is closed in the three-way valve used in the air conditioning unit of FIG.

【図5】図1の空気調和ユニットにおける制御装置の構
成を示す説明図である。
5 is an explanatory diagram showing a configuration of a control device in the air conditioning unit of FIG. 1. FIG.

【図6】5℃≦熱源水入口温度≦7℃の時の温度調節機
構等の特性を示すグラフである。
FIG. 6 is a graph showing characteristics of a temperature adjusting mechanism and the like when 5 ° C. ≦ heat source water inlet temperature ≦ 7 ° C.

【図7】7℃<熱源水入口温度≦Ts−3℃の時の温度
調節機構等の特性を示すグラフである。
FIG. 7 is a graph showing characteristics of a temperature adjusting mechanism and the like when 7 ° C. <heat source water inlet temperature ≦ Ts−3 ° C.

【図8】Ts−3℃<熱源水入口温度≦Ts+3の時温
度調節機構等の特性を示すグラフである。
FIG. 8 is a graph showing characteristics of a temperature adjusting mechanism and the like when Ts−3 ° C. <heat source water inlet temperature ≦ Ts + 3.

【図9】Ts+3℃<熱源水入口温度≦50℃の時の温
度調節機構等の特性を示すグラフである。
FIG. 9 is a graph showing characteristics of a temperature adjusting mechanism and the like when Ts + 3 ° C. <heat source water inlet temperature ≦ 50 ° C.

【図10】50℃<熱源水入口温度≦60℃の時の温度
調節機構等の特性を示すグラフである。
FIG. 10 is a graph showing characteristics of a temperature adjusting mechanism and the like when 50 ° C. <heat source water inlet temperature ≦ 60 ° C.

【図11】60℃<熱源水入口温度<70℃の時の温度
調節機構等の特性を示すグラフである。
FIG. 11 is a graph showing characteristics of a temperature adjusting mechanism and the like when 60 ° C. <heat source water inlet temperature <70 ° C.

【符号の説明】[Explanation of symbols]

1 空気調和ユニット 2 ユニットケース 3 ヒートポンプ部(HP) 4 ファンコイルユニット部(FCU) 6 ファン 7 往管 8 三方弁 13 還管 14、15 温度検出装置 16 制御装置 17 CPU 31 圧縮機 32 四方弁 33 水対冷媒熱交換器 34 膨張弁 35 冷媒対空気熱交換器 41 水対空気熱交換器 1 Air Conditioning Unit 2 Unit Case 3 Heat Pump Unit (HP) 4 Fan Coil Unit Unit (FCU) 6 Fan 7 Outgoing Pipe 8 Three-way Valve 13 Return Pipe 14, 15 Temperature Detection Device 16 Control Device 17 CPU 31 Compressor 32 Four-way Valve 33 Water-to-refrigerant heat exchanger 34 Expansion valve 35 Refrigerant-to-air heat exchanger 41 Water-to-air heat exchanger

───────────────────────────────────────────────────── フロントページの続き (72)発明者 犬丸 義弘 神奈川県厚木市南町13−19 聖マンション 306 (72)発明者 元嶋 一修 神奈川県厚木市戸田483−9 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Inumaru 13-19 Minamimachi, Atsugi-shi, Kanagawa Saint Mansion 306 (72) Inventor Kazushige Motoshima 483-9 Toda, Atsugi, Kanagawa Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、膨脹弁、水対冷媒熱交換器、冷
媒配管に介装される冷房・暖房モード切替用の四方弁、
室内空調用の冷媒対空気熱交換器とが冷媒配管で接続さ
れた構成の水熱源ヒートポンプ装置、及び送風機を有す
るユニットケース内に、前記冷媒対空気熱交換器と室内
空調用の水対空気熱交換器とを、前記ユニットケースの
空気通路内に直列に配置し、前記水対冷媒気熱交換器と
水対空気熱交換器に対していずれか一方あるいは双方に
通水、又は双方への通水を閉止させるための熱源水通路
の切替機能を有する弁と、熱源水入口温度を検出する第
1の温度検出装置と、室内温度を検出する第2の温度検
出装置と、これら第1の温度検出装置及び第2の温度検
出装置の検出結果に基づいて、少なくとも前記圧縮機の
発停、前記四方弁のモード切替、又は前記弁の切替のい
ずれかを制御する制御装置とを備えたことを特徴とす
る、空気調和ユニット。
1. A compressor, an expansion valve, a water-refrigerant heat exchanger, a four-way valve for switching between cooling and heating modes, which is provided in a refrigerant pipe.
In a unit case having a water heat source heat pump device configured to connect a refrigerant-to-air heat exchanger for indoor air conditioning with a refrigerant pipe, and a unit case having a blower, the refrigerant-to-air heat exchanger and water-to-air heat for indoor air conditioning An exchanger is arranged in series in the air passage of the unit case, and water is passed through either or both of the water-to-refrigerant air heat exchanger and the water-to-air heat exchanger. A valve having a heat source water passage switching function for closing water, a first temperature detecting device for detecting a heat source water inlet temperature, a second temperature detecting device for detecting an indoor temperature, and these first temperatures. Based on the detection results of the detection device and the second temperature detection device, a control device for controlling at least one of start and stop of the compressor, mode switching of the four-way valve, and switching of the valve is provided. Characteristic air conditioning unit .
【請求項2】 圧縮機、膨脹弁、水対冷媒熱交換器、冷
媒配管に介装される冷房・暖房モード切替用の四方弁、
室内空調用の冷媒対空気熱交換器とが冷媒配管で接続さ
れた構成の水熱源ヒートポンプ装置、及び送風機を有す
るユニットケース内に、前記冷媒対空気熱交換器と、室
内空調用の水対空気熱交換器とを前記空気通路内に直列
に配置し、前記水対冷媒気熱交換器と水対空気熱交換器
に対していずれか一方あるいは双方に通水、又は双方へ
の通水を閉止させるための熱源水通路の切替機能を有す
る弁と、目的室の設定温度に室温を近づけるために、前
記圧縮機の発停、四方弁のモード切替、弁の切替を制御
する温度調節機構と、熱源水入口温度検出装置と、室内
温度検出装置とを備え、さらに、設定温度を挟んで任意
の温度幅毎に、複数の基準温度値の入力を受け付ける機
能を有すると共に、一定範囲の熱源水入口温度毎に、室
内温度とこれら各基準温度値とを比較して前記温度調節
機構に指示を与える、CPUを備えたことを特徴とす
る、空気調和ユニット。
2. A compressor, an expansion valve, a water-refrigerant heat exchanger, a four-way valve for switching between cooling and heating modes, which is provided in the refrigerant pipe.
In a unit case having a water heat source heat pump device in which a refrigerant-to-air heat exchanger for indoor air conditioning is connected by a refrigerant pipe, and a unit case having a blower, the refrigerant-to-air heat exchanger and water-to-air for indoor air conditioning A heat exchanger is arranged in series in the air passage, and water is passed to either or both of the water-to-refrigerant gas heat exchanger and the water-to-air heat exchanger, or the water passage to both is closed. A valve having a function of switching the heat source water passage for making the temperature of the room close to the set temperature of the target room, the temperature control mechanism for controlling the start / stop of the compressor, the mode switching of the four-way valve, and the switching of the valve, A heat source water inlet temperature detecting device and an indoor temperature detecting device are provided, and further, the heat source water inlet has a function of receiving a plurality of reference temperature values for each arbitrary temperature range across the set temperature and has a heat source water inlet of a certain range. For each temperature, the room temperature and each of these Is compared with the reference temperature values gives an instruction to the temperature adjusting mechanism, characterized by comprising a CPU, an air conditioning unit.
【請求項3】 室内からの還気を吸込空気としてユニッ
トケースの空気通路内に通流させると共に、通流中に処
理した空気を給気として室内に供給する空気調和のため
のユニットであって、圧縮機、膨脹弁、水対冷媒熱交換
器、冷媒配管に介装される冷房・暖房モード切替用の四
方弁、室内空調用の冷媒対空気熱交換器とが冷媒配管で
接続された構成の水熱源ヒートポンプ装置、及び送風機
を有するユニットケース内に、前記冷媒対空気熱交換器
と、室内空調用の水対空気熱交換器とを前記空気通路内
に直列に配置し、前記水対冷媒気熱交換器と水対空気熱
交換器に対していずれか一方あるいは双方に通水、又は
双方への通水を閉止させるための熱源水通路の切替機能
を有する弁と、目的室の設定温度(Ts)に室温を近づ
けるために、前記圧縮機の発停、四方弁のモード切替、
弁の切替を制御する温度調節機構と、熱源水入口温度検
出装置と、室内温度検出装置とを備え、さらに、温度調
節機構の特性最小値(L4)<温度調整最小値(L3)
<前記設定温度(Ts)<温度調整最大値(L2)<温
度調節機構の特性最大値(L1)の関係を有するこれ
ら、温度調節機構の特性最小値(L4)、温度調整最小
値(L3)、設定温度(Ts)、温度調整最大値(L
2)、温度調節機構の特性最大値(L1)の入力を受け
付ける機能を有すると共に、一定範囲の熱源水入口温度
毎に、室内温度とこれら各入力値とを比較して前記温度
調節機構に指示を与える、CPUを備えたことを特徴と
する、空気調和ユニット。
3. A unit for air conditioning, in which return air from the room is made to flow into the air passage of the unit case as intake air, and the air processed during the flow is supplied to the room as air supply. , A compressor, an expansion valve, a water-refrigerant heat exchanger, a four-way valve for switching cooling / heating modes installed in the refrigerant pipe, and a refrigerant-air heat exchanger for indoor air conditioning are connected by a refrigerant pipe In a unit case having a water heat source heat pump device and a blower, the refrigerant-to-air heat exchanger and a water-to-air heat exchanger for indoor air conditioning are arranged in series in the air passage, and the water-to-refrigerant is provided. A valve that has a function of switching the heat source water passage for closing water flow to either or both of the air heat exchanger and the water-to-air heat exchanger, and the set temperature of the target room In order to bring the room temperature closer to (Ts), the pressure Start / stop of the compressor, mode switching of the four-way valve,
A temperature adjusting mechanism for controlling switching of the valve, a heat source water inlet temperature detecting device, and an indoor temperature detecting device are provided, and further, the characteristic minimum value (L4) of the temperature adjusting mechanism <temperature adjusting minimum value (L3).
<The set temperature (Ts) <The maximum temperature adjustment value (L2) <The maximum characteristic value (L1) of the temperature adjustment mechanism. The minimum characteristic value (L4) and the minimum temperature adjustment value (L3) of the temperature adjustment mechanism. , Set temperature (Ts), maximum temperature adjustment value (L
2) has a function of accepting an input of the maximum characteristic value (L1) of the temperature control mechanism, and instructs the temperature control mechanism by comparing the indoor temperature with each input value for each heat source water inlet temperature within a certain range. An air conditioning unit having a CPU for providing the air conditioner.
【請求項4】 水熱源ヒートポンプ装置に用いられる冷
媒は、HFC−134aであることを特徴とする、請求
項1、2又は3に記載の空気調和ユニット。
4. The air conditioning unit according to claim 1, 2 or 3, wherein the refrigerant used in the water heat source heat pump device is HFC-134a.
JP8028430A 1996-01-22 1996-01-22 Air conditioning unit Expired - Lifetime JP2901911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8028430A JP2901911B2 (en) 1996-01-22 1996-01-22 Air conditioning unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8028430A JP2901911B2 (en) 1996-01-22 1996-01-22 Air conditioning unit

Publications (2)

Publication Number Publication Date
JPH09196422A true JPH09196422A (en) 1997-07-31
JP2901911B2 JP2901911B2 (en) 1999-06-07

Family

ID=12248454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8028430A Expired - Lifetime JP2901911B2 (en) 1996-01-22 1996-01-22 Air conditioning unit

Country Status (1)

Country Link
JP (1) JP2901911B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168479A (en) * 2000-11-29 2002-06-14 Takasago Thermal Eng Co Ltd Method and system for air-conditioning communication equipment room
JP2005147622A (en) * 2003-11-19 2005-06-09 Toshiba Kyaria Kk Air conditioner
JP2007046796A (en) * 2005-08-05 2007-02-22 Toshiba Kyaria Kk Air conditioner
JP2008116152A (en) * 2006-11-07 2008-05-22 Takasago Thermal Eng Co Ltd Air conditioning system and its control method
EP2012069A1 (en) * 2007-06-04 2009-01-07 RHOSS S.p.A. Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine
JP2010181089A (en) * 2009-02-05 2010-08-19 Ishimoto Kenchiku Jimusho:Kk Fan coil type air conditioner for radiation panel with heat pump, and air conditioning system with the air conditioner
JP2012112554A (en) * 2010-11-22 2012-06-14 Toyo Netsu Kogyo Kk Air conditioner, and air conditioning system
CN103486766A (en) * 2013-09-24 2014-01-01 陈万仁 Wind source heat pump device for outdoor directional air supply and air return
WO2019116599A1 (en) * 2017-12-12 2019-06-20 日本ピーマック株式会社 Air-conditioning device and air-conditioning system
EP3660415A1 (en) * 2018-11-29 2020-06-03 Muller Et Cie Apparatus for thermal control of a building, associated installation and method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168479A (en) * 2000-11-29 2002-06-14 Takasago Thermal Eng Co Ltd Method and system for air-conditioning communication equipment room
JP4651810B2 (en) * 2000-11-29 2011-03-16 高砂熱学工業株式会社 Air conditioning method and air conditioning system for communication equipment room, etc.
JP4546067B2 (en) * 2003-11-19 2010-09-15 東芝キヤリア株式会社 Air conditioner
JP2005147622A (en) * 2003-11-19 2005-06-09 Toshiba Kyaria Kk Air conditioner
JP2007046796A (en) * 2005-08-05 2007-02-22 Toshiba Kyaria Kk Air conditioner
JP4641228B2 (en) * 2005-08-05 2011-03-02 東芝キヤリア株式会社 Air conditioner
JP2008116152A (en) * 2006-11-07 2008-05-22 Takasago Thermal Eng Co Ltd Air conditioning system and its control method
EP2012069A1 (en) * 2007-06-04 2009-01-07 RHOSS S.p.A. Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine
JP2010181089A (en) * 2009-02-05 2010-08-19 Ishimoto Kenchiku Jimusho:Kk Fan coil type air conditioner for radiation panel with heat pump, and air conditioning system with the air conditioner
JP2012112554A (en) * 2010-11-22 2012-06-14 Toyo Netsu Kogyo Kk Air conditioner, and air conditioning system
CN103486766A (en) * 2013-09-24 2014-01-01 陈万仁 Wind source heat pump device for outdoor directional air supply and air return
WO2019116599A1 (en) * 2017-12-12 2019-06-20 日本ピーマック株式会社 Air-conditioning device and air-conditioning system
EP3660415A1 (en) * 2018-11-29 2020-06-03 Muller Et Cie Apparatus for thermal control of a building, associated installation and method
FR3089281A1 (en) * 2018-11-29 2020-06-05 Muller Et Cie Building thermal control device

Also Published As

Publication number Publication date
JP2901911B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
JPS63700B2 (en)
JP2017150778A (en) Dehumidifying/reheating air-conditioning system utilizing ground thermal energy
JPH09196422A (en) Air conditioner device
JP4723911B2 (en) Air conditioner and air conditioning system
JP2018063090A (en) Heat pump water heater with cooling/heating function
JP6906865B2 (en) Air conditioning system
CN108779938B (en) Air conditioner hot water supply system
JP2004012016A (en) Airconditioner and its operation method
US8250878B2 (en) Air conditioning and energy recovery system and method of operation
JPH1054619A (en) Air conditioning method and air conditioning system
JP4353859B2 (en) Air conditioner
JPH0387535A (en) Air conditioner
KR102257544B1 (en) Energy enhanced air-conditioning system and control method thereof
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
JP3439004B2 (en) Air conditioning system, air conditioner and air conditioning method
JPH0828944A (en) Atmospheric latent heat recovery type air conditioner system
JP3044409B2 (en) Air conditioning system
JP5485114B2 (en) Air conditioning system
JP2780930B2 (en) Outside air treatment equipment
JPH0548039Y2 (en)
JP3241939B2 (en) Air conditioning system
JP2004205081A (en) Air-conditioner
JP3384712B2 (en) How to check the operation of the variable flow valve of the air conditioner
JP2989470B2 (en) Air conditioning equipment
KR100486602B1 (en) Heat pump with the function of heating circulation-water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term