JPH09194329A - 粉体化粧料 - Google Patents

粉体化粧料

Info

Publication number
JPH09194329A
JPH09194329A JP2039396A JP2039396A JPH09194329A JP H09194329 A JPH09194329 A JP H09194329A JP 2039396 A JP2039396 A JP 2039396A JP 2039396 A JP2039396 A JP 2039396A JP H09194329 A JPH09194329 A JP H09194329A
Authority
JP
Japan
Prior art keywords
powder
zinc oxide
fine particle
particle zinc
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2039396A
Other languages
English (en)
Inventor
Junichi Matsui
順一 松井
Hiromitsu Sano
宏充 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP2039396A priority Critical patent/JPH09194329A/ja
Publication of JPH09194329A publication Critical patent/JPH09194329A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)

Abstract

(57)【要約】 【課題】使用感触、紫外線防御効果に優れる粉体化粧料
を提供することを目的とする。 【解決手段】平均一次粒子径が0.001〜0.1μm
の範囲にある微粒子酸化亜鉛と白度が8〜12の範囲に
ある薄片状粉体からなる混合粉体をアシル化アミノ酸に
より被覆して得られる改質微粒子酸化亜鉛系粉体を含有
することを特徴とする粉体化粧料。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、微粒子酸化亜鉛と
特定の薄片状粉体からなる混合粉体をアシル化アミノ酸
により被覆して得られる改質微粒子酸化亜鉛系粉体を含
有することを特徴とする粉体化粧料に関する。さらに詳
しくは、透明性、分散性に優れ、紫外線防御効果を有す
る表面処理微粒子酸化亜鉛系粉体を含有することを特徴
とする使用感触が良好で、紫外線防御効果の高い粉末化
粧料に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】近年、
A領域紫外線(UVA)の肌への影響の解明が進み、B
領域紫外線(UVB)のみならずUVA対応も化粧品に
おける重要な課題の一つに数えられ、UVA防御効果の
高い化粧料が強く望まれるようになった。
【0003】従来より、酸化チタン、酸化亜鉛等の無機
粉体は紫外線を吸収散乱させる紫外線遮蔽能を有してい
るため、紫外線防御剤として粉体化粧料に配合されてい
る。しかしながら、一般に使用される無機粉体は粒子径
が約0.2〜約1μm程度の大きさであり、屈折率が大
きく、紫外線を吸収散乱させると同時に可視光線までも
強く散乱させるために肌の自然な透明感が著しく損なわ
れるという問題点を有していた。
【0004】そこで最近では、無機粉体を微粒子化して
透明性を改良させる方法が注目され、形状や大きさ(粒
子径、粒度分布)に特徴のあるUVA対応超微粒子無機
粉体、特に微粒子酸化チタンと微粒子酸化亜鉛の開発が
盛んに行われている。しかし、UVA対応の微粒子酸化
チタンにおいては、白さが強く、かつ隠ぺい力が弱いた
めに粉体化粧料中に大量に配合すると白浮き等が発生す
る問題があり、配合量に制限があった。これに対して、
微粒子酸化亜鉛では白さが少ないために粉体化粧料中の
配合量を多くすることができ、白度を一定にした場合で
は微粒子酸化チタンと比較してより高い紫外線防御効果
が得られることが知られている。
【0005】しかしながら、微粒子酸化チタン、微粒子
酸化亜鉛に限らず微粒子無機粉体は、その形状に関係な
く一般的な現象として、摩擦感が高く、伸びが悪い等の
使用感触の問題と、凝集しやすく、粉体化粧料中で均一
に分散されにくいために性能を十分に発揮できないとい
う問題点を併せ持っていた。
【0006】
【課題を解決するための手段】以上の点を鑑み、鋭意検
討した結果、本発明人らは微粒子酸化亜鉛と白度が8〜
12の範囲にある薄片状粉体からなる混合粉体をアシル
化アミノ酸で被覆することにより、得られる改質微粒子
酸化亜鉛系粉体は高い紫外線防御効果を維持したままで
微粒子酸化亜鉛の持つ摩擦感、伸びの悪さ等の使用感触
の悪さが改善されることを見いだした。さらに、該改質
微粒子酸化亜鉛系粉体は白さが少なく、自然な透明感を
有しているため粉体化粧料中に多量に配合することもで
き、これを配合することにより紫外線防御効果に優れ、
かつ使用感触も良好な粉体化粧料を得ることができる。
【0007】
【発明の実施形態】本発明で使用する微粒子酸化亜鉛
は、0.001〜0.1μmの範囲の平均一次粒子径を
有する。この範囲内であると、高い紫外線防御効果が得
られると同時に、白度が8〜12の範囲にある薄片状粉
体による分散性の向上効果が顕著に認められる。微粒子
酸化亜鉛の平均一次粒子径が0.001μm未満では、
得られる粉体化粧料の使用感が悪くなるとともに、原料
の工業的生産が困難であり、また平均一次粒子径が0.
1μmを超えると、化粧膜が白っぽくなるので、微粒子
酸化亜鉛の平均一次粒子径は、0.001〜0.1μm
の範囲であることが必要である。平均一次粒子径の測定
方法としては、例えば走査型もしくは透過型電子顕微鏡
観察から得られる粒子径を用いる方法が挙げられる。
【0008】本発明で使用する白度が8〜12の薄片状
粉体としては、透明性が高く、微粒子酸化亜鉛の凝集を
抑制し、分散性を高める働きがある粉体であれば特に限
定されない。ここでの薄片状粉体とは、板状粉体、鱗片
状粉体を含み、好ましくは長径に対する厚みが0.00
1〜0.15の範囲にあるものをさす。この範囲である
と、微粒子酸化亜鉛の凝集を抑制し、均一に分散させる
能力が非常に高い。薄片状粉体の白度が8未満の薄片状
粉体は原料の入手が困難であり、また白度が12を超え
ると、化粧膜が白っぽくなるので、薄片状粉体の白度は
8〜12の範囲にある必要がある。これら薄片状粉体と
しては、例えば、硫酸バリウム、シルクパウダー、タル
ク、セリサイト、カオリン、雲母チタン、炭酸カルシウ
ム、炭酸マグネシウム、珪酸アルミニウム、硫酸マグネ
シウム等、及びこれらの表面処理粉体から選ばれる1種
または2種以上が挙げられる。このうち、使用感触に優
れ、微粒子酸化亜鉛の分散効果の高い硫酸バリウムが特
に好ましい。
【0009】本発明における白度の評価方法としては、
黒色紙に0.24mg/cm2 の粉体を塗布し、その明
度を色差計(例えば、ミノルタ製測色装置DP300)
を用いて測色した時のL* 値をL1、黒色紙の明度をL
2とした時に、L1−L2の値を白度とする方法が挙げ
られる。本発明で使用する薄片状粉体の白度としては、
8〜12の範囲にあるものが改質微粒子酸化亜鉛系粉体
に透明性を付与するために必要である。
【0010】本発明に使用する白度が8〜12の薄片状
粉体の量は、粉体の種類、大きさ、形状によって異なる
が、微粒子酸化亜鉛100重量部に対して2.5〜50
重量部であることが好ましい。この範囲であると、微粒
子酸化亜鉛の高い紫外線防御効果を維持したままで、改
質微粒子酸化亜鉛系粉体の透明性を高める効果、感触を
滑らかにする効果が十分に発揮することができる。
【0011】本発明において微粒子酸化亜鉛と白度が8
〜12の範囲にある薄片状粉体とから混合粉体を得る方
法は、例えば、両者をジューサーミキサー等を用いて乾
式混合させる方法、または水、エタノール等の適当な溶
媒中に両者を入れてよく撹拌した後、溶媒を除去し、乾
燥、粉砕を行う方法等が挙げられる。
【0012】本発明で使用するアシル化アミノ酸として
は、N−ラウロイル−L−リジン、N−ラウロイル−D
−リジン、N−パルミトイル−L−リジン、N−ステア
ロイル−L−リジン等のリジン誘導体、N−パルミトイ
ル−L−セリン、N−ステアロイル−L−セリン等のセ
リン誘導体等が挙げられる。このうち、製造される改質
微粒子酸化亜鉛系粉体の使用感触や原料コストの点か
ら、N−ラウロイル−L−リジンが特に好ましい。
【0013】本発明に使用するアシル化アミノ酸の量
は、微粒子酸化亜鉛と白度が8〜12の範囲にある薄片
状粉体からなる混合粉体100重量部に対して0.5〜
50重量部が好ましい。この範囲であると、高い紫外線
防御効果を損なうことなく、改質微粒子酸化亜鉛系粉体
に十分な滑らかさを付与することができる。
【0014】本発明において、微粒子酸化亜鉛と白度が
8〜12の範囲にある薄片状粉体からなる混合粉体をア
シル化アミノ酸で被覆する方法としては、本発明で目的
とする効果の点から、湿式での被覆方法が好ましい。。
湿式で被覆する方法としては、例えば、適当な溶媒中に
混合粉体を均一に分散させたところに、適当な溶媒に溶
解させたアシル化アミノ酸を添加して、pH制御や温度
制御等の適当な方法を用いて混合粉体表面にアシルアミ
ノ酸を再析出させた後、濾過、乾燥、粉砕を行う方法が
ある。
【0015】このようにして得られる改質微粒子酸化亜
鉛系粉体は、微粒子酸化亜鉛が薄片状粉体のまわりに均
一に分散している状態のままアシル化アミノ酸が薄い層
で一様に覆っているような形態をとっている。
【0016】本発明の粉体化粧料の例としては、例えば
パウダーファンデーション、おしろい、フェースパウダ
ー、アイシャドウ、プレストパウダー、チークカラー等
が挙げられる。
【0017】本発明において、粉体化粧料中に改質微粒
子酸化亜鉛系粉体を配合する割合は、その製品の特性に
よって変化するが、高い紫外線防御効果及び優れた使用
感触が得られるように、粉体化粧料100重量部に対し
て0.5〜95重量部配合することが好ましい。
【0018】本発明の粉体化粧料には、改質微粒子酸化
亜鉛系粉体の他に、粉体化粧料に使用される粉体類、着
色剤、油剤、保湿剤、界面活性剤、殺菌剤、香料、溶
剤、塩類、粘剤、高分子、防腐剤等を同時に配合するこ
とができる。特に、粉体類については従来公知の無機粉
体、有機粉体、色素、及びこれらの複合粉体及びシリコ
ーン処理、フッ素化合物処理、金属石鹸処理、油剤処理
等の表面処理を施した粉体類が挙げられる。また、場合
によっては本発明の改質微粒子酸化亜鉛系粉体をさらに
従来公知の表面処理手法で表面処理することも可能であ
る。
【0019】また、紫外線防御効果を向上させる目的か
ら、酸化チタン、酸化鉄、酸化アルミニウム、酸化セリ
ウム、酸化カルシウム、ベンゾフェノン誘導体、桂皮酸
系誘導体、安息香酸系誘導体、サリチル酸系誘導体等の
公知の紫外線防御剤を併用することも可能である。
【0020】
【実施例】以下、実施例及び比較例によって本発明を詳
細に説明する。
【0021】官能特性試験方法 実施例と比較例の粉体化粧料について、専門パネラー1
0名による官能試験を行い、粉体化粧料の使用時の滑ら
かさ、皮膚上での伸び、化粧膜の白っぽさの3項目につ
いて評価した。評価は次の5段階(5;非常に良い、
4;良い、3;普通、2;悪い、1;非常に悪い)にて
判定し、10名の平均値を表2に示した。
【0022】紫外線防御効果の評価方法 平成7年9月(晴天日、2日)に実施例及び比較例の粉
体化粧料を専門パネラー10名の上腕部に実際に使用さ
せ、目視により即時黒化の有無からUVAの防御効果を
評価した。ここで、パネラー数をAとし、即時黒化しな
かったパネラーの割合をBとした時、C=B/A×10
0の値をもって紫外線防御効果を判定した。つまり、C
値が大きいほど紫外線(UVA)防御効果に優れている
ことを示す。
【0023】製造例1(実施例1で使用する改質微粒子
酸化亜鉛系粉体の製造) 微粒子酸化亜鉛(平均一次粒子径 0.02μm)76
gと板状硫酸バリウム(長径3〜10μm、短径1〜5
μm、厚さ0.1〜0.3μm、白度11.1)19g
をジューサーミキサーを用いてよく撹拌混合させ混合粉
体を得た。これを6N塩酸6.9g、精製水650gの
混合溶液に超音波を併用したスターラー撹拌により15
分間分散した。これに、N−ラウロイル−L−リジン5
gを5N水酸化ナトリウム水溶液8.7g、精製水65
gの混合溶液に溶解させたものをゆっくりと20分間か
けて添加し、混合粉体表面に再析出させた。次いで、p
Hメーターにて溶液のpHを確認しながら1N塩酸ある
いは1N水酸化ナトリウム水溶液を用いて中和を完成さ
せた後、さらに15分間撹拌を行った。そして、分散液
を減圧濾過し、さらに数度水洗した後、塩分計にて塩化
ナトリウムが完全に除去されていることを確認した。得
られた粉体を金属バットに移し、85℃に設定した送風
乾燥機にて12時間乾燥を行った。乾燥が終わった粉体
はミキサーを用いて粉砕し、改質微粒子酸化亜鉛系粉体
98.2g(収率98.2%)を得た。
【0024】上記製造例1で得られた改質微粒子酸化亜
鉛系粉体は、電子顕微鏡と赤外線吸収スペクトル分析に
より、添加したN−ラウロイル−L−リジンの殆ど全て
が混合粉体表面に被覆されていることを確認した。図1
に示す改質微粒子酸化亜鉛系粉体の電子顕微鏡による観
察結果から、微粒子酸化亜鉛が薄片状粉体のまわりに均
一に分散している状態のままN−ラウロイル−L−リジ
ンが薄い層で一様に覆っているような形態をとっている
ことが確認できた。
【0025】製造例2(実施例2で使用する改質微粒子
酸化亜鉛系粉体の製造) 製造例1で用いたものと同じ微粒子酸化亜鉛81gと板
状硫酸バリウム9gをジューサーミキサーを用いてよく
撹拌混合させた。これを6N塩酸13.8g、精製水6
50gの混合溶液に超音波を併用したスターラー撹拌に
より15分間分散した。これに、N−ラウロイル−L−
リジン10gを5N水酸化ナトリウム水溶液17.5
g、精製水129gの混合溶液に溶解させたものをゆっ
くりと25分間かけて添加し、混合粉体表面に再析出さ
せた。さらに製造例1と同様の操作を経て、改質微粒子
酸化亜鉛系粉体96.3g(収率96.3%)を得た。
得られた粉体は電子顕微鏡と赤外線吸収スペクトル分析
により、添加したN−ラウロイル−L−リジンの殆ど全
てが混合粉体表面に被覆されていることを確認した。
【0026】製造例3(比較例1で使用する改質微粒子
酸化チタン系粉体の製造) UVA対応の微粒子酸化チタン(平均一次粒子径 0.
07μm)76gと製造例1で用いた板状硫酸バリウム
19gをジューサーミキサーを用いてよく撹拌混合させ
た。これを6N塩酸6.9g、精製水650gの混合溶
液に超音波を併用したスターラー撹拌により15分間分
散した。これに、N−ラウロイル−L−リジン5gを5
N水酸化ナトリウム水溶液8.7g、精製水65gの混
合溶液に溶解させたものをゆっくりと20分間かけて添
加し、混合粉体表面に再析出させた。さらに製造例1と
同様の操作を経て、改質微粒子酸化チタン系粉体98.
0g(収率98.0%)を得た。得られた粉体は電子顕
微鏡と赤外線吸収スペクトル分析により、添加したN−
ラウロイル−L−リジンの殆ど全てが混合粉体表面に被
覆されていることを確認した。
【0027】製造例4(比較例2で使用する表面処理微
粒子酸化亜鉛の製造) 製造例1で用いたものと同じ微粒子酸化亜鉛90gを、
6N塩酸13.8g、精製水650gの混合溶液に超音
波を併用したスターラー撹拌により15分間分散した。
これに、N−ラウロイル−L−リジン10gを5N水酸
化ナトリウム水溶液17.5g、精製水129gの混合
溶液に溶解させたものをゆっくりと25分間かけて添加
し、混合粉体表面に再析出させた。さらに製造例1と同
様の操作を経て、表面処理微粒子酸化亜鉛99.1g
(収率99.1%)を得た。得られた粉体は電子顕微鏡
と赤外線吸収スペクトル分析により、添加したN−ラウ
ロイル−L−リジンの殆ど全てが微粒子酸化亜鉛表面に
被覆されていることを確認した。
【0028】製造例5(比較例5で使用する改質酸化亜
鉛系粉体の製造) 酸化亜鉛(平均一次粒子径、0.20μm)76gと製
造例1で用いたのと同じ板状硫酸バリウム19gをジュ
ーサーミキサーを用いてよく撹拌混合させた。これを6
N塩酸6.9g、精製水650gの混合溶液に超音波を
併用したスターラー撹拌により15分間分散した。これ
に、N−ラウロイル−L−リジン5gを5N水酸化ナト
リウム水溶液8.7g、精製水65gの混合溶液に溶解
させたものをゆっくりと20分間かけて添加し、混合粉
体表面に再析出させた。さらに製造例1と同様の操作を
経て、改質酸化亜鉛系粉体98.5g(収率98.5
%)を得た。得られた粉体は電子顕微鏡と赤外線吸収ス
ペクトル分析により、添加したN−ラウロイル−L−リ
ジンの殆ど全てが混合粉体表面に被覆されていることを
確認した。
【0029】製造例6(比較例6で使用する改質微粒子
酸化亜鉛系粉体の製造) 製造例1で用いたものと同じ微粒子酸化亜鉛76gと板
状酸化チタン(白度14.2)19gをジューサーミキ
サーを用いてよく撹拌混合させた。これを6N塩酸6.
9g、精製水650gの混合溶液に超音波を併用したス
ターラー撹拌により15分間分散した。これに、N−ラ
ウロイル−L−リジン5gを5N水酸化ナトリウム水溶
液8.7g、精製水65gの混合溶液に溶解させたもの
をゆっくりと20分間かけて添加し、混合粉体表面に再
析出させた。さらに製造例1と同様の操作を経て、改質
微粒子酸化亜鉛系粉体97.8g(収率97.8%)を
得た。得られた粉体は電子顕微鏡と赤外線吸収スペクト
ル分析により、添加したN−ラウロイル−L−リジンの
殆ど全てが混合粉体表面に被覆されていることを確認し
た。
【0030】製造例7(比較例8で使用する改質微粒子
酸化亜鉛系粉体の製造) 製造例1で用いたものと同じ微粒子酸化亜鉛76gと略
球状硫酸バリウム(平均粒子径0.8μm)19gをジ
ューサーミキサーを用いてよく撹拌混合させた。これを
6N塩酸6.9g、精製水650gの混合溶液に超音波
を併用したスターラー撹拌により15分間分散した。こ
れに、N−ラウロイル−L−リジン5gを5N水酸化ナ
トリウム水溶液8.7g、精製水65gの混合溶液に溶
解させたものをゆっくりと20分間かけて添加し、混合
粉体表面に再析出させた。さらに製造例1と同様の操作
を経て、改質微粒子酸化亜鉛系粉体98.1g(収率9
8.1%)を得た。得られた粉体は電子顕微鏡と赤外線
吸収スペクトル分析により、添加したN−ラウロイル−
L−リジンの殆ど全てが混合粉体表面に被覆されている
ことを確認した。
【0031】実施例1(パウダーファンデーション) 表1の処方に従い、パウダーファンデーションを作製し
た。尚、改質微粒子酸化亜鉛系粉体は製造例1で製造し
たものを用いた。
【0032】
【表1】
【0033】粉体をミキサーを用いて混合した後、油剤
成分と防腐剤を加えてさらに混合を行った。得られた混
合粉体を60メッシュに通した後、金型を用いて金皿に
打型し、製品のパウダーファンデーションを得た。
【0034】実施例2(パウダーファンデーション) 実施例1の改質微粒子酸化亜鉛系粉体(製造例1)の代
わりに改質微粒子酸化亜鉛系粉体(製造例2)を用いた
他は全て実施例1と同様にしてパウダーファンデーショ
ンの試作を行った。
【0035】比較例1(パウダーファンデーション) 実施例1の改質微粒子酸化亜鉛系粉体(製造例1)の代
わりに改質微粒子酸化チタン系粉体(製造例3)を用い
た他は全て実施例1と同様にしてパウダーファンデーシ
ョンの試作を行った。
【0036】比較例2(パウダーファンデーション) 実施例1の改質微粒子酸化亜鉛系粉体(製造例1)の代
わりに表面処理微粒子酸化亜鉛(製造例4)を用いた他
は全て実施例1と同様にしてパウダーファンデーション
の試作を行った。
【0037】比較例3(パウダーファンデーション) 実施例1の改質微粒子酸化亜鉛系粉体(製造例1)の代
わりに、製造例1で用いたものと同じ微粒子酸化亜鉛と
板状硫酸バリウムを4:1の割合(重量比)でミキサー
混合したものを用いた他は全て実施例1と同様にしてパ
ウダーファンデーションの試作を行った。
【0038】比較例4(パウダーファンデーション) 実施例1の改質微粒子酸化亜鉛系粉体(製造例1)の代
わりに、製造例1で用いたものと同じ微粒子酸化亜鉛を
用いた他は全て実施例1と同様にしてパウダーファンデ
ーションの試作を行った。
【0039】比較例5(パウダーファンデーション) 実施例1の改質微粒子酸化亜鉛系粉体(製造例1)の代
わりに、改質酸化亜鉛系粉体(製造例5)を用いた他は
全て実施例1と同様にしてパウダーファンデーションの
試作を行った。
【0040】比較例6(パウダーファンデーション) 実施例1の改質微粒子酸化亜鉛系粉体(製造例1)の代
わりに、改質微粒子酸化亜鉛系粉体(製造例6)を用い
た他は全て実施例1と同様にしてパウダーファンデーシ
ョンの試作を行った。
【0041】比較例7(パウダーファンデーション) 実施例1の改質微粒子酸化亜鉛系粉体(製造例1)の代
わりに、製造例1で使用で用いたものと同じ微粒子酸化
亜鉛、板状硫酸バリウム、N−ラウロイル−L−リジン
を76:19:15の割合(重量比)でミキサーによる
乾式で単純混合したものを用いた他は全て実施例1と同
様にしてパウダーファンデーションの試作を行った。
【0042】比較例8(パウダーファンデーション) 実施例1の改質微粒子酸化亜鉛系粉体(製造例1)の代
わりに、改質微粒子酸化亜鉛系粉体(製造例7)を用い
た他は全て実施例1と同様にしてパウダーファンデーシ
ョンの試作を行った。
【0043】実施例1、2と比較例1〜8の官能特性試
験の結果、及び紫外線防御効果の評価結果をを表2に示
す。
【0044】
【表2】
【0045】表2の結果から、本発明の改質微粒子酸化
亜鉛系粉体を配合した実施例1、2は、N−ラウロイル
−L−リジンで表面処理された改質微粒子酸化チタン系
粉体を配合した比較例1と比べて、化粧膜の白っぽさが
抑えられていることが判る。比較例1のように、紫外線
防御効果を得るために、改質微粒子酸化チタン系粉体を
多量に配合すると化粧膜の白っぽさが強く商品として使
用できない。また、使用時の滑らかさ、皮膚上での伸び
についても、微粒子酸化亜鉛を単独でN−ラウロイル−
L−リジンで処理したものを配合した比較例2、微粒子
酸化亜鉛と板状硫酸バリウムの単純混合物を配合した比
較例3、及び、従来の微粒子酸化亜鉛をそのまま配合し
た比較例4と比較しても、実施例1、2は有意に優れて
いることも明かである。さらに、微粒子酸化亜鉛、板状
硫酸バリウム、N−ラウロイル−L−リジンの単純混合
物を配合した比較例7と比較しても、使用時の滑らか
さ、皮膚上での伸びの点から、実施例1、2は有意に優
れていた。さらにまた、薄片状でなく略球状硫酸バリウ
ムを使用した改質微粒子酸化亜鉛系粉体を配合した比較
例8と比較しても、使用時の滑らかさ、皮膚上での伸
び、化粧膜の白っぽさの点から実施例1、2は有意に優
れていた。比較例6である薄片状粉体の白度の数値が本
発明の白度の範囲外である板状酸化チタンを用いた以外
は本発明で使用する改質微粒子酸化亜鉛系粉体と同じ方
法で得た改質微粒子酸化亜鉛系粉体を配合した比較例6
も、化粧膜の白っぽさが強く商品として劣っていた。す
なわち、実施例1、2はUVA領域の紫外線防御効果に
優れており、今回評価したいずれの項目においてもバラ
ンス良く優れた効果を得ていることが判る。
【0046】
【発明の効果】以上のことから、本発明は、改質微粒子
酸化亜鉛系粉体を用いることにより、使用感触、紫外線
防御効果に優れる粉体化粧料を提供することは明かであ
る。
【図面の簡単な説明】
【図1】図1は、本発明で使用する改質微粒子酸化亜鉛
系粉体(製造例1)の電子顕微鏡観察(20 ,000
倍)による表面形態を示す写真である。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 平均一次粒子径が0.001〜0.1μ
    mの範囲にある微粒子酸化亜鉛と白度が8〜12の範囲
    にある薄片状粉体からなる混合粉体をアシル化アミノ酸
    により被覆して得られる改質微粒子酸化亜鉛系粉体を含
    有することを特徴とする粉体化粧料。
JP2039396A 1996-01-10 1996-01-10 粉体化粧料 Pending JPH09194329A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2039396A JPH09194329A (ja) 1996-01-10 1996-01-10 粉体化粧料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2039396A JPH09194329A (ja) 1996-01-10 1996-01-10 粉体化粧料

Publications (1)

Publication Number Publication Date
JPH09194329A true JPH09194329A (ja) 1997-07-29

Family

ID=12025781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2039396A Pending JPH09194329A (ja) 1996-01-10 1996-01-10 粉体化粧料

Country Status (1)

Country Link
JP (1) JPH09194329A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154915A (ja) * 2000-09-11 2002-05-28 Showa Denko Kk 化粧料
JP2003055151A (ja) * 2001-08-09 2003-02-26 Noevir Co Ltd 粉体固型ファンデーション
JP2018008910A (ja) * 2016-07-15 2018-01-18 株式会社ディーエイチシー 日焼け止め化粧料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154915A (ja) * 2000-09-11 2002-05-28 Showa Denko Kk 化粧料
JP2003055151A (ja) * 2001-08-09 2003-02-26 Noevir Co Ltd 粉体固型ファンデーション
JP2018008910A (ja) * 2016-07-15 2018-01-18 株式会社ディーエイチシー 日焼け止め化粧料

Similar Documents

Publication Publication Date Title
JP2014084251A (ja) ルチル型酸化チタン及びそれを使用した化粧料
JP2007230995A (ja) サブミクロン窒化ホウ素粒子を含む化粧品組成物
US20080160198A1 (en) Black brightening flake and cosmetic preparation, coating composition, resin composition, and ink composition each containing the same
JP3388592B2 (ja) 紫外線遮蔽用の鱗片状顔料、その製造方法および上記紫外線遮蔽用の鱗片状顔料を配合した化粧料
WO2016189962A1 (ja) 表面処理した化粧料用粉体及び顔料級酸化チタンを配合した、白浮きのないメーキャップ化粧料
JP2008174698A (ja) 平滑薄片状粉体、高光輝性顔料及びそれらの製造方法
JP2007126482A (ja) 化粧料
JP2004339185A (ja) 干渉色薄片状タルク及びそれを配合した化粧料
CN114401706A (zh) 含有粉末的化妆料
JPH045217A (ja) 被覆顔料及びこれを含有する化粧料
JP3492788B2 (ja) メイクアップ化粧料
JPH09194329A (ja) 粉体化粧料
JP2567596B2 (ja) 合成雲母粉体、その製造方法および該合成雲母粉体を配合した化粧料
JPS61257907A (ja) 化粧料
JP3417735B2 (ja) 易崩壊性軟凝集粉体および化粧料
CN116782874A (zh) 化妆品
JP2008120715A (ja) 化粧品組成物
KR101508192B1 (ko) 수열합성법으로 제조된 수산화마그네슘을 이용한 판상 안료 표면처리 방법 및 이를 이용한 소프트 포커스 화장료 조성물
JP5582525B2 (ja) 固形粉末化粧料
JPH09208427A (ja) 粉体化粧料
JP3884534B2 (ja) 化粧料
JP3594721B2 (ja) 表面被覆薄片状粉体、その製造方法及びそれを配合した化粧料
JP3677610B2 (ja) 酸化鉄含有二酸化チタン及びこれを含有する組成物
JPS61257910A (ja) 化粧料
JPH06102609B2 (ja) 化粧料