JPH09194265A - Alumina-magnesia-carbon castable refractory - Google Patents

Alumina-magnesia-carbon castable refractory

Info

Publication number
JPH09194265A
JPH09194265A JP8023160A JP2316096A JPH09194265A JP H09194265 A JPH09194265 A JP H09194265A JP 8023160 A JP8023160 A JP 8023160A JP 2316096 A JP2316096 A JP 2316096A JP H09194265 A JPH09194265 A JP H09194265A
Authority
JP
Japan
Prior art keywords
alumina
magnesia
carbon
raw material
castable refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8023160A
Other languages
Japanese (ja)
Inventor
Hisahiro Teranishi
久広 寺西
Isao Imai
功 今井
Tomohito Kuroki
智史 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP8023160A priority Critical patent/JPH09194265A/en
Publication of JPH09194265A publication Critical patent/JPH09194265A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00551Refractory coatings, e.g. for tamping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain castable refractories not deteriorating working environment and capable of unnecessitating firing before use. SOLUTION: The objective castable refractories consist of 2-12wt.% magnesia stock of <=200 mesh, 2-15wt.% carbon stock made of nonvolatile amorphous carbon powder, 2-8wt.% silicon carbide, 0.1-2.0wt.% boron carbide powder, 2-10wt.% alumina cement, 0.5-5wt.% silica flour and the balance alumina stock.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶銑、溶鋼等の溶
融金属の攪拌、成分調整に使用される浸漬ランスの被覆
耐火物、取鍋、タンディッシュ等の精錬、連鋳用容器の
内張り耐火物として使用されるアルミナ・マグネシア・
カーボン質キャスタブル耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to agitating molten metal such as hot metal and molten steel, refractory coating for immersion lances used for component adjustment, refining of ladle, tundish, etc. Alumina / Magnesia /
Carbon castable refractories.

【0002】[0002]

【従来の技術】一般に、例えば浸漬ランス用キャスタブ
ル耐火物としては、スラグに対する耐食性、熱的,構造
的耐スポーリング性を具備すべき特性として求められる
ため、アルミナ(Al2 3 )質又はアルミナ−シリカ
(SiO2 )質のものが用いられている。しかし、かか
るキャスタブル耐火物で被覆された浸漬ランスは、耐用
寿命が短いため、従来、主原料としてのアルミナ及び耐
スラグ濡れ性と熱的、機械的応力の緩和に優れるグラフ
ァイトに、マグネシア,水酸化マグネシウム等のスピネ
ル結合用結合剤及びタール,フェノール樹脂等のカーボ
ン結合用結合剤を添加してなり、使用時に主原料のアル
ミナ粒子とグラファイト粒子とをカーボン結合させ、か
つアルミナ粒子同士をスピネル結合させるアルミナ−カ
ーボン質キャスタブル耐火物を用い、被覆耐火物の強度
を高め、かつ耐久性に富んだものとすることが知られて
いる(特公昭61−236656号公報参照)。
2. Description of the Related Art Generally, castable refractories for immersion lances, for example, are required to have corrosion resistance against slag, thermal and structural spalling resistance, so that they are alumina (Al 2 O 3 ) or alumina. -Silica (SiO 2 ) material is used. However, since the immersion lance coated with such castable refractory has a short service life, conventionally, alumina as the main raw material and graphite, which is excellent in wettability and relaxation of thermal and mechanical stress, and magnesia, hydroxide A binder for spinel binding such as magnesium and a binder for carbon binding such as tar and phenol resin are added, and at the time of use, alumina particles and graphite particles as main raw materials are carbon-bonded, and alumina particles are spinel-bonded to each other. It is known that an alumina-carbon castable refractory material is used to enhance the strength of the coated refractory material and to make it highly durable (see Japanese Patent Publication No. 61-236656).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
キャスタブル耐火物では、カーボンを含むため、耐スポ
ーリング濡れ性と熱的,機械的応力の緩和に優れるもの
の、タール,フェノール樹脂等の揮発分を含む非水系結
合剤を用いているので、混練時に悪臭が発生し作業環境
が悪い不具合がある。又、結合強度の発現を使用時の加
熱による焼成によって行う場合、急激に発生する揮発分
が表面剥離を誘発するので、予め焼成によって揮発分を
除去する必要があり、キャスタブル耐火物として実用的
でない不具合がある。そこで、本発明は、作業環境の悪
化を招くことなく、かつ使用に先立って焼成を不要とし
得るアルミナ・マグネシア・カーボン質キャスタブル耐
火物を提供することを目的とする。
However, since the conventional castable refractory contains carbon, it is excellent in spalling wettability and relaxation of thermal and mechanical stress, but it does not contain volatile components such as tar and phenol resin. Since a non-aqueous binder containing it is used, there is a problem that a bad odor is generated during kneading and the working environment is bad. Also, when the bond strength is expressed by firing by heating during use, it is necessary to remove the volatile matter by firing in advance because the volatile matter that is rapidly generated induces surface peeling, which is not practical as a castable refractory. There is a defect. Therefore, an object of the present invention is to provide an alumina / magnesia / carbonaceous castable refractory which does not deteriorate the working environment and does not require firing prior to use.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明のアルミナ・マグネシア・カーボン質キャス
タブル耐火物は、200メッシュ以下のマグネシア原料
2〜12wt%、不揮発性非晶質カーボン粉末からなる
カーボン原料2〜15wt%、炭化珪素粉末2〜8wt
%、炭化硼素粉末0.1〜2.0wt%、アルミナセメ
ント2〜10wt%、シリカフラワー0.5〜5wt
%、残部アルミナ原料からなることを特徴とする。
In order to solve the above-mentioned problems, the alumina-magnesia-carbonaceous castable refractory material of the present invention comprises 2 to 12 wt% of a magnesia raw material of 200 mesh or less and a non-volatile amorphous carbon powder. Carbon raw material 2 to 15 wt%, silicon carbide powder 2 to 8 wt%
%, Boron carbide powder 0.1 to 2.0 wt%, alumina cement 2 to 10 wt%, silica flour 0.5 to 5 wt%
%, The balance being made of alumina raw material.

【0005】上記手段によれば、アルミナセメントを結
合剤とする水系による混練が可能となり、かつ使用に伴
う焼成時に揮発分の急激な発生がない。マグネシア原料
は、塩基性スラグに対する高耐食性、アルミナとのスピ
ネル結合による強度の発現に寄与する。マグネシア原料
の粒径が、200メッシュを超えるとアルミナとのスピ
ネル結合による強度発現を望めない。又、マグネシア原
料の含有量が、2wt%未満であると塩基性スラグに対
する耐食性を得られず、かつアルミナとのスピネル結合
による強度発現を望めない一方、10wt%を超えると
混練水分量を多く必要とし、施工体の気孔率が大きくな
って高耐食性を維持できない。カーボン原料は、耐スラ
グ濡れ性、熱的,機械的応力の緩和に寄与し、施工時に
水に濡れ易く流動性に優れ、かつ溶湯への接触時に揮発
分の急激な発生に伴う割れを防ぐため、カーボンブラッ
ク等の不揮発性非晶質カーボン粉末を用いる。カーボン
原料の含有量が、2wt%未満であるとカーボン本来の
特性を得ることができず、一方、15wt%を超えると
混練水分量を多く必要とし、施工体の気孔率が大きくな
って高耐食性を維持できない。なお、カーボン原料の分
散性を向上させるため、芳香族スルホン酸ホルマリン縮
合物アンモニウム塩等を添加しても差し支えない。炭化
珪素粉末、炭化硼素粉末は、含有カーボンの酸化防止剤
として作用する。これ以外の酸化防止剤、例えばMgO
−Cれんがに用いられる金属アルミニウム、金属シリコ
ンを使用した場合、養生、乾燥時に水和反応により水素
ガスが発生し、施工体が割れ易くなる。特に、浸漬ラン
スのような長尺物の場合には、施工体にクラックが入り
易い。しかして、炭化珪素粉末、炭化硼素粉末を使用し
た場合、水素ガスの発生が無く、緻密な施工体が得られ
る。炭化珪素粉末の含有量が2wt%未満、炭化硼素粉
末の含有量が0.1wt%未満であると十分な酸化防止
効果を得ることができない、一方、炭化珪素粉末の含有
量が8wt%を超え、炭化硼素粉末の含有量が2.0w
t%を超えると耐酸化効果は高いが、珪酸,ホウ酸の生
成量が多くなって耐食性が低下する。結合剤として機能
するアルミナセメントの含有量が、2wt%未満である
と必要最低限の強度が得られず、キャスタブル耐火物と
して適用できない、一方、10wt%を超えると施工時
の流動性を確保するための混練水分量を多く必要とし、
施工体の気孔率が大きくなると同時にCaO成分の増加
による低融点物の生成が多くなって高耐食性を維持でき
ない。シリカフラワーは、鋳込み時の流動性確保、強度
発現及びマグネシアの消化防止に作用する。特に、水系
でマグネシア原料を使用する場合、シリカフラワーは水
和抑制剤として必要不可欠である。シリカフラワーの含
有量が、0.5wt%未満であると水和抑制効果が認め
られず、かつ鋳込み時の流動性も低下する、一方、5w
t%を超えると混練水分量を多く必要とし、施工体の気
孔率が大きくなって高耐食性を維持できない。又、アル
ミナ原料は、粗粒、中間粒及び微分によって粒度調整さ
れたもので、電融アルミナ,焼結アルミナ等の人工原
料、及びボーキサイト,ばん土頁岩等の天然原料のうち
少なくとも1種以上から用いられるが、品質安定性及び
耐食性に優れることから人工原料を用いることが望まし
い。天然原料では高耐食性を損なうおそれがある。
According to the above-mentioned means, it is possible to knead with an aqueous system using alumina cement as a binder, and volatile components are not abruptly generated at the time of firing accompanying use. The magnesia raw material contributes to high corrosion resistance against basic slag and strength development by spinel bonding with alumina. When the particle size of the magnesia raw material exceeds 200 mesh, strength development due to spinel bond with alumina cannot be expected. Further, if the content of the magnesia raw material is less than 2 wt%, the corrosion resistance to basic slag cannot be obtained, and the strength development due to the spinel bond with alumina cannot be expected, while if it exceeds 10 wt%, a large amount of kneading water content is required. Therefore, the porosity of the construction body becomes large, and high corrosion resistance cannot be maintained. The carbon raw material contributes to slag wetting resistance, relaxation of thermal and mechanical stress, is easily wetted by water during construction, has excellent fluidity, and prevents cracking due to abrupt generation of volatile components when contacting molten metal. A non-volatile amorphous carbon powder such as carbon black is used. If the content of the carbon raw material is less than 2 wt%, the original characteristics of carbon cannot be obtained. On the other hand, if it exceeds 15 wt%, a large amount of kneading water is required, and the porosity of the construction body becomes large, resulting in high corrosion resistance. Can't keep up. In order to improve the dispersibility of the carbon raw material, an aromatic sulfonic acid formalin condensate ammonium salt or the like may be added. The silicon carbide powder and the boron carbide powder act as an antioxidant for the contained carbon. Other antioxidants such as MgO
When metal aluminum or metal silicon used for the -C brick is used, hydrogen gas is generated due to a hydration reaction during curing and drying, and the construction body is easily cracked. In particular, in the case of a long object such as an immersion lance, the construction body is likely to be cracked. When silicon carbide powder or boron carbide powder is used, however, hydrogen gas is not generated and a dense work body can be obtained. If the content of the silicon carbide powder is less than 2 wt% and the content of the boron carbide powder is less than 0.1 wt%, a sufficient antioxidant effect cannot be obtained, while the content of the silicon carbide powder exceeds 8 wt%. , The content of boron carbide powder is 2.0w
If it exceeds t%, the oxidation resistance is high, but the production amount of silicic acid and boric acid is large and the corrosion resistance is lowered. If the content of alumina cement that functions as a binder is less than 2 wt%, the required minimum strength cannot be obtained and it cannot be applied as a castable refractory, while if it exceeds 10 wt%, fluidity during construction is secured. Requires a large amount of water for kneading,
At the same time as the porosity of the construction body increases, the production of low-melting-point substances increases due to the increase of the CaO component, and high corrosion resistance cannot be maintained. Silica flour acts to secure fluidity during casting, develop strength and prevent digestion of magnesia. In particular, when using a magnesia raw material in an aqueous system, silica flour is indispensable as a hydration inhibitor. If the content of silica flour is less than 0.5 wt%, the hydration suppressing effect is not recognized, and the fluidity at the time of casting decreases, while 5w
If it exceeds t%, a large amount of kneading water is required, the porosity of the construction body becomes large, and high corrosion resistance cannot be maintained. Further, the alumina raw material is coarse-grained, intermediate-grained, and particle-size-adjusted by differentiation. Although used, it is desirable to use an artificial raw material because of its excellent quality stability and corrosion resistance. Natural raw materials may impair high corrosion resistance.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。 実施例1〜12 表1,表2に示す各配合となるように、粗粒、中間粒及
び微粉からなるアルミナ原料と、200メッシュ以下の
マグネシア原料と、不揮発性非晶質カーボン粉末である
カーボンブラックからなるカーボン原料と、酸化防止剤
としての炭化珪素粉末及び炭化硼素粉末と、結合剤とし
てのアルミナセメントと、シリカフラワーとを所定wt
%添加し、万能混合ミキサーで混合した後更に所要量の
水を添加して混練し、しかる後に40×40×160m
mの型枠へ振動をかけながら流し込み、養生、乾燥及び
使用時の焼成に相当する焼成を施して各評価用サンプル
を得た。各評価用サンプルについて流し込み時の水分
量、110℃の温度で24時間乾燥後のかさ比重、見掛
気孔率、圧縮強さ、及び1500℃の温度で3時間焼成
後のかさ比重、圧縮強さを測定し、その後に誘導炉浸漬
法による耐食性の比較試験を行い、各結果を表1,表2
に併記した。なお、誘導炉浸漬法は、溶鋼を溶融しかつ
侵食剤としてCaO/SiO2 =3.3の合成スラグを
用いた誘導加熱炉内に、各評価用サンプルを20分間浸
漬した後引き上げ、それぞれの浸漬部の溶損量を測定
し、実施例1の溶損量を100として指数表示した。数
値が小さい程、耐食性に優れる。
Embodiments of the present invention will be described below in detail. Examples 1 to 12 Alumina raw material composed of coarse particles, intermediate particles and fine powder, magnesia raw material of 200 mesh or less, and carbon which is a non-volatile amorphous carbon powder so as to have the respective formulations shown in Table 1 and Table 2. Predetermined wt of carbon raw material consisting of black, silicon carbide powder and boron carbide powder as antioxidant, alumina cement as binder, and silica flour
%, And after mixing with a universal mixing mixer, the required amount of water is further added and kneaded, and then 40 × 40 × 160 m
Samples for evaluation were obtained by pouring into a m frame while vibrating, and performing curing, drying and firing corresponding to firing during use. Moisture content at the time of pouring, bulk specific gravity after drying at 110 ° C. for 24 hours, apparent porosity, compressive strength, and bulk specific gravity after compressing at 1500 ° C. for 3 hours, compressive strength for each evaluation sample Was measured, and thereafter, a comparative test of corrosion resistance by an induction furnace immersion method was performed, and each result is shown in Table 1 and Table 2.
It was also described in. In the induction furnace immersion method, each evaluation sample was immersed for 20 minutes in an induction heating furnace that melted molten steel and used a synthetic slag of CaO / SiO 2 = 3.3 as an erosion agent, and then pulled up. The amount of erosion in the immersed portion was measured, and the amount of erosion in Example 1 was set to 100 and displayed as an index. The smaller the value, the better the corrosion resistance.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【表2】 [Table 2]

【0009】比較例1〜15 表3,表4に示す各配合となるように、粗粒、中間粒及
び微粉からなるアルミナ原料と、200メッシュ以下又
は100メッシュのマグネシア原料と、不揮発性非晶質
カーボン粉末であるカーボンブラックからなるカーボン
原料と、酸化防止剤としての炭酸珪素粉末、炭化硼素粉
末、金属アルミニウム及び金属シリコンの1種以上と、
結合剤としてのアルミナセメントと、シリカフラワーと
を所定wt%添加し、万能ミキサーで混合した後所要量
の水を添加して混練し、しかる後に40×40×160
mmの型枠へ振動をかけながら流し込み、養生、乾燥及
び使用時の焼成に相当する焼成を施して各比較評価用サ
ンプルを得た。各比較評価用サンプルについて実施例1
〜12と同様の測定及び耐食性の比較試験を行い、各結
果を表3,表4に併記した。
Comparative Examples 1 to 15 Alumina raw material consisting of coarse particles, intermediate particles and fine powders, magnesia raw material of 200 mesh or less or 100 mesh, and non-volatile amorphous so as to have each composition shown in Table 3 and Table 4. Carbon raw material consisting of carbon black which is high quality carbon powder, and one or more of silicon carbonate powder, boron carbide powder, metallic aluminum and metallic silicon as an antioxidant,
A predetermined amount by weight of alumina cement as a binder and silica flour were added, mixed in a universal mixer, and then a required amount of water was added and kneaded, and then 40 × 40 × 160.
Samples for comparative evaluation were obtained by pouring into a mm frame while vibrating, performing curing, drying and firing corresponding to firing during use. Example 1 for each comparative evaluation sample
Measurements and comparative tests of corrosion resistance similar to those of Nos. 12 to 12 were performed, and the results are shown in Tables 3 and 4.

【0010】[0010]

【表3】 [Table 3]

【0011】[0011]

【表4】 [Table 4]

【0012】測定及び試験の結果、実施例1〜12は、
いずれも圧縮強さ及び耐食性が良好であった。これに対
し、比較例10,11,14は、施工体に亀裂を生じ、
比較例12は、施工体のハンドリング強度が低いため、
圧縮強さ及び耐食性の評価ができなかった。又、その他
の比較例は、耐食性比較試験において低位な結果であっ
た。
As a result of measurement and test, Examples 1 to 12 are
All had good compressive strength and corrosion resistance. On the other hand, Comparative Examples 10, 11, and 14 cause cracks in the construction body,
In Comparative Example 12, since the handling strength of the construction body is low,
The compression strength and corrosion resistance could not be evaluated. The other comparative examples had low results in the corrosion resistance comparison test.

【0013】[0013]

【発明の効果】以上説明したように、本発明のアルミナ
・マグネシア・カーボン質キャスタブル耐火物によれ
ば、アルミナセメントを結合剤とする水系による混練が
可能となり、かつ使用に伴う焼成時に揮発分の急激な発
生がないので、従来のように作業環境の悪化を招くこと
がなく、かつ使用に先立つ焼成が不要であると共に、高
強度でしかもスラグに対する耐食性に優れたキャスタブ
ル耐火物を得ることができる。
As described above, according to the alumina / magnesia / carbonaceous castable refractory of the present invention, it is possible to carry out kneading with an aqueous system using alumina cement as a binder, and to evaporate volatile components at the time of firing accompanying use. Since there is no sudden occurrence, it is possible to obtain a castable refractory that does not deteriorate the working environment as in the past, does not require firing before use, and has high strength and excellent corrosion resistance against slag. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 200メッシュ以下のマグネシア原料2
〜12wt%、不揮発性非晶質カーボン粉末からなるカ
ーボン原料2〜15wt%、炭化珪素粉末2〜8wt
%、炭化硼素粉末0.1〜2.0wt%、アルミナセメ
ント2〜10wt%、シリカフラワー0.5〜5wt
%、残部アルミナ原料からなることを特徴とするアルミ
ナ・マグネシア・カーボン質キャスタブル耐火物。
1. A magnesia raw material 2 of 200 mesh or less
˜12 wt%, carbon raw material consisting of non-volatile amorphous carbon powder 2˜15 wt%, silicon carbide powder 2˜8 wt%
%, Boron carbide powder 0.1 to 2.0 wt%, alumina cement 2 to 10 wt%, silica flour 0.5 to 5 wt%
%, Alumina, magnesia, carbonaceous castable refractory, characterized by the balance being alumina raw material.
JP8023160A 1996-01-16 1996-01-16 Alumina-magnesia-carbon castable refractory Pending JPH09194265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8023160A JPH09194265A (en) 1996-01-16 1996-01-16 Alumina-magnesia-carbon castable refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8023160A JPH09194265A (en) 1996-01-16 1996-01-16 Alumina-magnesia-carbon castable refractory

Publications (1)

Publication Number Publication Date
JPH09194265A true JPH09194265A (en) 1997-07-29

Family

ID=12102864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8023160A Pending JPH09194265A (en) 1996-01-16 1996-01-16 Alumina-magnesia-carbon castable refractory

Country Status (1)

Country Link
JP (1) JPH09194265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047832A1 (en) * 1999-12-24 2001-07-05 Shinagawa Refractories Co., Ltd. Carbon-containing aqueous monolithic refractory
KR20040021226A (en) * 2002-09-03 2004-03-10 주식회사 포스코 Castable refractory containing magnesia
CN112209726A (en) * 2019-07-11 2021-01-12 王朝晖 Environment-friendly bonding agent for tundish dry material
CN113087500A (en) * 2021-03-10 2021-07-09 武汉科技大学 Alumina-silicon carbide-carbonaceous cement-free castable suitable for winter construction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047832A1 (en) * 1999-12-24 2001-07-05 Shinagawa Refractories Co., Ltd. Carbon-containing aqueous monolithic refractory
KR20040021226A (en) * 2002-09-03 2004-03-10 주식회사 포스코 Castable refractory containing magnesia
CN112209726A (en) * 2019-07-11 2021-01-12 王朝晖 Environment-friendly bonding agent for tundish dry material
CN113087500A (en) * 2021-03-10 2021-07-09 武汉科技大学 Alumina-silicon carbide-carbonaceous cement-free castable suitable for winter construction

Similar Documents

Publication Publication Date Title
JP3283883B2 (en) Alumina-magnesia-graphite refractory for continuous casting
JPH11189477A (en) Graphite-containing castable refractory material for mixer car
JPH09202667A (en) Castable refractory for slide gate
JPH09194265A (en) Alumina-magnesia-carbon castable refractory
WO2022215727A1 (en) Castable refractory
JP7302543B2 (en) monolithic refractories
JPH082975A (en) Refractory for casting application
KR100299460B1 (en) Monolithic refractory contained carbon
JP2002201080A (en) Using method of scrap refractory and castable refractory
JPH08175875A (en) Castable refractory
JPH08175877A (en) Castable refractory
JPH08157267A (en) Castable refractory for flow-in execution
JP7088130B2 (en) A method of kneading a carbon-containing amorphous refractory and a method of manufacturing a molded body of a carbon-containing amorphous refractory using the same.
JP2607963B2 (en) Pouring refractories
JPH08319170A (en) Alumina carbon prepared unshaped refractory for molten metal
JP2000335980A (en) Graphite-containing monolithic refractory
JP3783526B2 (en) Method for producing castable refractories containing waste material aggregate
JP2002338347A (en) Zirconia-graphite fire resisting material and immersion nozzle for continuous casting using the material
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JPH1025167A (en) Refractory for casting using magnesia-based coarse grain
JPH11240773A (en) Castable refractory
JP2005335966A (en) Graphite-containing castable refractory
JPH11199330A (en) Construction of castable refractory
JPH10158072A (en) Magnesia-carbon castable refractory and its applied body
JP2023165768A (en) Castable refractories and molten steel ladle using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060306