JPH09192099A - Ocular refractometer - Google Patents

Ocular refractometer

Info

Publication number
JPH09192099A
JPH09192099A JP8028501A JP2850196A JPH09192099A JP H09192099 A JPH09192099 A JP H09192099A JP 8028501 A JP8028501 A JP 8028501A JP 2850196 A JP2850196 A JP 2850196A JP H09192099 A JPH09192099 A JP H09192099A
Authority
JP
Japan
Prior art keywords
eye
diopter
luminous flux
area array
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8028501A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
嘉 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8028501A priority Critical patent/JPH09192099A/en
Publication of JPH09192099A publication Critical patent/JPH09192099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep the size of a luminous flux unchanged on an area array sensor by projecting the luminous flux to the center of the eyegrounds of eyes to be inspected while using the diopter of a person to be inspected. SOLUTION: A luminous flux from an infrared LED light source 1 projects a spot luminous flux to the center part of the eyegrounds R of eyes E to be inspected through a diopter variable lens 3 or the like. The reflected light passes through six apertures of a stop 6, a diopter variable prism 8 and a separation prism 9 and is received by an area array sensor 10 as six luminous fluxes to compute a refraction value by an arithmetic means 11. The diopter variable lens 8 is arranged in front of the separation prism 9. The diopter variable lenses 3 and 8 are interlocked by an manually interlocking mechanism 7 to focus. Thus, the size of the luminous flux is kept unchanged on the area array sensor 10 thereby measuring ocular refractivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、眼科医院や眼鏡店
において被検眼の眼屈折力を測定する眼屈折計に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eye refractometer for measuring the eye refractive power of an eye to be inspected in an ophthalmology clinic or an eyeglass store.

【0002】[0002]

【従来の技術】従来、オートレクラクトメータにおいて
は、被検眼の眼底周辺部にリング状の光束を投影し、眼
底からの反射光をCCD等の光位置センサにピントを合
わせて受光して眼屈折値を測定しているが、眼底の中心
部と周辺部ではディオプタが異なるので、リング状光束
を眼底の周辺部に投影する方式では正確な眼屈折値の測
定が難しい。このために、眼底の中心部に光束を投影す
るようにした眼屈折計が提案されている。
2. Description of the Related Art Conventionally, in an autolectrometer, a ring-shaped light beam is projected on the peripheral part of the fundus of the eye to be inspected, and the reflected light from the fundus is received by focusing on an optical position sensor such as a CCD. Although the refraction value is measured, since the diopters are different between the central part and the peripheral part of the fundus, it is difficult to accurately measure the refraction value by the method of projecting the ring-shaped light beam on the peripheral part of the fundus. For this reason, an eye refractometer has been proposed in which a light beam is projected on the center of the fundus.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の従
来例の眼屈折計では、受光光学系中において、眼底から
の反射光を複数方向に分離する分離プリズムが、視度を
可変するための可動レンズの前に配置されているので、
ピント合わせのために可動レンズを移動すると、受光セ
ンサ上で受光光束の位置が変化してしまう。このため
に、測定範囲に限界があるという問題がある。
However, in the above-mentioned conventional eye refractometer, in the light receiving optical system, the separation prism for separating the reflected light from the fundus into a plurality of directions is a movable lens for varying the diopter. Because it is placed in front of
When the movable lens is moved for focusing, the position of the received light beam on the light receiving sensor changes. Therefore, there is a problem that the measurement range is limited.

【0004】本発明の目的は、上述の問題点を解消し、
被検眼の眼底中心部に光束を投影し、かつ被検者の屈折
値によって光電センサ上の光束の大きさが変わることの
ない眼屈折計を提供することにある。
The object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide an eye refractometer that projects a light beam on the center of the fundus of the eye to be inspected and does not change the size of the light beam on the photoelectric sensor depending on the refraction value of the subject.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る眼屈折計は、被検者の眼屈折力を光電的
に測定する眼屈折計において、可動光学部材の後方に光
束分離部材を配置した受光光学系と、被検眼の眼底中心
部に光束を投影する投影光学系とを有することを特徴と
する。
In order to achieve the above object, an eye refractometer according to the present invention is an eye refractometer for photoelectrically measuring the eye refracting power of a subject. It is characterized by having a light-receiving optical system in which a separation member is arranged and a projection optical system for projecting a light beam on the center of the fundus of the eye to be examined.

【0006】[0006]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は第1の実施例の構成図を示し、
被検眼Eの正視眼底Rに共役な赤外LED光源1から被
検眼Eに対向する対物レンズ2に至る光路O1上には、視
度可変レンズ3、角膜Cに共役な小絞り4、瞳孔Pと略
共役な孔あきミラー5が順次に配列されている。孔あき
ミラー5の反射方向の光路O2上には、図2に示すように
光路O2の周囲に6個の開口6a〜6fを有する角膜Cに
共役な絞り6、連動機構7により視度可変レンズ3と連
動して所定位置に駆動される視度可変レンズ8、図3に
示すような6個の楔プリズム9a〜9fから成る分離プ
リズム9、正視眼底Rに共役なエリアアレイセンサ10
が順次に配列され、エリアアレイセンサ10の出力は演
算手段11に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 shows a configuration diagram of the first embodiment,
On the optical path O1 from the infrared LED light source 1 conjugated to the emmetropic fundus R of the eye E to the objective lens 2 facing the eye E, a diopter variable lens 3, a small diaphragm 4 conjugated to the cornea C, and a pupil P are provided. The perforated mirrors 5 that are substantially conjugate with are sequentially arranged. On the optical path O2 in the reflection direction of the perforated mirror 5, as shown in FIG. 2, the diaphragm 6 having six openings 6a to 6f around the optical path O2, which is conjugated to the cornea C, and the diopter variable lens by the interlocking mechanism 7. 3, a diopter variable lens 8 which is driven to a predetermined position in conjunction with 3, a separation prism 9 including six wedge prisms 9a to 9f, and an area array sensor 10 which is conjugated to the stereoscopic fundus R.
Are sequentially arranged, and the output of the area array sensor 10 is connected to the calculating means 11.

【0007】赤外LED光源1からの光束は、視度可変
レンズ3、小絞り4、孔あきミラー5、対物レンズ2を
通り、被検眼Eの眼底Rの中心部にスポット光束を投影
する。眼底Rからの反射光は、対物レンズ2、孔あきミ
ラー5、絞り6の6個の開口6a〜6f、視度可変レン
ズ8、分離プリズム9を通り、エリアアレイセンサ10
に図4に示すような6個の光束像Sa〜Sfを結像する。こ
の信号は演算手段11に導かれて各光束位置が認識さ
れ、被検眼Eの屈折値が演算される。屈折値は例えば光
軸O1に対して対称となる2つの光束像の間隔から計算さ
れ、その方向での屈折力が求まる。このようにして、3
経線の屈折力が分かるので乱視を含む屈折値を算出する
ことができる。
A light beam from the infrared LED light source 1 passes through a diopter variable lens 3, a small diaphragm 4, a perforated mirror 5 and an objective lens 2 to project a spot light beam on the center of the fundus R of the eye E to be examined. The reflected light from the fundus R passes through the objective lens 2, the perforated mirror 5, the six apertures 6a to 6f of the diaphragm 6, the diopter variable lens 8, and the separation prism 9, and the area array sensor 10 is formed.
Six light flux images Sa to Sf as shown in FIG. 4 are formed. This signal is guided to the calculation means 11 to recognize each light beam position, and the refraction value of the eye E to be examined is calculated. The refraction value is calculated, for example, from the distance between two light flux images symmetrical with respect to the optical axis O1, and the refraction power in that direction is obtained. Thus, 3
Since the refractive power of the meridian is known, the refraction value including astigmatism can be calculated.

【0008】赤外LED光源1が眼底Rにピントが合っ
たときの視度可変レンズ3、8の位置では、各光束像Sa
〜Sfの光軸O1からの距離は被検眼Eの視度に拘わらず一
定となる。測定においては、視度可変レンズ3、8の初
期の位置における光束像Sa〜Sfの位置を測定し、視度可
変レンズ3、8を動かす方向と移動量を決定する。乱視
がある場合には1経線方向しか合わせることができない
ので、ピントを合わせる際には例えば水平方向となる光
束像SaとSdを使って合わせ、合ったらその位置でエリア
アレイセンサ10の信号を演算手段11に取り込み各光
束像Sa〜Sfの位置とレンズ3、8の位置から演算を行っ
て屈折値を求める。なお、レンズ3は固定としてもよ
い。
At each position of the diopter variable lenses 3 and 8 when the infrared LED light source 1 is focused on the fundus R, each light flux image Sa is
The distance from Sf to the optical axis O1 is constant regardless of the diopter of the eye E to be examined. In the measurement, the positions of the light flux images Sa to Sf at the initial positions of the diopter variable lenses 3 and 8 are measured, and the direction and amount of movement of the diopter variable lenses 3 and 8 are determined. If there is astigmatism, only one meridian direction can be adjusted. Therefore, when focusing, for example, using the light flux images Sa and Sd in the horizontal direction, the signal of the area array sensor 10 is calculated at that position. The refraction value is obtained by performing calculation from the positions of the respective light flux images Sa to Sf and the positions of the lenses 3 and 8 taken into the means 11. The lens 3 may be fixed.

【0009】図5は第2の実施例の構成図を示し、被検
眼Eの正視眼底Rに共役な点状の測定用の赤外光源20
から、被検眼Eの対向位置に配置された光分割ミラー2
1に至る光路O3上には、ダイクロイックミラー22、視
度可変レンズ23、前眼部と共役な中心開口絞り24、
ダイクロイックミラー25、レンズ26が順次に配列さ
れ、ダイクロイックミラー22の入射方向には視標27
が配置されている。
FIG. 5 is a block diagram of the second embodiment, in which a point-like infrared light source 20 for measurement which is conjugated to the emmetropic fundus R of the eye E to be inspected.
From, the light splitting mirror 2 disposed at the position facing the eye E to be inspected
A dichroic mirror 22, a diopter variable lens 23, a central aperture stop 24 conjugate with the anterior segment, on the optical path O3 reaching 1.
A dichroic mirror 25 and a lens 26 are sequentially arranged, and an index 27 is placed in the incident direction of the dichroic mirror 22.
Is arranged.

【0010】光分割ミラー21の背後の光路O4上には、
被検眼Eからの反射光を遮光する絞り28、レンズ2
9、前眼部と共役なリング絞り30、連動手段31によ
り視度可変レンズ23と連動して所定位置に駆動される
視度可変レンズ32、逆円錐プリズム33、ダイクロイ
ックミラー34、正視眼底Rと共役なエリアアレイセン
サ35が順次に配列され、エリアアレイセンサ35の出
力は演算手段36とテレビモニタ37に接続されてい
る。また、ダイクロイックミラー25の背後の光路O5上
には、ミラー38、レンズ39、40、ミラー41が配
列され、光路O5はダイクロイックミラー34において光
路O4と結合されている。
On the optical path O4 behind the light splitting mirror 21,
A diaphragm 28 and a lens 2 that shield the reflected light from the eye E to be examined.
9. A ring diaphragm 30 conjugated to the anterior segment of the eye, a diopter variable lens 32 that is driven to a predetermined position by interlocking with the diopter variable lens 23 by an interlocking device 31, an inverted conical prism 33, a dichroic mirror 34, and an orthoscopic fundus R. Conjugated area array sensors 35 are sequentially arranged, and the output of the area array sensor 35 is connected to a computing means 36 and a television monitor 37. A mirror 38, lenses 39, 40, and a mirror 41 are arranged on the optical path O5 behind the dichroic mirror 25, and the optical path O5 is coupled to the optical path O4 at the dichroic mirror 34.

【0011】視標27からの光束は、ダイクロイックミ
ラー22、視度可変レンズ23、前眼部に共役な中心開
口絞り24、ダイクロイックミラー25、レンズ26、
光分割ミラー21を通り、被検眼Eに至る。
The light flux from the visual target 27 is a dichroic mirror 22, a diopter variable lens 23, a central aperture stop 24 conjugated to the anterior segment of the eye, a dichroic mirror 25, a lens 26,
It passes through the light splitting mirror 21 and reaches the eye E to be inspected.

【0012】被検眼Eの前眼部は図示しない別光源で照
明し、前眼部からの反射光は光分割ミラー21、ダイク
ロイックミラー25を通って光路O5を進み、ミラー3
8、レンズ39、40、ミラー41を経てダイクロイッ
クミラー34で反射され、エリアアレイセンサ35に結
像する。エリアアレイセンサ35は眼屈折力測定と時分
割してテレビモニタ37に前眼部像E’を映出する。
The anterior segment of the subject's eye E is illuminated by another light source (not shown), and the reflected light from the anterior segment passes through the light splitting mirror 21 and the dichroic mirror 25 along the optical path O5 and the mirror 3
After passing through 8, the lenses 39 and 40, and the mirror 41, the light is reflected by the dichroic mirror 34 to form an image on the area array sensor 35. The area array sensor 35 projects the anterior segment image E ′ on the television monitor 37 in time division with the measurement of the eye refractive power.

【0013】また、赤外光源20からの光束は、被検眼
Eの眼底Rの中心部にスポット光束を投影し、眼底Rか
らの反射光は、光分割ミラー21、絞り28、レンズ2
9、リング絞り30、視度可変レンズ32、逆円錐プリ
ズム33、ダイクロイックミラー34を通って、エリア
アレイセンサ35にリング光束像として受光される。そ
して、第1の実施例と同様に、レンズ23、32がピン
トの合うように駆動される。
The light flux from the infrared light source 20 projects a spot light flux on the center of the fundus R of the eye E, and the reflected light from the fundus R is the light splitting mirror 21, the diaphragm 28, and the lens 2.
After passing through 9, the ring diaphragm 30, the diopter variable lens 32, the inverted conical prism 33, and the dichroic mirror 34, the area array sensor 35 receives the light as a ring light beam image. Then, similarly to the first embodiment, the lenses 23 and 32 are driven so as to be in focus.

【0014】被検眼Eの眼底Rにピントが合っている
と、エリアアレイセンサ35上のリング光束像は常に同
じ大きさになる。また、乱視がある場合にはリング光束
像は楕円形となり、1経線でしかピントが合わないが、
所定の経線でピントが合った視度可変レンズ23、32
の位置で、エリアアレイセンサ35の信号が演算手段3
6のフレームメモリに出力され、リング光束像の形状が
認識され、そのときの情報と視度可変レンズ23、32
の位置とを使用して、演算手段36により屈折値が算出
される。
When the fundus R of the eye E to be examined is in focus, the ring light flux image on the area array sensor 35 always has the same size. Also, if there is astigmatism, the ring luminous flux image will be elliptical and will focus only at one meridian,
Variable diopter lenses 23, 32 focused on a predetermined meridian
The signal of the area array sensor 35 is calculated at the position of
6 is output to the frame memory, the shape of the ring light flux image is recognized, and the information and the diopter variable lenses 23 and 32 at that time are recognized.
And the position of are used to calculate the refraction value by the calculating means 36.

【0015】[0015]

【発明の効果】以上説明したように本発明に係る眼屈折
計は、眼底の中心部にピントを合わせることにより、そ
の像から精度の良い屈折値を求めることができ、被検眼
の屈折力によって光電センサ上の受光光束の大きさが変
わらないようにしたことにより、光電センサ上での投影
倍率を上昇させ測定レンジを広くすることができる。
As described above, the eye refractometer according to the present invention can obtain an accurate refraction value from its image by focusing on the center of the fundus, and it can be determined by the refracting power of the eye to be examined. Since the size of the received light flux on the photoelectric sensor does not change, the projection magnification on the photoelectric sensor can be increased and the measurement range can be widened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】絞りの正面図である。FIG. 2 is a front view of a diaphragm.

【図3】分離プリズムの正面図である。FIG. 3 is a front view of a separation prism.

【図4】センサ受光面の説明図である。FIG. 4 is an explanatory diagram of a sensor light receiving surface.

【図5】第2の実施例の構成図である。FIG. 5 is a configuration diagram of a second embodiment.

【符号の説明】[Explanation of symbols]

1、20 赤外光源 3、8、23、32 視度可変レンズ 5 孔あきミラー 9、33 分離プリズム 10、35 エリアアレイセンサ 11 36 演算手段 21 光分割ミラー 22、25、34 ダイクロイックミラー 37 テレビモニタ 1, 20 Infrared light source 3, 8, 23, 32 Diopter variable lens 5 Perforated mirror 9, 33 Separation prism 10, 35 Area array sensor 11 36 Calculation means 21 Light splitting mirror 22, 25, 34 Dichroic mirror 37 Television monitor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検者の眼屈折力を光電的に測定する眼
屈折計において、可動光学部材の後方に光束分離部材を
配置した受光光学系と、被検眼の眼底中心部に光束を投
影する投影光学系とを有することを特徴とする眼屈折
計。
1. An eye refractometer for photoelectrically measuring the refractive power of an eye of a subject, and a light receiving optical system in which a light beam separating member is arranged behind a movable optical member, and a light beam is projected on the center of the fundus of the eye to be inspected. And a projection optical system for controlling the eye refractometer.
JP8028501A 1996-01-23 1996-01-23 Ocular refractometer Pending JPH09192099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8028501A JPH09192099A (en) 1996-01-23 1996-01-23 Ocular refractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8028501A JPH09192099A (en) 1996-01-23 1996-01-23 Ocular refractometer

Publications (1)

Publication Number Publication Date
JPH09192099A true JPH09192099A (en) 1997-07-29

Family

ID=12250431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8028501A Pending JPH09192099A (en) 1996-01-23 1996-01-23 Ocular refractometer

Country Status (1)

Country Link
JP (1) JPH09192099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923843B1 (en) * 2006-11-29 2009-10-27 캐논 가부시끼가이샤 Focusing unit and ophthalmic photographing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923843B1 (en) * 2006-11-29 2009-10-27 캐논 가부시끼가이샤 Focusing unit and ophthalmic photographing apparatus

Similar Documents

Publication Publication Date Title
JP3740546B2 (en) Ophthalmic measuring device
JP4492847B2 (en) Eye refractive power measuring device
JPH10305013A (en) Opthalmoscopic characteristic measuring instrument
JP2001095760A (en) Optical characteristic measuring apparatus for eyes
JP2005103103A (en) Refractive power measuring apparatus
JPH04200436A (en) Ophthamologic apparatus
US6676258B2 (en) Eye characteristic measurement apparatus with speckle noise reduction
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JPS6153053B2 (en)
JPH01293841A (en) Reflectometer
JP2014151024A (en) Eye refractive power measuring apparatus
JPH10307314A (en) Observation optical device
JPH09192099A (en) Ocular refractometer
JPH06121773A (en) Ophthalmology refractometer
JP2002336199A (en) Opthalmoscopic equipment
JPH06245909A (en) Ophthalmorefractometer
JPH11346998A (en) Eye refractometer
JPH0556922A (en) Ophthalmometer
JPH0775623A (en) Ophthalmorefractometer
JPH0788081A (en) Device for optometry
JP2002336200A (en) Ophthalmoscopic equipment
JP2001258841A (en) Ophthalmoscopic instrument
JPH09192098A (en) Ocular refractometer
JP2000300519A (en) Ocular refraction measuring apparatus
JP2951991B2 (en) Eye refractometer