JPH09182330A - Synchronous electric rotating machine - Google Patents

Synchronous electric rotating machine

Info

Publication number
JPH09182330A
JPH09182330A JP7341053A JP34105395A JPH09182330A JP H09182330 A JPH09182330 A JP H09182330A JP 7341053 A JP7341053 A JP 7341053A JP 34105395 A JP34105395 A JP 34105395A JP H09182330 A JPH09182330 A JP H09182330A
Authority
JP
Japan
Prior art keywords
rotor
magnetic flux
axis
electric machine
main magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7341053A
Other languages
Japanese (ja)
Other versions
JP3598625B2 (en
Inventor
Kenji Iriyama
健治 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP34105395A priority Critical patent/JP3598625B2/en
Publication of JPH09182330A publication Critical patent/JPH09182330A/en
Application granted granted Critical
Publication of JP3598625B2 publication Critical patent/JP3598625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate torque efficienctly. SOLUTION: A plurality of permanent magnets 4A-4D are arranged on the outer circumference of a rotor 3 at an interval in the circumferential direction in order to rotary drive the rotor 3 while following up the rotating field formed by a stator 5. The rotor 3 is provided, at a part thereof, with an air gap 33 in order to distribute the magnetic resistance asymmetrically to the axis dm of main flux of each permanent magnet 4A-4D. The air gap 33 has elongated cross-section extending along the direction of main flux ϕ of each permanent magnet 4A-4D and a plurality of air gap 33 are formed while being shifted in the circumferential direction of rotor from the axis dm of main flux as a center.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は同期回転電機に関
し、特にそのトルク発生効率を向上させて小型軽量化を
実現した同期回転電機の構造改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous rotary electric machine, and more particularly to a structural improvement of the synchronous rotary electric machine that improves its torque generation efficiency to realize a small size and light weight.

【0002】[0002]

【従来の技術】図4には同期回転電機の破断縦断面図を
示し、図5にはその横断面図を示す。図において、筒状
のハウジング1は両開口がエンドフレーム11、12で
閉鎖されており、この閉鎖空間の中心に回転軸2が配設
されている。回転軸2は両端を、各エンドフレーム1
1、12の中心に設けたベアリングにより回転自在に支
持されている。
2. Description of the Related Art FIG. 4 shows a broken vertical sectional view of a synchronous rotating electric machine, and FIG. 5 shows a transverse sectional view thereof. In the figure, a cylindrical housing 1 has both openings closed by end frames 11 and 12, and a rotary shaft 2 is arranged at the center of the closed space. The rotating shaft 2 has both ends on each end frame 1.
It is rotatably supported by bearings provided at the centers of 1 and 12.

【0003】回転軸2の中央外周には電磁鋼板を積層し
て円柱形としたロータ3が固定され、このロータ3には
内部に、周方向へ等しい間隔をおいて4つの板状永久磁
石4A〜4Dが埋設されている。各永久磁石4A〜4D
は断面長手方向をロータ周方向へ向けて位置し、外周側
の各面が交互に異なる磁極となっている。各永久磁石4
A〜4Dの両端には、ロータ3の外周方向へ長方形状に
延びて漏れ磁束を制限する貫通孔41が形成されてい
る。なお、ロータ3は、その両端面に接するように回転
軸2外周に打ち込まれた端板31、32に貫通ボルトを
締結して固定されている。
A rotor 3 having a cylindrical shape is formed by laminating electromagnetic steel sheets on the outer periphery of the center of the rotary shaft 2. Inside the rotor 3, four plate-shaped permanent magnets 4A are arranged at equal intervals in the circumferential direction. ~ 4D is buried. Each permanent magnet 4A-4D
Is positioned with the longitudinal direction of the cross section facing the circumferential direction of the rotor, and the outer peripheral surfaces have different magnetic poles. Each permanent magnet 4
At both ends of A to 4D, through holes 41 that extend in the outer peripheral direction of the rotor 3 in a rectangular shape and limit the leakage magnetic flux are formed. In addition, the rotor 3 is fixed by fastening through bolts to the end plates 31 and 32 driven into the outer periphery of the rotary shaft 2 so as to be in contact with both end surfaces thereof.

【0004】上記ロータ3の外周と小間隙をなして、リ
ング状のステータ5がハウジング1の内周に固定されて
おり、ステータコア51の内周に等間隔で形成したスロ
ット内に三相のステータコイル52が公知の構造で巻回
されている。このステータコイル52に図略のインバー
タ回路から所定周波数の三相交流電流を供給することに
より回転磁界が生じ、この回転磁界に同期してロータ3
(および回転軸2)が回転する。
A ring-shaped stator 5 is fixed to the inner circumference of the housing 1 with a small clearance from the outer circumference of the rotor 3, and three-phase stators are formed in slots formed at equal intervals on the inner circumference of the stator core 51. The coil 52 is wound in a known structure. A rotating magnetic field is generated by supplying a three-phase alternating current of a predetermined frequency to this stator coil 52 from an inverter circuit (not shown), and the rotor 3 is synchronized with this rotating magnetic field.
(And the rotating shaft 2) rotate.

【0005】このような構造の回転電機のトルク特性を
図6に示し、図は永久磁石の主磁束方向dmに対するス
テータ電流の位相角(電気角)δを横軸にとったもので
ある。ここで、回転電機の総合トルクTtは、主磁束に
よるトルクTmとリラクタンストルクTrの和となる。
FIG. 6 shows the torque characteristic of the rotating electric machine having such a structure, in which the horizontal axis represents the phase angle (electrical angle) δ of the stator current with respect to the main magnetic flux direction dm of the permanent magnet. Here, the total torque Tt of the rotating electric machine is the sum of the torque Tm due to the main magnetic flux and the reluctance torque Tr.

【0006】[0006]

【発明が解決しようとする課題】図より明らかなよう
に、主磁束トルクTmは位相角δが0°で最大になるの
に対して、リラクタンストルクTrは45°で最大とな
り、このため両者の和である総合トルクTtは位相角δ
が30°付近で最大となる。したがって、回転電機の最
大トルクを引き出すためには、位相角δの値を精密に検
出するためのレゾルバやエンコーダ等の回転センサが必
要であるとともに、比較的複雑な制御を要する。その
上、総合トルクTtの最大値は主磁束トルクTmの最大
値とリラクタンストルクTrの最大値の和よりも小さな
値になるという問題がある。
As is clear from the figure, the main magnetic flux torque Tm becomes maximum at the phase angle δ of 0 °, whereas the reluctance torque Tr becomes maximum at 45 °, and therefore both of them become large. The total torque Tt that is the sum is the phase angle δ
Is maximum around 30 °. Therefore, in order to extract the maximum torque of the rotary electric machine, a rotation sensor such as a resolver or encoder for accurately detecting the value of the phase angle δ is required, and relatively complicated control is required. Moreover, there is a problem that the maximum value of the total torque Tt becomes a value smaller than the sum of the maximum value of the main magnetic flux torque Tm and the maximum value of the reluctance torque Tr.

【0007】なお、例えば特開平7−143694号公
報には、ロータの外周に突極を形成してリラクタンスト
ルクが最大となる位相角δを変更可能としたものが示さ
れているいるが、これによると、主磁束φが大幅に減少
するため、発生トルクが減殺されるおそれがある。本発
明は上記課題を解決するもので、ロータの外周形状に変
更を加えることなく、安価かつ簡単な制御で効率的なト
ルク発生を可能とした同期回転電機を提供することを目
的とする。
[0007] For example, Japanese Patent Laid-Open No. 7-143694 discloses a rotor in which salient poles are formed on the outer periphery of the rotor so that the phase angle δ at which the reluctance torque becomes maximum can be changed. According to the above, since the main magnetic flux φ is greatly reduced, the generated torque may be reduced. The present invention solves the above problems, and an object of the present invention is to provide a synchronous rotating electric machine that enables efficient torque generation with inexpensive and simple control without changing the outer peripheral shape of the rotor.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明で
は、ロータ(3)の一部に、磁気抵抗の分布を各磁極
(4A〜4D)の主磁束方向軸(dm)に関して非対称
とするような空隙(33)を設ける。この空隙の存在に
よって、リラクタンストルクが最大を示す位相角(θ)
が変化し、主磁束方向軸に対するステータ電流の位相角
(δ)を適当に選択することにより従来に比して大きな
出力トルクを得ることができる。
According to the invention described in claim 1, the distribution of the magnetic resistance is asymmetric with respect to the main magnetic flux direction axis (dm) of each magnetic pole (4A to 4D) in a part of the rotor (3). A void (33) is provided so that Due to the existence of this air gap, the phase angle (θ) at which the reluctance torque shows the maximum
Changes, and by appropriately selecting the phase angle (δ) of the stator current with respect to the main magnetic flux direction axis, a larger output torque can be obtained as compared with the conventional case.

【0009】請求項2に記載の発明では、空隙(33)
は、各磁極(4A〜4D)の主磁束(φ)の方向に沿っ
た長孔状断面をなして複数形成され、かつ主磁束方向軸
(dm)を中心にロータ周方向へ偏在して形成されてい
る。長孔状の空隙は磁極の主磁束方向に沿って形成され
ているから、主磁束の抵抗とはならず、主磁束を弱める
ことはない。そして、空隙の偏在量を変更することによ
りリラクタンストルクが最大を示す位相角(θ)を調整
することができる。
In the invention described in claim 2, the void (33)
Are formed with a long hole-shaped cross section along the direction of the main magnetic flux (φ) of each magnetic pole (4A to 4D) and are formed unevenly in the rotor circumferential direction around the main magnetic flux direction axis (dm). Has been done. Since the long hole-shaped void is formed along the main magnetic flux direction of the magnetic pole, it does not act as a resistance to the main magnetic flux and does not weaken the main magnetic flux. Then, the phase angle (θ) at which the reluctance torque is maximum can be adjusted by changing the uneven distribution amount of the air gap.

【0010】請求項3に記載の発明では、主磁束方向軸
(dm)に対して、磁気抵抗が最大を示す方向の軸(d
r)のなす位相角(θ)が電気角で45°となるよう
に、空隙(33)を分布させる。上記位相角(θ)を4
5°にすると、リラクタンストルク(Tr)は主磁束ト
ルクTmと同様にステータ電流の位相角δが0°で最大
を示し、総合トルクTtはステータ電流の大きさに影響
されない。したがって、精度の高いロータ位置の検出
や、ステータ電流と位相角δのマップ等を必要とするこ
となく、簡易かつ安価な制御で、最大の出力トルクを得
ることができる。
According to the third aspect of the invention, with respect to the main magnetic flux direction axis (dm), the axis (d) in the direction in which the magnetic resistance exhibits the maximum value.
The voids (33) are distributed so that the phase angle (θ) formed by r) is an electrical angle of 45 °. The phase angle (θ) is 4
When it is set to 5 °, the reluctance torque (Tr) shows the maximum when the phase angle δ of the stator current is 0 ° like the main magnetic flux torque Tm, and the total torque Tt is not influenced by the magnitude of the stator current. Therefore, the maximum output torque can be obtained by simple and inexpensive control without requiring highly accurate detection of the rotor position or the map of the stator current and the phase angle δ.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施形態)図1には同期回転電機の横断面図を示
し、ロータ3とその周囲に位置するステータの構造は既
に説明した従来のものと同一で、同一部分には同一符号
を付する。以下は従来との相違点のみを説明する。
(First Embodiment) FIG. 1 is a cross-sectional view of a synchronous rotating electric machine. The structure of the rotor 3 and the stator located around the rotor 3 is the same as that of the conventional one already described, and the same parts are designated by the same reference numerals. To do. Only the differences from the prior art will be described below.

【0012】図において、板状の各永久磁石4A〜4D
は断面長手方向を周方向へ向けて、周方向の4か所に等
間隔で貫通埋設されている。このうち、永久磁石4A〜
4Dの主磁束φの経路を矢印で示す。図中dmは永久磁
石4Aの中央を通るこれに垂直な軸で、このdm軸に沿
う方向が主磁束方向(最も磁束密度の高い方向)となっ
ている。
In the figure, plate-shaped permanent magnets 4A to 4D are shown.
Are embedded in four circumferential positions at equal intervals with the longitudinal direction of the cross section facing the circumferential direction. Of these, permanent magnets 4A-
The path of the main magnetic flux φ of 4D is indicated by an arrow. In the figure, dm is an axis that passes through the center of the permanent magnet 4A and is perpendicular thereto, and the direction along the dm axis is the main magnetic flux direction (the direction with the highest magnetic flux density).

【0013】図示のロータ3内には、上記dm軸より、
ロータ回転方向にある貫通孔41に至るまでの外周領域
に、ロータ3の両端面(紙面の垂直方向にある面)へ開
口する長孔状の貫通空隙33が間隔をおいて複数形成さ
れており、これら貫通空隙33の長手方向は主磁束φの
経路に沿ったものとなっている。これら貫通空隙33
は、ロータ3を構成する各電磁鋼板にプレスで長孔を打
ち抜き、積層することにより形成される。貫通空隙33
の幅は主磁束φを弱めないためには小さくするのが良
く、このような貫通空隙33は、他の各永久磁石4B〜
4Dについても同様に形成されている。
In the illustrated rotor 3, from the dm axis,
In the outer peripheral area extending to the through hole 41 in the rotor rotation direction, a plurality of long hole-shaped through gaps 33 opening to both end surfaces of the rotor 3 (surfaces in the direction perpendicular to the paper surface) are formed at intervals. The longitudinal direction of these through gaps 33 is along the path of the main magnetic flux φ. These through gaps 33
Is formed by punching a long hole in each electromagnetic steel plate forming the rotor 3 with a press and stacking. Through space 33
The width of is preferably small in order not to weaken the main magnetic flux φ.
The same applies to 4D.

【0014】なお、図のqm軸は磁束密度が最小となる
方向の軸であり、dm軸に対して電気角が90°となる
方向の軸である。図の回転電機は4極であるから、qm
軸の機械的角度は45°である。また、dr軸は磁気抵
抗が最大となる方向の軸、qrは磁気抵抗が最小となる
方向の軸である。ここで、従来技術で既に説明した、d
m軸に対するステータ電流の位相角をδとすると、主磁
束トルクTmは数式1で表される。
The qm axis in the figure is the axis in the direction in which the magnetic flux density is the minimum, and the axis in the direction in which the electrical angle is 90 ° with respect to the dm axis. Since the rotating electric machine in the figure has four poles, qm
The mechanical angle of the shaft is 45 °. Further, the dr axis is the axis in the direction in which the magnetic resistance is maximum, and qr is the axis in the direction in which the magnetic resistance is minimum. Here, d, which has already been described in the related art,
When the phase angle of the stator current with respect to the m-axis is δ, the main magnetic flux torque Tm is expressed by Equation 1.

【0015】[0015]

【数1】Tm=Pn(φa×Ia×cosδ) ここで、Pnは極対数、φa=√3/2φ(φは1極当
たりの磁束量)、Iaはステータ線電流である。また、
リラクタンストルクTrは数式2で表される。
## EQU1 ## Tm = Pn (φa × Ia × cos δ) where Pn is the number of pole pairs, φa = √3 / 2φ (φ is the amount of magnetic flux per pole), and Ia is the stator wire current. Also,
The reluctance torque Tr is represented by Formula 2.

【0016】[0016]

【数2】Tr=Pn{1/2(Lqr−Ldr)×Ia2 ×
sin2(δ+θ)} ここで、Ldrはdr方向のインダクタンス、Lqrはqr
方向のインダクタンスである。位相角θは上記貫通空隙
33の分布を変更すると、これに応じて変化する。例え
ば、貫通空隙33をdm軸から離れた貫通孔41に近い
領域にのみ形成すると位相角θは小さくなり、反対に、
貫通空隙33をdm軸を越えた広い領域に形成すると位
相角θは大きくなる。したがって、位相角θが45°に
近づくように貫通空隙33の形成領域を変更して、各位
相角θにおける位相角δを適当に選択すると、同一のス
テータ線電流Iaに対して従来よりも大きな総合トルク
Ttを得ることができる。
## EQU2 ## Tr = Pn {1/2 (Lqr-Ldr) × Ia 2 ×
sin2 (δ + θ)} where Ldr is the inductance in the dr direction and Lqr is qr.
It is the inductance in the direction. When the distribution of the through gaps 33 is changed, the phase angle θ changes accordingly. For example, if the through gap 33 is formed only in a region near the through hole 41 away from the dm axis, the phase angle θ becomes small, and conversely,
If the through gap 33 is formed in a wide region beyond the dm axis, the phase angle θ becomes large. Therefore, if the formation area of the through gap 33 is changed so that the phase angle θ approaches 45 ° and the phase angle δ at each phase angle θ is appropriately selected, it is larger than the conventional case for the same stator wire current Ia. The total torque Tt can be obtained.

【0017】特に位相角θを45°にすると、リラクタ
ンストルクTrは位相角δに対して図2のような変化を
示し、この場合は、主磁束トルクφと同様に位相角δは
0°の時にその最大値を示す。総合トルクTtは主磁束
トルクTmとリラクタンストルクTrの和であるから、
結局、δ=0(°)で総合トルクTtは両トルクTm、
Trの最大値の和となって、同一ステータ線電流Iaに
対して最も大きなトルクを得ることができる。
Particularly, when the phase angle θ is set to 45 °, the reluctance torque Tr changes with respect to the phase angle δ as shown in FIG. 2. In this case, the phase angle δ is 0 ° like the main magnetic flux torque φ. Sometimes it shows its maximum value. Since the total torque Tt is the sum of the main magnetic flux torque Tm and the reluctance torque Tr,
After all, when δ = 0 (°), the total torque Tt is the both torques Tm,
It becomes the sum of the maximum values of Tr, and the largest torque can be obtained for the same stator wire current Ia.

【0018】これは、同一トルクを得るのであれば回転
電機の小型軽量化が可能であることを意味する。また、
ステータ線電流Iaの値に無関係にδ=0で最大トルク
が得られるから、高効率駆動のために線電流Iaとδの
マップ等を作成する必要がないから制御が簡易であると
ともに、δの値を精密に検出するためのエンコーダやレ
ゾルバ等の高価な回転センサを必要としないからコスト
ダウンも実現される。
This means that the size and weight of the rotating electric machine can be reduced if the same torque is obtained. Also,
Since maximum torque is obtained at δ = 0 regardless of the value of the stator line current Ia, it is not necessary to create a map or the like of the line currents Ia and δ for high-efficiency driving, and control is simple. Cost reduction is also realized because an expensive rotation sensor such as an encoder or resolver for precisely detecting the value is not required.

【0019】さらに、δ=0で駆動できるから、主磁束
の分布への影響が最小限となり、電圧波形の歪みが少な
いので、センサレス駆動においてロータ位置の検出を精
度良く行うことができる。また、弱め界磁による減磁も
生じない。なお、貫通空隙33は上記のように最大トル
クを得るのに寄与するとともに、漏れ磁束φl(図1)
は貫通空隙33を横切って通るから、その低減にも寄与
する。 (第2実施形態)図3において、ロータ2内に周方向等
間隔で4か所に埋設された永久磁石4A〜4Dは、その
断面長手方向がロータ2の径方向に向いている。各永久
磁石4A〜4Dは周方向で対向する側面が互いに同極に
着磁されており、この場合の主磁束方向は隣り合う永久
磁石4A〜4Dの対称軸dmに沿った方向となってい
る。本実施形態では、このdm軸より、ロータ回転方向
にある永久磁石4Bに至るまでのロータ内に、複数の長
孔状の貫通空隙33が形成され、これら貫通空隙33の
長手方向は、矢印で示す主磁束の経路に沿ったものとな
っている。このような貫通空隙は他の永久磁石4B〜4
Dにも同様に形成されている。
Further, since the drive can be performed at δ = 0, the influence on the distribution of the main magnetic flux is minimized and the voltage waveform is less distorted, so that the rotor position can be accurately detected in the sensorless drive. In addition, demagnetization due to field weakening does not occur. The through gap 33 contributes to obtaining the maximum torque as described above, and the leakage flux φl (FIG. 1).
Passes through the through gap 33, which also contributes to its reduction. (Second Embodiment) In FIG. 3, the permanent magnets 4A to 4D embedded in the rotor 2 at equal intervals in the circumferential direction at four locations have their longitudinal cross-sections oriented in the radial direction of the rotor 2. The side surfaces of the permanent magnets 4A to 4D facing each other in the circumferential direction are magnetized to have the same poles, and the main magnetic flux direction in this case is a direction along the symmetry axis dm of the adjacent permanent magnets 4A to 4D. . In the present embodiment, a plurality of long hole-shaped through gaps 33 are formed in the rotor from the dm axis to the permanent magnet 4B in the rotor rotating direction, and the longitudinal direction of these through gaps 33 is indicated by arrows. It is along the path of the main magnetic flux shown. Such a through-gap is used for the other permanent magnets 4B to 4B.
D is similarly formed.

【0020】このような構造によっても、上記第1実施
形態と同様の効果が得られる。 (他の実施形態)なお、上記第2実施形態において、漏
れ磁束を低減するために、回転軸2の周囲と永久磁石4
A〜4Dの長手方向の端部に間隙42が設けられている
が、ロータ強度を上げるために、これら間隙42にアル
ミダイキャスト材を流し込むと良い。
With such a structure, the same effect as that of the first embodiment can be obtained. (Other Embodiments) In the second embodiment, in order to reduce the leakage flux, the periphery of the rotary shaft 2 and the permanent magnet 4 are reduced.
The gaps 42 are provided at the end portions in the longitudinal direction of A to 4D, but it is advisable to pour an aluminum die cast material into these gaps 42 in order to increase the rotor strength.

【0021】また、この時、貫通空隙33にもアルミダ
イキャスト材を流し込めば、ロータ強度は更に向上す
る。このことは、上記第1実施形態においても同様であ
る。上記各実施形態では、磁極を永久磁石により形成し
たが、電磁コイルにより形成しても良い。
At this time, if the aluminum die-cast material is also poured into the through gap 33, the strength of the rotor is further improved. This also applies to the first embodiment. In each of the above-mentioned embodiments, the magnetic pole is formed of a permanent magnet, but it may be formed of an electromagnetic coil.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態における、同期回転電機
の横断面図である。
FIG. 1 is a cross-sectional view of a synchronous rotating electric machine according to a first embodiment of the present invention.

【図2】本発明の第1実施形態における、同期回転電機
のトルク特性を示す図である。
FIG. 2 is a diagram showing torque characteristics of the synchronous rotating electric machine according to the first embodiment of the present invention.

【図3】本発明の第2実施形態における、同期回転電機
の横断面図である。
FIG. 3 is a transverse sectional view of a synchronous rotating electric machine according to a second embodiment of the present invention.

【図4】従来の同期回転電機の破断縦断面図である。FIG. 4 is a broken vertical sectional view of a conventional synchronous rotating electric machine.

【図5】従来の同期回転電機の横断面図で、図4のV −
V 線に沿った断面図である。
FIG. 5 is a cross-sectional view of a conventional synchronous rotating electric machine, taken along line V- of FIG.
It is sectional drawing along the V line.

【図6】従来の同期回転電機のトルク特性を示す図であ
る。
FIG. 6 is a diagram showing torque characteristics of a conventional synchronous rotating electric machine.

【符号の説明】[Explanation of symbols]

3…ロータ、33…貫通空隙、4A、4B、4C、4D
…永久磁石、5…ステータ、dm…主磁束方向軸、dr
…磁気抵抗が最大を示す方向の軸、θ…位相角。
3 ... Rotor, 33 ... Through gap, 4A, 4B, 4C, 4D
... Permanent magnets, 5 ... Stator, dm ... Main magnetic flux direction axis, dr
… The axis of the direction in which the magnetic resistance shows the maximum, θ ... The phase angle.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ロータ(3)の外周に周方向へ間隔をお
いて複数の磁極(4A〜4D)を形成し、ステータ
(5)により形成される回転磁界に追従して前記ロータ
を回転駆動する同期回転電機において、前記ロータの一
部に、磁気抵抗の分布を前記各磁極(4A〜4D)の主
磁束方向軸(dm)に関して非対称とするような空隙
(33)を設けたことを特徴とする同期回転電機。
1. A plurality of magnetic poles (4A-4D) are formed on the outer periphery of a rotor (3) at intervals in the circumferential direction, and the rotor is rotationally driven by following a rotating magnetic field formed by a stator (5). In the synchronous rotating electric machine described above, a gap (33) is provided in a part of the rotor so that the distribution of the magnetic resistance is asymmetric with respect to the main magnetic flux direction axis (dm) of each magnetic pole (4A to 4D). Synchronous rotating electric machine.
【請求項2】 前記空隙(33)は、前記各磁極(4A
〜4D)の主磁束(φ)の方向に沿った長孔状断面をな
して複数形成され、かつ前記主磁束方向軸(dm)を中
心にロータ周方向へ偏在して形成されていることを特徴
とする請求項1に記載の同期回転電機。
2. The air gap (33) is formed in each of the magnetic poles (4A).
4D) having a long hole-shaped cross section along the direction of the main magnetic flux (φ), and formed so as to be unevenly distributed in the rotor circumferential direction around the main magnetic flux direction axis (dm). The synchronous rotating electric machine according to claim 1, which is characterized in that.
【請求項3】 前記主磁束方向軸(dm)に対して、前
記磁気抵抗が最大を示す方向の軸(dr)のなす位相角
(θ)が電気角で45°となるように、前記空隙(3
3)を分布させたことを特徴とする請求項1又は2に記
載の同期回転電機。
3. The air gap so that a phase angle (θ) formed by an axis (dr) in a direction in which the magnetic resistance is maximum with respect to the main magnetic flux direction axis (dm) is an electrical angle of 45 °. (3
3. The synchronous rotating electric machine according to claim 1 or 2, wherein 3) is distributed.
JP34105395A 1995-12-27 1995-12-27 Synchronous rotating electric machine Expired - Fee Related JP3598625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34105395A JP3598625B2 (en) 1995-12-27 1995-12-27 Synchronous rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34105395A JP3598625B2 (en) 1995-12-27 1995-12-27 Synchronous rotating electric machine

Publications (2)

Publication Number Publication Date
JPH09182330A true JPH09182330A (en) 1997-07-11
JP3598625B2 JP3598625B2 (en) 2004-12-08

Family

ID=18342807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34105395A Expired - Fee Related JP3598625B2 (en) 1995-12-27 1995-12-27 Synchronous rotating electric machine

Country Status (1)

Country Link
JP (1) JP3598625B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340487A (en) * 2005-06-01 2006-12-14 Denso Corp Brushless motor
JP2012120413A (en) * 2010-12-03 2012-06-21 Honda Motor Co Ltd Rotor
CN113131641A (en) * 2019-12-30 2021-07-16 安徽威灵汽车部件有限公司 Rotor of motor, driving motor and vehicle
CN113131642A (en) * 2019-12-30 2021-07-16 安徽威灵汽车部件有限公司 Rotor of motor, driving motor and vehicle
CN113364173A (en) * 2020-03-06 2021-09-07 安徽威灵汽车部件有限公司 Rotor of motor, motor and vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340487A (en) * 2005-06-01 2006-12-14 Denso Corp Brushless motor
JP4626405B2 (en) * 2005-06-01 2011-02-09 株式会社デンソー Brushless motor
JP2012120413A (en) * 2010-12-03 2012-06-21 Honda Motor Co Ltd Rotor
CN113131641A (en) * 2019-12-30 2021-07-16 安徽威灵汽车部件有限公司 Rotor of motor, driving motor and vehicle
CN113131642A (en) * 2019-12-30 2021-07-16 安徽威灵汽车部件有限公司 Rotor of motor, driving motor and vehicle
CN113364173A (en) * 2020-03-06 2021-09-07 安徽威灵汽车部件有限公司 Rotor of motor, motor and vehicle
CN113364173B (en) * 2020-03-06 2023-06-30 安徽威灵汽车部件有限公司 Rotor of motor, motor and vehicle

Also Published As

Publication number Publication date
JP3598625B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US6340857B2 (en) Motor having a rotor with interior split-permanent-magnet
CA2784977C (en) Rotor having a squirrel cage
US7902700B1 (en) Low harmonic loss brushless motor
JP2004357489A (en) Unidirectionally magnetized permanent magnet motor
JP2003032978A (en) Dynamo-electric machine
JP2000197325A (en) Reluctance motor
US9692266B2 (en) Spoke-type PM machine with bridge
JP3442636B2 (en) Permanent magnet motor
JP4600860B2 (en) Permanent magnet synchronous motor
US20140252913A1 (en) Single phase switched reluctance machine with axial flux path
JP3703907B2 (en) Brushless DC motor
CN214154305U (en) Array type double outer rotor sinusoidal air gap magnetic field permanent magnet motor
US9735634B2 (en) Split pole spoke type PM machine with enclosed magnets
JP7283361B2 (en) Rotor of rotary electric machine
JP3598625B2 (en) Synchronous rotating electric machine
KR101123676B1 (en) Synchronous motor having rotor formed magnetic flux guide hole
JP3306244B2 (en) Motor rotor for compressor
JPS6096145A (en) Equial polarity exciting ac machine
US20200220400A1 (en) Interior permanent magnet electric machine with tapered bridge structure
JP4363600B2 (en) Smooth armature type 3-phase brushless motor
JP2007312444A (en) Variable reluctance generator
CN114785078B (en) Constant-voltage composite electro-magnetic permanent magnet synchronous power frequency water-cooled generator
CN113708527B (en) Non-salient pole type electro-magnetic wound rotor and synchronous motor thereof
US20240063671A1 (en) Rotor
JP4088847B2 (en) Stator winding of brushless motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees