JPH09175116A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH09175116A
JPH09175116A JP7343237A JP34323795A JPH09175116A JP H09175116 A JPH09175116 A JP H09175116A JP 7343237 A JP7343237 A JP 7343237A JP 34323795 A JP34323795 A JP 34323795A JP H09175116 A JPH09175116 A JP H09175116A
Authority
JP
Japan
Prior art keywords
pattern unit
tire
pattern
pitch
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7343237A
Other languages
Japanese (ja)
Other versions
JP3127109B2 (en
Inventor
Chieko Aoki
知栄子 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP07343237A priority Critical patent/JP3127109B2/en
Publication of JPH09175116A publication Critical patent/JPH09175116A/en
Application granted granted Critical
Publication of JP3127109B2 publication Critical patent/JP3127109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0318Tread patterns irregular patterns with particular pitch sequence

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To make tire noise white noise by providing a pitch length whose circumferential length is particular, forming a plurality of pattern unit sequences on the rear fitting side of a tire, and making the maximum dispersion degree as a characteristic equal to or less than a particular dispersion degree and an interference value equal to or less than a prescribed value. SOLUTION: This tire is provided with (s) kinds of pitch lengths Li (i=1 to s) whose circumferential length ranges from the minimum pitch length L1 to the maximum pitch length Lm and a pattern unit sequence where (m) pattern units Di (i=1 to s), j (j=1 to m) are arranged in the circumferential direction toward the rear fitting side of the tire by setting a starting point in a parallel order to j=1. The maximum dispersion degree PSDrmax is set to a dispersion degree KC or less, where PSDrmax=100×(Ar<2> +Br<2> )/m<2> , KC= 100/(Ls/L1)<10> }×(1/ Rn), PSDr max<=KC. The interference value SUW is made equal to or less than 2.1, where SUW= 1/2×m×Wn<2> )}×Σ(SWZj.(x))<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、タイヤの模様単位
によって生じた音が残留することによる重なりを考慮す
ることによって、走行時の騒音を低減しうる空気入りタ
イヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire capable of reducing noise during traveling by taking into consideration overlap due to residual sound generated by tire pattern units.

【0002】[0002]

【従来の技術】近年、自動車の性能向上とともに、走行
時の車内の静粛性がますます要請されている。このよう
な要請に応じるには、道路の凹凸を、タイヤ、リムホイ
ール、サスペンジョンを介して車体を振動させることに
より生じる車両騒音とともに、タイヤの回転に伴い発生
するタイヤ騒音の低減が求められている。
2. Description of the Related Art In recent years, as the performance of automobiles has improved, quietness inside the vehicle during traveling has been increasingly demanded. In order to meet such a demand, it is required to reduce not only the vehicle noise generated by vibrating the vehicle body through the unevenness of the road through the tire, the rim wheel, and the suspension but also the tire noise generated as the tire rotates. .

【0003】他方、タイヤのタイヤトレッドには、車
両、路面の条件に応じて種々なトレッドパターンが用い
られる。多くのトレッドパターンには、タイヤ軸方向に
のびるトレッド溝をタイヤ周方向に間隔を隔てて形成
し、またはトレッド溝をタイヤ周方向にジグザグとする
など、ある模様の構成の単位、即ち模様単位をタイヤ周
方向に繰り返すことにより、模様単位列とした繰り返し
パターンからなるブロックパターン、リブパターン、ラ
グパターンなどが採用される。
On the other hand, various tread patterns are used for tire treads of tires depending on the conditions of the vehicle and the road surface. In many tread patterns, tread grooves extending in the tire axial direction are formed at intervals in the tire circumferential direction, or the tread grooves are zigzag in the tire circumferential direction. By repeating in the tire circumferential direction, a block pattern, a rib pattern, a lug pattern, etc., which are repeated patterns in a pattern unit row, are adopted.

【0004】このような繰り返しパターンのタイヤにお
いては、各模様単位列の模様単位がタイヤの走行により
路面と順次に接地し、それにより、模様単位をなすトレ
ッド溝の内部の空気が、接地時の圧縮、離間時の膨張に
よる溝容積の変化により圧縮、放出されて疎密波が発生
し、路面との間において繰り返しの騒音、即ち前記タイ
ヤ騒音を生じる。この模様単位に基づいて生じる音は通
常不快音となり、その改善が望まれる。
In a tire having such a repeating pattern, the pattern units in each pattern unit row sequentially come into contact with the road surface as the tire travels, so that the air inside the tread groove forming the pattern unit is in contact with the ground surface. A compression wave is generated and compressed due to a change in groove volume due to expansion during compression and separation, and compression waves are generated, resulting in repeated noise with the road surface, that is, the tire noise. The sound generated based on this pattern unit usually becomes an unpleasant sound, and its improvement is desired.

【0005】この改善のために、従来、ピッチ長さ、即
ちタイヤ周方向長さの異なる模様単位を配列することに
より、騒音を広い周波数帯に分散させ、ホワイトノイズ
化するいわゆるピッチバリエーション法など多くの模様
単位配列方法が提案されてきた。
In order to improve this, conventionally, by arranging pattern units having different pitch lengths, that is, tire lengths in the circumferential direction of the tire, the noise is dispersed in a wide frequency band and white noise is generated. Has been proposed.

【0006】このピッチバリエーション法には、例えば
特公昭58−2844号公報(特開昭55−8904
号)、特公平3−23366号公報(特開昭54−11
5801号)が提案するように、ピッチの配列を正弦関
数的な周期的配列とするものがある。また、特公昭51
−41723号公報(特開昭50−20402号)、特
公昭62−41122号公報(特開昭57−11470
6号)に記述されているような模様構成単位のピッチ配
列をランダムとするものがある。
This pitch variation method is disclosed in, for example, Japanese Patent Publication No. 58-2844 (Japanese Patent Laid-Open No. 55-8904).
Japanese Patent Publication No. 3-23366 (JP-A-54-11)
No. 5801) proposes a pitch array as a sinusoidal periodic array. In addition,
-41723 (JP-A-50-20402) and JP-B-62-41122 (JP-A-57-11470).
No. 6), the pitch arrangement of the pattern constituent units is random.

【0007】さらには本出願人が特願平6−21809
9号、特願平6−225649号により提案したカオス
的関数を用いてピッチ配列を定めるものもあり、又乗員
が聴取する音感を改善するものとして特願平7−202
276号のものが本出願人によって提案されている。
Further, the applicant of the present invention has filed Japanese Patent Application No. 6-21809.
No. 9 and Japanese Patent Application No. 6-225649 have proposed a pitch arrangement using a chaotic function, and Japanese Patent Application No. 7-202 for improving the pitch sense heard by an occupant.
No. 276 has been proposed by the applicant.

【0008】[0008]

【発明が解決しようとする課題】このように種々なピッ
チバリエーション法が知られ、種々な模様単位列、即ち
ピッチ配列が選択されるが、タイヤは、速度に応じて回
転数が異なるものであるために、完全にホワイトノイズ
化しうるピッチ配列をうるのは困難である。
As described above, various pitch variation methods are known, and various pattern unit rows, that is, pitch arrangements are selected, but the tire has different rotation speeds depending on the speed. Therefore, it is difficult to obtain a pitch arrangement that can be completely converted into white noise.

【0009】従ってタイヤ騒音の低下のために種々検討
を行った結果、タイヤ全周における模様単位列全体にお
ける音の分散度合によるホワイトノイズ化とともに、接
地している模様単位から生じる音と、路面からすでに離
間している模様単位により生じ残留している音との間の
干渉を考慮するべきであり、そのためには、タイヤ全周
におけるある範囲の音が残留し干渉すると考えることが
タイヤの官能評価による結果と相関すること、およびそ
の知見に基づいてホワイトノイズ、干渉音の良好なタイ
ヤを得た。
Therefore, as a result of various studies for reducing tire noise, as a result of white noise due to the degree of sound dispersion in the entire pattern unit row over the entire circumference of the tire, sound generated from the grounded pattern unit and from the road surface It is necessary to consider the interference with the residual sound caused by the already separated pattern units, and for that purpose, it is considered that a certain range of sound around the entire circumference of the tire remains and interferes. Based on the fact that it correlates with the results of the above, and based on the findings, a tire with good white noise and interference noise was obtained.

【0010】本発明は、不快音を減じつつタイヤ騒音を
低下しうる空気入りタイヤの提供を目的としている。
An object of the present invention is to provide a pneumatic tire capable of reducing tire noise while reducing unpleasant noise.

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、周方
向長さが最短のピッチ長さL1から最長のピッチ長さL
mまでのs種のピッチ長さL(i=1〜s)を有しかつ
並列順の起点をj=1としてm個の模様単位Di(i=
1〜s)、j(j=1〜m)をタイヤの後着側に向かっ
て周方向に並べた模様単位列を具えるとともに、最大分
散度数PSDrmaxが分散度KC以下であること、およ
び干渉値SUWが2.1以下であることを特徴とする空
気入りタイヤである。
According to the invention of claim 1, the pitch length L1 from the shortest circumferential length to the longest pitch length L is set.
There are s kinds of pitch lengths L (i = 1 to s) up to m and the starting point of the parallel order is j = 1, and m pattern units Di (i =
1 to s) and j (j = 1 to m) are arranged in the circumferential direction toward the rear side of the tire, and the maximum dispersion power PSDrmax is less than or equal to the dispersion KC, and interference. A pneumatic tire having a value SUW of 2.1 or less.

【0012】請求項2の発明は、前記ピッチ長さの種類
数sは2であることを特徴とする請求項1記載の空気入
りタイヤである。
The invention according to claim 2 is the pneumatic tire according to claim 1, wherein the number of types s of the pitch length is 2.

【0013】請求項1の発明において、式(1)〜式
(3)の最大分散度数PSDr maxによってホワイトノ
イズ化のための音の分散度合を良好とする。式(6)の
干渉値SUWを2.1以下とすることによって残留音の
重なりによる干渉音を制限できる。
According to the first aspect of the invention, the degree of dispersion of sound for white noise is improved by the maximum dispersion frequency PSDr max of the expressions (1) to (3). By setting the interference value SUW of Expression (6) to 2.1 or less, the interference sound due to the overlapping of the residual sounds can be limited.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づき詳述する。トレッドパターンを簡略化し
て示す図1において、空気入りタイヤは、トレッド部2
の表面であるトレッド面に、タイヤ全周にm個の模様単
位Dijを周方向に並べた模様単位列4を含む。なお空
気入りタイヤは、本例ではラジアル構造カーカスと、タ
イヤ周方向に対して比較的浅い角度でコードを配したベ
ルトとを有する乗用車用、重車両用の空気入りラジアル
タイヤとして形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings. In FIG. 1, which shows a simplified tread pattern, the pneumatic tire has a tread portion 2
The tread surface, which is the surface of, includes a pattern unit row 4 in which m pattern units Dij are arranged in the circumferential direction on the entire circumference of the tire. In this example, the pneumatic tire is formed as a pneumatic radial tire for passenger vehicles and heavy vehicles having a radial structure carcass and a belt having cords arranged at a relatively shallow angle with respect to the tire circumferential direction.

【0015】トレッドパターンとして、本例ではブロッ
ク5を有するブロックパターンを例示し、本例では、タ
イヤ赤道Cの両側でタイヤ周方向に連続してかつジグザ
グにのびる2本の主溝6、6と、その外側に配され周方
向にのびる副溝7、7との間を、主溝6の軸方向外向き
の出隅からのびる横溝9…により継ぐことによって、主
溝6と副溝7との間でタイヤ周方向に並ぶブロック5で
ある前記模様単位Dijが並ぶ中間の模様単位列4A、
4Aが形成される。
As the tread pattern, a block pattern having a block 5 is illustrated in this example, and in this example, two main grooves 6 and 6 continuous in the tire circumferential direction on both sides of the tire equator C and extending in a zigzag pattern. , The sub-grooves 7, 7 arranged on the outer side thereof and extending in the circumferential direction are joined by the lateral grooves 9 extending from the outwardly protruding corners of the main groove 6 so that the main groove 6 and the sub-groove 7 are connected. An intermediate pattern unit row 4A in which the pattern units Dij, which are blocks 5 arranged in the tire circumferential direction between
4A is formed.

【0016】さらに図1の例において、前記各主溝6、
6の軸方向内側への出隅にはタイヤ赤道Cをこえて途切
れる横枝溝10…と、周方向に隣り合う横枝溝10、1
0を略タイヤ赤道C上でかつ5〜15°程度で傾いて継
ぐ連結溝12とを設ける。これによってタイヤ赤道Cの
両側にブロックからなる他の模様単位Dijが並ぶ中央
の模様単位列4B、4Bが形成され、この模様単位列4
Bは、模様単位列4Aとは半ピッチずれた同じピッチ長
さLiの配列を具えることは明らかである。この模様単
位列4Bの模様単位も、Dijとして表示する。
Further, in the example of FIG. 1, each of the main grooves 6,
6 in the axially inward direction, the lateral branch groove 10 is cut off beyond the tire equator C, and the lateral branch grooves 10 and 1 are circumferentially adjacent to each other.
And a connecting groove 12 that connects 0 on the tire equator C at an angle of about 5 to 15 °. As a result, central pattern unit rows 4B and 4B in which the other pattern units Dij made of blocks are arranged on both sides of the tire equator C are formed.
It is clear that B comprises an array of the same pitch length Li, which is offset by a half pitch from the pattern unit row 4A. The pattern unit of the pattern unit row 4B is also displayed as Dij.

【0017】さらに本例では、前記副溝7から軸方向外
側にのびるラグ溝13…が、中間の模様単位列4Aの模
様単位Dijの周方向長さ中間位置ごとに配されること
により、ブロック状の模様単位が周方向に並ぶ模様単位
列4C、4Cが形成される。なお、この模様単位列4C
の模様単位Dの周方向長さは、中央、中間の模様単位列
4A、4Bにおいて周方向に隣り合う模様単位Dij、
模様単位Dij+1の各平均値であり、このような異な
るピッチ長さの模様単位列4をも包含できる。
Further, in this example, the lug grooves 13 extending axially outward from the sub-grooves 7 are arranged at every circumferential length intermediate position of the pattern unit Dij of the intermediate pattern unit row 4A, whereby the block is formed. The pattern unit rows 4C and 4C in which the pattern units each having a circular shape are arranged in the circumferential direction are formed. In addition, this pattern unit row 4C
The length of the pattern unit D in the circumferential direction is the pattern units Dij that are adjacent to each other in the circumferential direction in the central and intermediate pattern unit rows 4A and 4B.
It is an average value of each pattern unit Dij + 1, and the pattern unit sequence 4 having such a different pitch length can also be included.

【0018】なお前記模様単位列での模様単位列4の前
記個数mは、例えば40〜75程度、好ましくは50〜
65の範囲から選択することができる。
The number m of the pattern unit rows 4 in the pattern unit row is, for example, about 40 to 75, preferably 50 to.
It can be selected from the range of 65.

【0019】前記主溝6は、ジグザグの周方向の長さ、
即ちピッチ長さLiが最短のピッチ長さL1から最長の
ピッチ長さLsまで、ピッチ長さL1…Lsが異なる複
数種類sのピッチ長さLi(i=1〜s)のジグザグを
含むことにより、模様単位Dijも、前記のようにそれ
に応じた各ピッチ長さLiのものを含む。
The main groove 6 has a zigzag circumferential length,
That is, by including zigzag of a plurality of types s of pitch lengths Li (i = 1 to s) having different pitch lengths L1 ... Ls from the shortest pitch length L1 to the longest pitch length Ls. The pattern unit Dij also includes the corresponding pitch length Li as described above.

【0020】前記「ピッチ長さ」とは、前記規定による
とき模様単位列4Aでは、各ブロック5の周方向長さW
5と、ブロック5を周方向に挟む横溝9…の周方向巾W
9との和、模様単位列4Bではブロック5の周方向長さ
W5と横板溝10の周方向巾W10との和として定義さ
れるが、その基準点を横溝9又は横枝溝12の溝中央と
することも、ブロック5の一辺を基準点とすることもで
きる。この場合には、ブロック5の一辺から周方向に隣
り合うブロックの対応する一辺までのタイヤ周方向長さ
として定義されることとなる。
The above-mentioned "pitch length" means the length W in the circumferential direction of each block 5 in the pattern unit row 4A according to the above-mentioned rules.
5, and the lateral width W of the lateral grooves 9 that sandwich the block 5 in the circumferential direction.
9 is defined as the sum of the circumferential length W5 of the block 5 and the circumferential width W10 of the lateral plate groove 10 in the pattern unit row 4B. The reference point is the groove of the lateral groove 9 or the lateral branch groove 12. The center can be used, or one side of the block 5 can be used as a reference point. In this case, it is defined as the tire circumferential direction length from one side of the block 5 to the corresponding side of the blocks adjacent in the circumferential direction.

【0021】なお本例では前記主溝6と横溝9…とはト
レッド巾の6〜12%であって同巾であり、かつ溝深さ
もトレッド巾の2〜12%程度とする。又本例では横溝
9は周方向全てを同巾としている。副溝7は溝巾のみが
主溝6の30〜80%程度としている。
In the present embodiment, the main groove 6 and the lateral grooves 9 are 6 to 12% of the tread width and have the same width, and the groove depth is about 2 to 12% of the tread width. Further, in this example, the lateral grooves 9 have the same width in the circumferential direction. Only the groove width of the sub groove 7 is about 30 to 80% of that of the main groove 6.

【0022】なおトレッドパターンがパターンであると
きには、ピッチ長さは周方向溝のジグザグのピッチとし
て定めうる。
When the tread pattern is a pattern, the pitch length can be defined as the zigzag pitch of the circumferential groove.

【0023】又模様単位Dijにおいて符号jとは、模
様単位Dにおいて基準位置、即ち起点を1とし、m個の
最終の模様単位まで後着側に並べてj番目であること、
従って模様単位のその配列順番号を意味する。なおDi
jとは、配列順序がj番目の模様単位のピッチ長さがL
iであることを意味する。即ちDijとはDi(i=1
〜s)、j(j=1〜n)を意味し、又省略してDi
j、又はDとする。
Further, the symbol j in the pattern unit Dij means that the reference position in the pattern unit D, that is, the starting point is 1, and that the m final pattern units are arranged on the rear arrival side and are the jth.
Therefore, it means the sequence number of the pattern unit. Note that Di
j means that the pitch length of the pattern unit whose arrangement order is j is L
i means i. That is, Dij is Di (i = 1
To s), j (j = 1 to n), or omitted for Di
j or D.

【0024】さらに、前記ピッチ長さLiの種類数s
は、2以上であって9以下程度、好ましくは5以下程度
とする。又長さの順に並べてたときに隣り合う模様単位
Dのピッチ長さの比(Li+1/Li)を、概ね1.1
0〜1.30の範囲とすることにより、著しいピッチ長
さの変化を防止し、トレッドデザインの見映えを損なう
ことなく、しかも低騒音化、耐摩耗性の向上に役立つ点
で好ましい。さらに最短のピッチ長さL1と最長のピッ
チ長さLsとの比Ls/L1は、1.10〜2.40、
好ましくは1.20〜1.90程度とし、過度な変化を
防ぐ。
Further, the number of kinds s of the pitch length Li is
Is 2 or more and about 9 or less, preferably about 5 or less. When arranged in order of length, the pitch length ratio (Li + 1 / Li) of the adjacent pattern units D is approximately 1.1.
The range of 0 to 1.30 is preferable because it prevents a significant change in pitch length, does not impair the appearance of the tread design, and helps to reduce noise and improve wear resistance. Further, the ratio Ls / L1 between the shortest pitch length L1 and the longest pitch length Ls is 1.10 to 2.40,
It is preferably set to about 1.20 to 1.90 to prevent excessive change.

【0025】図1には、前記タイヤ全周上の任意に定め
た基準の位置である起点j=1から、車両前進走行時に
おけるタイヤ後着側に向けて並ぶ模様単位のピッチ長さ
Liの種類数sが3の場合のピッチ配列図を示す。この
ようなピッチ配列は、例えば本出願人が提案した特願平
7−202276号、特願平6−218099号、特願
平6−225649号などの方法によって予め選択し、
かつ最大分散度数PSDr maxと干渉値SUWとによっ
て選定する。
FIG. 1 shows pitch lengths Li of pattern units arranged from the starting point j = 1, which is an arbitrarily determined reference position on the entire circumference of the tire, toward the trailing side of the tire when the vehicle is traveling forward. The pitch arrangement diagram when the number of types s is 3 is shown. Such a pitch arrangement is selected in advance by a method such as Japanese Patent Application No. 7-202276, Japanese Patent Application No. 6-218099, Japanese Patent Application No. 6-225649 proposed by the present applicant,
In addition, the maximum dispersion frequency PSDr max and the interference value SUW are selected.

【0026】まずホワイトノイズ化を良好とするために
この模様単位列の以下の(1)式の最大分散度数PSD
r maxが(2)式で示す分散度KC以下とする。これに
より音の分散度を高める。 PSDr max=100×(Ar2 +Br2 )/m2 … (1) KC={100/(Ls/L1)10}×(1/Rn) +5×{(1/Rn)+1} … (2) PSDr max≦KC … (3) この(1)式は、模様単位列において、各模様単位Di
jのピッチ長さLiを図2に示すように、単位パルスに
変換してフーリエ変換を用いて次数解析を行ったもので
あって、次数rを200次までとし、単位当りの音のエ
ネルギーを計算している。なお最大値を最大分散度数P
SDr maxと呼び、この値が大きいほど分散が悪く純音
的な音に近づくために図3に示すように、官能試験の評
点(官能評点)が悪くなる。
First, in order to improve white noise, the maximum dispersion frequency PSD of the following equation (1) of this pattern unit sequence is given.
It is assumed that r max is equal to or less than the degree of dispersion KC shown in the equation (2). This increases the degree of sound dispersion. PSDr max = 100 × (Ar 2 + Br 2 ) / m 2 (1) KC = {100 / (Ls / L1) 10 } × (1 / Rn) + 5 × {(1 / Rn) +1} (2) PSDr max ≦ KC (3) This equation (1) is used for each pattern unit Di in the pattern unit row.
As shown in FIG. 2, the pitch length Li of j is converted into a unit pulse and the order is analyzed using Fourier transform. The order r is up to the 200th order and the sound energy per unit is I'm calculating. The maximum value is the maximum dispersion frequency P
It is called SDr max, and the larger this value is, the less the dispersion is and the closer to pure tone the sound is. Therefore, as shown in FIG. 3, the sensory test score (sensory score) becomes worse.

【0027】なお式(1)においてAr、Brは次の数
式(4)、(5)により求める。
In the formula (1), Ar and Br are calculated by the following formulas (4) and (5).

【0028】[0028]

【数5】 (Equation 5)

【0029】[0029]

【数6】 (Equation 6)

【0030】さらに Xj:基準位置からj番目の模様単位Dijまでの距離
(mm) CL:模様単位列が並ぶタイヤ全周長さ(mm) である。
Further, Xj is a distance (mm) from the reference position to the j-th pattern unit Dij, CL is a total circumference length (mm) of the tire in which the pattern unit rows are lined up.

【0031】図3から、分散による官能評価によると、
最大分散度数PSDr maxが小となる程、評点が向上す
るのがわかる。従って最大分散度数DSDrmを小とす
る限界について検討し、可能な限界値、即ち前記分散度
KCを求めた。
According to the sensory evaluation by dispersion from FIG.
It can be seen that the smaller the maximum dispersion frequency PSDr max, the higher the score. Therefore, the limit for reducing the maximum dispersion degree DSDrm was examined, and a possible limit value, that is, the dispersion degree KC was obtained.

【0032】この分散度KCを検討するために、最大分
散度数PSDr maxが最短ピッチL1と最長ピッチLs
との比である最大ピッチ比(Ls/L1)、およびある
模様単位列における模様単位の個数m、即ちピッチ総個
数mに依存するものと考え、それらを変化させてピッチ
配列を求めそのPSDr maxを算出した。即ち最大ピッ
チ比Ls/L1を0.1ごとに1.1〜1.7の範囲、
Rn(=m/60)を例えば0.67、1.17、1.
67の3種の値とし、その組合わせごとに例えば本出願
人が特願平6−218099号、特願平6−22564
9号により提案したカオス的関数を用いる方法を基本と
して模様単位列を求めた。
In order to study the dispersion degree KC, the maximum dispersion degree PSDr max is set to the shortest pitch L1 and the longest pitch Ls.
The maximum pitch ratio (Ls / L1), which is the ratio of the number of pattern units, and the number m of pattern units in a certain pattern unit sequence, that is, the total number m of pitches. Was calculated. That is, the maximum pitch ratio Ls / L1 is in the range of 1.1 to 1.7 at every 0.1,
Rn (= m / 60) is, for example, 0.67, 1.17, 1.
There are three kinds of values of 67, and for each combination, for example, the applicant of the present invention filed Japanese Patent Application No. 6-218099 and Japanese Patent Application No. 6-22564.
The pattern unit sequence was obtained based on the method using the chaotic function proposed by No. 9.

【0033】この方法とは、大巾に簡略化して説明する
と、カオス、即ち「乱流や生体システムにおけるリズム
など自然界のいたるところに存在する決定論的方程式が
生み出す一見無秩序かつ予測不可能な現象」の複雑な現
象の背後に隠れた法則乃至それを明かそうとするカオス
理論を利用するものであり、カオス的な擬似的信号を発
生するカオス関数を模様単位列の発生のために変形した
カオス的関数を用いる。このために、まず横軸、縦軸の
各区画に原点から模様単位を、ピッチLの小さい順番に
割り当てる。横軸のある区画に存在し縦方向に並ぶ全て
の領域の内、カオス的関数を定義する定義領域を横軸の
区画毎に定める。カオス的関数は、定義領域において、
前記横軸をXn、前記縦軸をX(n+1)として、X
(n+1)=fc(Xn)で表す。このカオス的関数に
よって一定の約束を用いて順次えられる関数値の数列に
基づいて模様単位列をえる。なお模様単位列では周方向
の長さであるピッチLが互いに異なる種類数sの模様単
位がタイヤ周方向に配列される。計算はコンピュータ処
理により、各組合わせごとに50個のピッチ配列を算出
し、そのピッチ配列から前記式(1)によりPSDr m
axを求めた。各組合わせにおける各50個のピッチ配列
のPSDr maxの内、最小のPSDr maxの値を取出し
て前記Rnごとに図4に記載している。
This method is roughly simplified and explained. Chaos, that is, "a seemingly chaotic and unpredictable phenomenon produced by deterministic equations existing everywhere in nature such as turbulence and rhythms in biological systems. Of the chaotic theory that tries to reveal the hidden law behind the complex phenomenon of "," which is obtained by transforming a chaotic function that generates a chaotic pseudo signal to generate a pattern unit sequence. Using a static function. For this purpose, first, pattern units from the origin are assigned to the sections on the horizontal axis and the vertical axis in ascending order of the pitch L. Of all the regions existing in a certain section along the horizontal axis and arranged in the vertical direction, the definition area defining the chaotic function is defined for each section along the horizontal axis. The chaotic function is
Assuming that the horizontal axis is Xn and the vertical axis is X (n + 1), X
It is represented by (n + 1) = fc (Xn). A pattern unit sequence is obtained based on a sequence of function values sequentially obtained with a certain promise by this chaotic function. In the pattern unit row, pattern units of the number s of different types having pitches L, which are lengths in the circumferential direction, are arranged in the tire circumferential direction. The calculation is performed by computer processing to calculate 50 pitch arrangements for each combination, and PSDr m is calculated from the pitch arrangement according to the equation (1).
I asked for ax. From the PSDr max of each 50 pitch arrangements in each combination, the minimum PSDr max value is extracted and described for each Rn in FIG.

【0034】この図4の各RnごとのPSDr maxの各
値に対して好ましい猶予範囲を与えた曲線、、
を、同図4に示している。
A curve giving a preferable margin range for each value of PSDr max for each Rn in FIG.
Is shown in FIG.

【0035】分散度KCとは、前記曲線、、をL
s/L1、Rnを変数として数式化し、前記した(2)
式のようにまとめたのである。 KC={100/(Ls/L1)10}×(1/Rn) +5×{(1/Rn)+1} … (2) さらに前記のように、最大分散度数PSDr maxを分散
度KC以下とするのである。 PSDr max≦KC … (3) これによって分散によるホワイトノイズ化を可能な範囲
で向上することを意味する。
The degree of dispersion KC is the above curve, L
s / L1 and Rn are used as variables to formulate, and (2)
It was put together like a formula. KC = {100 / (Ls / L1) 10 } × (1 / Rn) + 5 × {(1 / Rn) +1} (2) Further, as described above, the maximum dispersion frequency PSDr max is set to the dispersion degree KC or less. Of. PSDr max ≦ KC (3) This means that white noise due to dispersion can be improved within a possible range.

【0036】次に模様単位列において干渉値SUWを
2.1以下(SUW≦2.1)としている。
Next, the interference value SUW is set to 2.1 or less (SUW ≦ 2.1) in the pattern unit row.

【0037】[0037]

【数7】 (Equation 7)

【0038】最大分散度数PSDr maxは、前記Ar、
Brのピッチ総個数mまで計算する式(4)、式(5)
から明らかなごとく、タイヤ全周に亘る模様単位列の全
ての模様単位Dijを一度に計算し、評価の対象として
いる。即ち全ての模様単位から同時に生じる者の分散に
ついて考慮している。なおこの最大分散度数PSDrma
xを分散度KC以下にすることにより騒音を低下しうる
のは前記のとおりである。
The maximum dispersion frequency PSDr max is the above Ar,
Formulas (4) and (5) for calculating up to the total number m of Br pitches
As is clear from the above, all the pattern units Dij of the pattern unit row over the entire circumference of the tire are calculated at once and are subject to evaluation. That is, consideration is given to the dispersion of persons that occur simultaneously from all pattern units. This maximum dispersion frequency PSDrma
As described above, the noise can be reduced by setting x to be equal to or less than the dispersion degree KC.

【0039】しかしさらに騒音、不快音を低下するため
に種々検討した結果、タイヤの接地域付近の模様単位間
での干渉効果、即ちタイヤ騒音が発生しているときにタ
イヤ内ではある模様単位の振動が伝播されて残留し他の
振動と影響し合い、干渉することにより騒音を増減する
ことに着目した。接地している模様単位の音と、それ以
前に接地した模様単位により生じ接地域の近傍に残留す
る音との干渉を考慮するのであり、ある模様単位Dij
によりタイヤのピッチ音が生じると、タイヤ内では、そ
の模様単位Dijの振動が伝播して残留し、この残留波
が後続する模様単位Di(j+1)…により生じる模様
単位の振動波と互いに影響し干渉してノイズを増減する
のである。
However, as a result of various studies to further reduce noise and unpleasant noise, as a result, an interference effect between the pattern units near the contact area of the tire, that is, a pattern unit within the tire when tire noise is generated is detected. We paid attention to the fact that the vibration is propagated and remains, affects the other vibrations, and interferes with each other to increase or decrease the noise. The interference between the sound of the grounded pattern unit and the sound generated by the previously grounded pattern unit and remaining in the vicinity of the contact area is taken into consideration.
When the pitch sound of the tire is generated due to, the vibration of the pattern unit Dij propagates and remains in the tire, and this residual wave influences the vibration wave of the pattern unit generated by the following pattern unit Di (j + 1). They interfere and increase or decrease noise.

【0040】この部分領域での模様単位による音の干渉
の良否を、式(6)で定義する前記干渉値SUWで評価
し、かつこの干渉値SUWを2.1以下(SUW≦2.
1)とするのがよいことを見出したのである。
The quality of the sound interference by the pattern unit in this partial area is evaluated by the interference value SUW defined by the equation (6), and the interference value SUW is 2.1 or less (SUW ≦ 2.
We found that 1) is better.

【0041】ある模様単位Dが接地したときに発生した
振動は、次の模様単位が接地したときに発生した振動と
あるずれをもって重なる。このとき1つの模様単位によ
って1サイクルの正弦波の音が生じるとし、かつ残留す
る波形をある複数の重ね合わせ波数Wnと仮定すると
き、干渉波は、これらの重ね合わせ波形のモデルと考え
ることができる。この重ね合わせ波形のモデルでは、当
然波形が大きくなる方向が分散が悪くなる方向であるた
め、これによってノイズの干渉度合を評価することがで
きるのである。
The vibration generated when a certain pattern unit D is grounded overlaps with the vibration generated when the next pattern unit D is grounded. At this time, it is assumed that one cycle of sine wave sound is generated by one pattern unit, and assuming that the residual waveform is a plurality of overlapping wave numbers Wn, the interference wave may be considered as a model of these overlapping waveforms. it can. In this superposed waveform model, the direction in which the waveform becomes large naturally becomes the direction in which the dispersion becomes poor, and therefore the degree of interference of noise can be evaluated.

【0042】まず、1つの模様単位Dijによって発生
する振動の波形は、 SWj(x)=sin 2πx/Lij で表示される正弦波とする。この波形が前記重ね合わせ
波数Wn個残留していると仮定する。前記式におけるx
は波形の原点、即ち対象(j)とする模様単位Dijの
始点からの距離mm(x=0〜Lij)、Lijは対象
(j)とする模様単位Dijのピッチ長さmmである。
First, the waveform of vibration generated by one pattern unit Dij is a sine wave represented by SWj (x) = sin 2πx / Lij. It is assumed that this waveform has Wn overlapping wave numbers. X in the above formula
Is the distance mm (x = 0 to Lij) from the origin of the waveform, that is, the starting point of the pattern unit Dij that is the target (j), and Lij is the pitch length mm of the pattern unit Dij that is the target (j).

【0043】前記重ね合わせ波数Wnについて、残留し
た重ね合わせ波形を、タイヤ一周分として考えると最大
分散変数PSDr maxの評価法と大して変わらない。従
って接地面付近で並ぶある範囲の重ね合わせ波数Wn個
によって干渉値を計算する。なお重ね合わせ波数Wn
は、この重ね合わせ波数Wnを変えて干渉値SUWを計
算し、その値とパターンノイズの官能評点結果とが相関
する範囲として選択する。
Regarding the overlapping wave number Wn, when the remaining overlapping waveform is considered as one round of the tire, it is not much different from the evaluation method of the maximum dispersion variable PSDr max. Therefore, the interference value is calculated based on a certain number of overlapping wave numbers Wn arranged near the ground plane. The superposition wave number Wn
The interference value SUW is calculated by changing the superposition wave number Wn, and the interference value SUW is selected as a range in which the value correlates with the sensory score result of the pattern noise.

【0044】なお前記正弦波はズレを生じつつ波形が重
なり、重ね合わせ波形となる。重ね合わせ波形は、順次
接地する模様前記Dijにより生じる波形のズレを考慮
するとき、各対象jとする模様単位について先行して生
じた音が図4に示すようにズレを有して重なるため、式
(7)で表示できる。
Note that the sine waves overlap with each other while causing a shift, resulting in a superimposed waveform. When considering the deviation of the waveform caused by the pattern Dij that is sequentially grounded, the superposed waveforms have overlapping sounds that are generated in advance for the pattern unit of each target j, as shown in FIG. It can be displayed by Expression (7).

【0045】[0045]

【数8】 (Equation 8)

【0046】ここでLi,j−kは、対象とする模様単
位Dijに対してk個先行して接地した模様単位のピッ
チ長さをいう。
Here, Li, j-k means the pitch length of the pattern unit grounded prior to the target pattern unit Dij by k units.

【0047】この重ね合わせ波形を2乗して、全ての模
様単位Dij(j=1〜m)について総和し、これを一
般化することによって前記式(6)をうるのである。
This formula (6) can be obtained by squaring the superimposed waveforms, summing all the pattern units Dij (j = 1 to m), and generalizing the sum.

【0048】この式(6)において重ね合わせ波数Wn
をピッチ総個数mの1/4〜1/12の範囲で変化させ
て、例えば最大分散度数PSDr maxで用いた模様単位
列を用いて干渉値SUWを求め、かつそのタイヤを官能
評価した結果を図6に示している。図5の結果から、残
留個数はピッチ総数mの1/6倍以上の個数が選択され
るべきであるのがわかる。但し当然に整数が選択される
べきであり、かつ過度に重ね合わせ波数、Wnを増加す
るのも官能評価との相関性、計算経済性から好ましくな
く、ピッチ総数mの1/6〜1/7(好ましくは1/
6)程度において整数を選択する。
In this equation (6), the superposition wave number Wn
Is changed in the range of 1/4 to 1/12 of the total number m of pitches, the interference value SUW is obtained using the pattern unit sequence used with the maximum dispersion frequency PSDr max, and the result of sensory evaluation of the tire is It is shown in FIG. From the result of FIG. 5, it can be seen that the number of residuals should be selected to be 1/6 times or more of the total number m of pitches. However, an integer should be selected as a matter of course, and it is not preferable to excessively increase the overlapping wave number and Wn in view of the correlation with the sensory evaluation and the economical efficiency, and 1/6 to 1/7 of the total pitch m. (Preferably 1 /
6) Select an integer in the degree.

【0049】残留個数をm/6として干渉値SUWと官
能評価との関係を示すのが図7であり、相関は高いのが
判った。この干渉値SUWと前記最大分散度数PSDr
maxとを前記範囲としたピッチ配列を採用することによ
り、図8に示すように、官能フィーリングノイズに対し
て、最適な配列を作り出せることが確認できた。
FIG. 7 shows the relationship between the interference value SUW and the sensory evaluation when the residual number is m / 6, and it was found that the correlation is high. This interference value SUW and the maximum dispersion frequency PSDr
It was confirmed that the optimum arrangement can be created for the sensory feeling noise by adopting the pitch arrangement in which the max is in the above range, as shown in FIG.

【0050】(具体例)タイヤサイズ175/80R1
4のラジアルタイヤを試作し、最大分散係数PSDr m
ax、干渉値SUWを検定するとともに、騒音について官
能評価を行った。その結果を合わせて表1、表2に比較
例とともに示している(なお各表において模様単位をピ
ッチと記載している)。
(Specific example) Tire size 175 / 80R1
Prototype of radial tire No. 4 was manufactured, and maximum dispersion coefficient PSDr m
Ax and interference value SUW were tested, and sensory evaluation was performed on noise. The results are also shown in Tables 1 and 2 together with the comparative examples (the pattern unit is described as pitch in each table).

【0051】なお表1、表2において、実施例1〜6
は、前記した特願平6ー218099号、特願平6ー2
25649号など方法を用いた。ピッチ長さの種類数s
が2のものについては、応用して求めた(PCT−JP
/016331に記載がある)。比較例1〜5は、前記
した特公昭58−2844号公報、特公平3−2336
6号公報などの発明を利用して求めた。比較例4は現在
使用されているタイヤである。さらに、実施例、比較例
において、代表的なものの実際のピッチ配列を表3に示
している。
In Tables 1 and 2, Examples 1 to 6
Are the above-mentioned Japanese Patent Application No. 6-218099 and Japanese Patent Application No. 6-2
A method such as No. 25649 was used. Number of pitch length types s
2 was applied to obtain (PCT-JP
/ 016331). Comparative Examples 1 to 5 are the above-mentioned Japanese Patent Publication No. 58-2844 and Japanese Patent Publication No. 3336.
It was determined using inventions such as Japanese Patent No. 6 publication. Comparative Example 4 is a tire currently used. Further, Table 3 shows actual pitch arrangements of typical ones in Examples and Comparative Examples.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】各官能評価は、前記サイズのタイヤを2.
2リットルのFR車に装着し、空気圧2、0kpaで使
用した。車内音の官能評価は5点法を用い3以上が良好
なレベルである。また100kphよりエンジンオフで
惰行させて評価した。RFVの測定はJASO C60
7「自動車用タイヤのユニフオミテイ試験方法」に準じ
て実施した。
For each sensory evaluation, a tire of the above size was used for 2.
It was mounted on a 2-liter FR car and used at an air pressure of 20 kpa. The sensory evaluation of the sound inside the vehicle is based on the 5-point method, and 3 or more is a good level. Moreover, the engine was turned off from 100 kph to evaluate. RFV measurement is JASO C60
7. The test was performed according to "Uniformity test method for automobile tires".

【0056】テストの結果から、ピッチ長さの種類数s
が2の実施例1〜4の模様単位列のものは、種類数sが
2の比較例1〜3のものよりも評価がよく、種類数sが
3の比較例4のものと同等の評価であるのがわかる。さ
らに種類数sが3〜4の実施例5のものは、それぞれ相
当する比較例5、6のものよりも官能テストにおいて良
い結果となっているのが判る。
From the test results, the number of types of pitch length s
Of the pattern unit sequences of Examples 1 to 4 of 2 is better than those of Comparative Examples 1 to 3 in which the number of types s is 2, and an evaluation equivalent to that of Comparative Example 4 in which the number of types s is 3 I see. Further, it is understood that the example 5 having the number of types s of 3 to 4 has a better result in the sensory test than the corresponding comparative examples 5 and 6.

【0057】[0057]

【発明の効果】以上のように本発明の空気入りタイヤ
は、分散度合を良好としホワイトノイズ化するととも
に、ある領域での音の干渉を考慮することによりさらに
低騒音化に役立つ。
INDUSTRIAL APPLICABILITY As described above, the pneumatic tire of the present invention has a good degree of dispersion, produces white noise, and further contributes to noise reduction by considering sound interference in a certain region.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すタイヤのトレッドパタ
ーンの平面図である。
FIG. 1 is a plan view of a tread pattern of a tire showing an embodiment of the present invention.

【図2】発生音を単位パルスとして示す線図である。FIG. 2 is a diagram showing a generated sound as a unit pulse.

【図3】最大分散度数と官能評価の関係を示す線図であ
る。
FIG. 3 is a diagram showing a relationship between maximum dispersion frequency and sensory evaluation.

【図4】分散度を説明する線図である。FIG. 4 is a diagram illustrating the degree of dispersion.

【図5】音の重なりを説明する線図である。FIG. 5 is a diagram illustrating overlapping of sounds.

【図6】干渉値と残留個数を変化させた干渉値と官能単
価の関係を示す線図である。
FIG. 6 is a diagram showing a relationship between an interference value and an interference value in which the residual number is changed, and a functional unit price.

【図7】干渉値と官能単価の関係を示す線図である。FIG. 7 is a diagram showing a relationship between an interference value and a functional unit price.

【図8】最大分散度数、干渉値と官能評価の関係を示す
線図である。
FIG. 8 is a diagram showing a relationship between maximum dispersion frequency, interference value and sensory evaluation.

【符号の説明】[Explanation of symbols]

2A トレッド面 4 模様単位列 5 ブロック Li ピッチ長さ L1 最短のピッチ長さ Ls 最長のピッチ長さ Dij 模様単位 2A Tread surface 4 Pattern unit row 5 Block Li Pitch length L1 Shortest pitch length Ls Longest pitch length Dij Pattern unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】周方向長さが最短のピッチ長さL1から最
長のピッチ長さLsまでのs種のピッチ長さLi(i=
1〜s)を有しかつ並列順の起点をj=1としてm個の
模様単位Di(i=1〜s)、j(j=1〜m)をタイ
ヤの後着側に向かって周方向に並べた模様単位列を具え
るとともに、以下の(イ)、(ロ)の要件を充足する空
気入りタイヤ。 (イ)前記模様単位列は、(1)式で求められる最大分
散度数PSDr maxが(2)式で求まる分散度KC以下
であること。 PSDr max=100×(Ar2 +Br2 )/m2 … (1) KC={100/(Ls/L1)10}×(1/Rn) +5×{(1/Rn)+1} … (2) PSDr max≦KC … (3) 各式において、 【数1】 【数2】 r :1〜200次 Xj:起点からj番目の模様単位Dijまでの距離(m
m) CL:模様単位列が並ぶタイヤ全周長さ(mm) Rn:模様単位の総数を無次元化したもの(Rn=m/
60) (ロ)前記模様単位列は、(6)式により求まる干渉値
SUWが2.1以下であること(SUW≦2.1)。 【数3】 ここで、 Wn:(m/6〜7)の範囲内で選択される残留波の重
ね合わせ波数(整数) 【数4】 Lij:並列順番号がjの模様単位のピッチ長さがi番
目の長さであること。 x :各模様単位の基準点からの距離mm k :干渉値の計算対象となる模様単位Dijから先
着側にWn個まで離れる順序
1. A s-type pitch length Li (i = i = i) from the shortest pitch length L1 to the longest pitch length Ls.
1 to s) and the starting point of the parallel order is j = 1, and m pattern units Di (i = 1 to s) and j (j = 1 to m) are circumferentially directed toward the rear side of the tire. A pneumatic tire that is equipped with the pattern unit rows that are lined up in step 1 and that satisfies the requirements (a) and (b) below. (A) In the pattern unit sequence, the maximum dispersion degree PSDr max obtained by the equation (1) is equal to or less than the dispersion degree KC obtained by the equation (2). PSDr max = 100 × (Ar 2 + Br 2 ) / m 2 (1) KC = {100 / (Ls / L1) 10 } × (1 / Rn) + 5 × {(1 / Rn) +1} (2) PSDr max ≦ KC (3) In each equation, [Equation 2] r: 1st to 200th order Xj: Distance from the starting point to the jth pattern unit Dij (m
m) CL: tire total circumference length in which pattern unit rows are lined up (mm) Rn: dimensionless total number of pattern units (Rn = m /
60) (b) In the pattern unit sequence, the interference value SUW obtained by the equation (6) is 2.1 or less (SUW ≦ 2.1). (Equation 3) Here, Wn: superposition wave number (integer) of residual waves selected within the range of (m / 6 to 7) Lij: The pitch length of the pattern unit whose parallel sequence number is j is the i-th length. x: distance from the reference point of each pattern unit mm k: order of moving away from the pattern unit Dij for which the interference value is calculated up to Wn on the first-arrival side
【請求項2】前記ピッチ長さの種類数sは2であること
を特徴とする請求項1記載の空気入りタイヤ。
2. The pneumatic tire according to claim 1, wherein the number of types s of the pitch lengths is 2.
JP07343237A 1995-12-28 1995-12-28 Pneumatic tire Expired - Fee Related JP3127109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07343237A JP3127109B2 (en) 1995-12-28 1995-12-28 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07343237A JP3127109B2 (en) 1995-12-28 1995-12-28 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH09175116A true JPH09175116A (en) 1997-07-08
JP3127109B2 JP3127109B2 (en) 2001-01-22

Family

ID=18359987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07343237A Expired - Fee Related JP3127109B2 (en) 1995-12-28 1995-12-28 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP3127109B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219013A (en) * 1999-01-28 2000-08-08 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2006347459A (en) * 2005-06-17 2006-12-28 Sumitomo Rubber Ind Ltd Tire for heavy load
JP2007099047A (en) * 2005-10-03 2007-04-19 Bridgestone Corp Pneumatic tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219013A (en) * 1999-01-28 2000-08-08 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JP2006347459A (en) * 2005-06-17 2006-12-28 Sumitomo Rubber Ind Ltd Tire for heavy load
JP4695446B2 (en) * 2005-06-17 2011-06-08 住友ゴム工業株式会社 Heavy duty tire
JP2007099047A (en) * 2005-10-03 2007-04-19 Bridgestone Corp Pneumatic tire
JP4729379B2 (en) * 2005-10-03 2011-07-20 株式会社ブリヂストン Pneumatic tire

Also Published As

Publication number Publication date
JP3127109B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
JP4417507B2 (en) Pneumatic radial tire
JP3281629B2 (en) Evaluation method of tread pattern pitch arrangement for pneumatic tires
JP4287520B2 (en) Pneumatic tire
JPH09175116A (en) Pneumatic tire
JP4311788B2 (en) Pneumatic tire
CN109968909B (en) Tyre for vehicle wheels
JP3168432B2 (en) Pneumatic tire
JP2004351970A (en) Pneumatic tire
JP2574971B2 (en) Pneumatic tire
JP3096924B2 (en) Pneumatic radial tires for passenger cars
JP4162114B2 (en) Pneumatic tire
JPS6012318A (en) Low noise tyre
JP2796241B2 (en) Pneumatic tire
EP3492280B1 (en) Tire
EP3492281B1 (en) Tire
JPS6025806A (en) Low noise tire
JP3206869B2 (en) Setting method of tread pattern of pneumatic tire
JP4162113B2 (en) Pneumatic tire
JP2021165113A (en) Tire, manufacturing method of tire, designing method of tire, and arranging method of pattern constitution unit
JP7452147B2 (en) Tire, tire manufacturing method, tire design method, and pattern constituent unit sequence determination method
JP2022039002A (en) Tire, tire pattern constitutional unit arrangement determination method, tread segment split position determination method, tire design method and tire manufacturing method
JPH0924708A (en) Tire in which noise is reduced
JPH09136513A (en) Pneumatic tire
JP4255049B2 (en) Pneumatic tire
JP2022091575A (en) Designing method for tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees