JPH09163773A - Thermoelectric power generator - Google Patents

Thermoelectric power generator

Info

Publication number
JPH09163773A
JPH09163773A JP7318108A JP31810895A JPH09163773A JP H09163773 A JPH09163773 A JP H09163773A JP 7318108 A JP7318108 A JP 7318108A JP 31810895 A JP31810895 A JP 31810895A JP H09163773 A JPH09163773 A JP H09163773A
Authority
JP
Japan
Prior art keywords
temperature fluid
power generation
thermoelectric power
generation module
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7318108A
Other languages
Japanese (ja)
Other versions
JP3586505B2 (en
Inventor
Masaharu Watabe
正治 渡部
Masayuki Takeishi
雅之 武石
Shinichi Tada
進一 多田
Masataka Fujiwara
正隆 藤原
Hitoshi Nishino
仁 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Osaka Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Osaka Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31810895A priority Critical patent/JP3586505B2/en
Publication of JPH09163773A publication Critical patent/JPH09163773A/en
Application granted granted Critical
Publication of JP3586505B2 publication Critical patent/JP3586505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric power generator whose power generation efficiency is enhanced, which miniaturizes a thermoelectric power generation module and in which heat on the high-temperature side is collected to the low-temperature side by a heat exchanger as required. SOLUTION: When electricity is generated, a changeover valve 5 is changed over, a high-temperature fluid inside a pipe 4 for the high-temperature fluid is introduced into a high-temperature heat storage body 1 at a thermoelectric power generation module 2 through the changeover valve 5, and the side of one end part of the thermoelectric power generation module 2 is heated by heat stored in the high-temperature heat storage body 1 when the electricity is generated. Then, a changeover valve 9 is changed over, a low-temperate fluid inside a pipe 8 for the low-temperature fluid is introduced into a pipe 10 for the low-temperature fluid from the changeover valve 9, and the side of the other end part of the thermoelectric power generation module 2 is cooled by the low-temperature fluid which flows inside the pipe 10 for the low- temperature fluid. At this time, heat flows to the low-temperature side from the high- temperature side by a heat transfer between solids, and the electricity is generated by the temperature difference of the thermoelectric power generation module 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱エネルギーを電
気エネルギーに直接変換する熱電発電装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator that directly converts heat energy into electric energy.

【0002】[0002]

【従来の技術】熱電発電装置は、熱電発電モジュールに
温度差を与えた場合、熱電発電モジュールを構成する熱
電半導体の作用により、熱エネルギーを電気エネルギー
に直接変換する装置である。この熱電発電装置の従来例
を図3により説明すると、同熱電発電装置は、熱電発電
モジュール2と、燃料用配管12と、空気用配管13
と、燃焼器(高温流体(排ガス)供給源)14と、同燃
焼器14から上記熱電発電モジュール2の一端部を貫通
して延びた高温流体用配管7と、ファン(低温流体供給
源)16と、同ファン16から上記熱電発電モジュール
2の他端部を貫通して延びた低温流体用配管10と、コ
ンバータ15と、同コンバータ15と上記熱電発電モジ
ュール2の一端部及び他端部とを接続する電力取出用リ
ード線17とにより構成されている。
2. Description of the Related Art A thermoelectric generator is a device that directly converts thermal energy into electric energy by the action of a thermoelectric semiconductor forming the thermoelectric generator module when a temperature difference is applied to the thermoelectric generator module. A conventional example of this thermoelectric generator will be described with reference to FIG. 3. The thermoelectric generator includes a thermoelectric generator module 2, a fuel pipe 12, and an air pipe 13.
A combustor (high temperature fluid (exhaust gas) supply source) 14, a high temperature fluid pipe 7 extending from the combustor 14 through one end of the thermoelectric power generation module 2, and a fan (low temperature fluid supply source) 16 A low temperature fluid pipe 10 extending from the fan 16 through the other end of the thermoelectric power generation module 2, a converter 15, the converter 15 and one end and the other end of the thermoelectric power generation module 2. It is composed of a lead wire 17 for extracting electric power to be connected.

【0003】この熱電発電装置では、高温流体用配管7
内を流れる高温流体により熱電発電モジュール2の一端
部を加熱し、低温流体用配管10内を流れる低温流体に
より熱電発電モジュール2の他端部を冷却する。このと
き、熱電発電モジュール2では、熱が対流熱伝達により
高温側から低温側へ流れるとともに、高温側と低温側と
の温度差により発電する。
In this thermoelectric generator, the high temperature fluid pipe 7
A high temperature fluid flowing inside heats one end of the thermoelectric power generation module 2, and a low temperature fluid flowing inside the low temperature fluid pipe 10 cools the other end of the thermoelectric power generation module 2. At this time, in the thermoelectric power generation module 2, heat flows from the high temperature side to the low temperature side by convective heat transfer, and power is generated due to the temperature difference between the high temperature side and the low temperature side.

【0004】[0004]

【発明が解決しようとする課題】前記図3に示す従来の
熱電発電装置には、次の問題があった。即ち、この熱電
発電装置では、熱電発電モジュール2の高温側と低温側
との温度差が大きい程、発電効率が高い。また熱電発電
モジュール2を流れる熱量が大きい程、大きな発電量を
得られるが、熱が対流熱伝達により高温側から低温側へ
伝えられるので、熱電発電モジュール2に生じる温度差
が次第に小さくなって、発電効率及び発電量が流体の流
体流れ方向下流側で減少する(図2の曲線(高温蓄熱体
無しの曲線)参照)。
The conventional thermoelectric generator shown in FIG. 3 has the following problems. That is, in this thermoelectric generator, the larger the temperature difference between the high temperature side and the low temperature side of the thermoelectric generator module 2, the higher the power generation efficiency. Further, the larger the amount of heat flowing through the thermoelectric power generation module 2, the larger the amount of power generation can be obtained, but since heat is transferred from the high temperature side to the low temperature side by convective heat transfer, the temperature difference that occurs in the thermoelectric power generation module 2 gradually decreases, The power generation efficiency and power generation amount decrease on the downstream side in the fluid flow direction of the fluid (see the curve in FIG. 2 (the curve without the high temperature heat storage body)).

【0005】また高温流体の熱を熱電発電モジュール2
を介して低温流体へ回収して利用する場合、熱電発電モ
ジュール2の熱抵抗が大きくて、熱回収に必要な伝熱面
積、即ち、熱電発電モジュール2の面積が熱電発電モジ
ュールを介さない場合の数倍必要になって、伝熱面積が
不足するという問題があった。本発明は前記の問題点に
鑑み提案するものであり、その目的とする処は、熱電
発電モジュールの高温側と低温側との温度差を略均一に
保持できて、熱電発電モジュールの発電効率を向上で
き、熱電発電モジュールを小型化でき、熱交換器に
より高温側の熱を低温側へ必要に応じて回収できる熱電
発電装置を提供しようとする点にある。
Further, the heat of the high temperature fluid is transferred to the thermoelectric power generation module 2
In the case where the thermoelectric power generation module 2 has a large thermal resistance and is used for recovery into a low temperature fluid via the heat transfer area, that is, when the area of the thermoelectric power generation module 2 does not pass through the thermoelectric power generation module. There was a problem that the heat transfer area became insufficient due to the need for several times. The present invention is proposed in view of the above problems, and an object thereof is to maintain the temperature difference between the high temperature side and the low temperature side of the thermoelectric power generation module substantially uniformly, and to improve the power generation efficiency of the thermoelectric power generation module. It is an object of the present invention to provide a thermoelectric power generation device which can be improved, a thermoelectric power generation module can be downsized, and heat of a high temperature side can be recovered to a low temperature side by a heat exchanger as needed.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、熱電発電モジュール2の一端部を加熱
し、他端部を冷却して発電を行う熱電発電装置におい
て、前記熱電発電モジュール2の一端部に設けた高温蓄
熱体1と、熱交換器3と、高温流体用配管4と、同高温
流体用配管4に設けた切換弁5と、同切換弁5から上記
熱交換器3を貫通して延びた高温流体用配管6と、上記
切換弁5から延びて上記高温蓄熱体1を貫通するととも
に上記熱交換器3の流体流れ方向下流側で上記高温流体
用配管6に接続した高温流体用配管7と、低温流体用配
管8と、同低温流体用配管8に設けた切換弁9と、同切
換弁9から延びて上記熱電発電モジュール2の他端部側
を貫通した低温流体用配管10と、上記切換弁9から延
びて上記熱電発電モジュール2の他端部側の流体流れ方
向下流側で上記低温流体用配管10に接続するとともに
上記熱交換器3を貫通した低温流体用配管11とを具え
ている。
In order to achieve the above object, the present invention relates to a thermoelectric power generation device for heating one end of a thermoelectric power generation module 2 and cooling the other end to generate power. The high temperature heat storage body 1 provided at one end of the power generation module 2, the heat exchanger 3, the high temperature fluid pipe 4, the switching valve 5 provided in the high temperature fluid pipe 4, and the heat exchange from the switching valve 5 To the high temperature fluid pipe 6 that extends through the heat exchanger 3 and the high temperature heat storage body 1 that extends from the switching valve 5 and through the high temperature heat storage body 1 and to the high temperature fluid pipe 6 on the downstream side in the fluid flow direction of the heat exchanger 3. The connected high-temperature fluid pipe 7, the low-temperature fluid pipe 8, the switching valve 9 provided in the low-temperature fluid pipe 8, and the switching valve 9 extending from the same and penetrating the other end side of the thermoelectric power generation module 2. It extends from the low temperature fluid pipe 10 and the switching valve 9 and extends to the thermoelectric power generation mode. In the other end of the fluid flow direction downstream of Yuru 2 and comprises a cryogenic fluid pipe 11 passing through the heat exchanger 3 as well as connected to the cryogenic fluid pipe 10.

【0007】[0007]

【発明の実施の形態】次に本発明の熱電発電装置を図1
に示す一実施形態により説明すると、1が高温蓄熱体、
2が熱電発電モジュール、3が熱交換器、4が高温流体
用配管、5が同高温流体用配管4に設けた切換弁、6が
同切換弁5から延びて上記熱交換器3を貫通した高温流
体用配管、7が上記切換弁5から延びて上記高温蓄熱体
1を貫通するとともに上記熱交換器3の流体流れ方向下
流側で上記高温流体用配管6に接続した高温流体用配管
である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a thermoelectric generator of the present invention is shown in FIG.
1 is a high temperature heat storage body,
Reference numeral 2 is a thermoelectric power generation module, 3 is a heat exchanger, 4 is a high temperature fluid pipe, 5 is a switching valve provided in the high temperature fluid pipe 4, 6 is extended from the switching valve 5 and penetrates the heat exchanger 3. A high temperature fluid pipe, 7 is a high temperature fluid pipe extending from the switching valve 5 and penetrating the high temperature heat storage body 1 and connected to the high temperature fluid pipe 6 on the downstream side in the fluid flow direction of the heat exchanger 3. .

【0008】8が低温流体用配管、9が同低温流体用配
管8に設けた切換弁、10が同切換弁9から延びて上記
熱電発電モジュール2の他端部側を貫通した低温流体用
配管、11が上記切換弁9から延びて上記熱電発電モジ
ュール2の流体流れ方向下流側で上記低温流体用配管1
0に接続するとともに上記熱交換器3を貫通した低温流
体用配管である。
Reference numeral 8 is a pipe for low temperature fluid, 9 is a switching valve provided in the pipe 8 for low temperature fluid, and 10 is a pipe for low temperature fluid which extends from the switching valve 9 and penetrates the other end side of the thermoelectric power generation module 2. , 11 extend from the switching valve 9 and are located on the downstream side of the thermoelectric power generation module 2 in the fluid flow direction, and the low temperature fluid pipe 1
It is a pipe for low temperature fluid which is connected to 0 and penetrates the heat exchanger 3.

【0009】次に前記図1に示す熱電発電装置の作用を
具体的に説明する。 (1)発電する場合には、切換弁5を切り換えて、高温
流体用配管4内を流れる高温流体を高温流体用配管4→
切換弁5→熱電発電モジュール2の高温蓄熱体1へ導
き、所定の熱量を同高温蓄熱体1に蓄熱して、この熱を
発電時の加熱源にする。なお高温蓄熱体1の蓄熱量は、
高温流体の温度や性状により任意に決定される。
Next, the operation of the thermoelectric generator shown in FIG. 1 will be specifically described. (1) When power is generated, the switching valve 5 is switched so that the high-temperature fluid flowing in the high-temperature fluid pipe 4 is connected to the high-temperature fluid pipe 4 →
The switching valve 5 is guided to the high temperature heat storage body 1 of the thermoelectric power generation module 2, and a predetermined amount of heat is stored in the high temperature heat storage body 1, and this heat is used as a heating source for power generation. The heat storage amount of the high temperature heat storage body 1 is
It is arbitrarily determined according to the temperature and properties of the high temperature fluid.

【0010】そして発電時には、高温蓄熱体1に蓄えた
熱により熱電発電モジュール2の一端部側を加熱すると
ともに、切換弁9を切り換えて、低温流体用配管8内を
流れる低温流体を低温流体用配管8→切換弁9→熱電発
電モジュール2の他端部側を貫通する低温流体用配管1
0へ導いて、同低温流体用配管10内を流れる低温流体
により熱電発電モジュール2の他端部側を冷却する。
At the time of power generation, the heat stored in the high temperature heat storage body 1 heats one end of the thermoelectric power generation module 2, and the switching valve 9 is switched so that the low temperature fluid flowing in the low temperature fluid pipe 8 is used as a low temperature fluid. Pipe 8 → Switching valve 9 → Pipe for low temperature fluid 1 penetrating the other end side of thermoelectric power generation module 2
0, and the other end of the thermoelectric power generation module 2 is cooled by the low temperature fluid flowing in the low temperature fluid pipe 10.

【0011】このとき、熱電発電モジュール2では、高
温側の熱が固体同士の熱伝達により低温側へ伝えられる
ので、熱電発電モジュール2の温度差が図2の直線(高
温蓄熱体使用の実線)に示すように略均一に保持され
て、熱電発電モジュール2の発電効率が向上する。また
上記のように熱電発電モジュール2における熱移動が固
体同士の熱伝達により行われるので、前記従来の熱電発
電装置のように熱移動が対流熱伝達により行われる場合
に比べると、熱移動量が大きくなり、結果として熱電発
電モジュール2が小型化される。 (2)高温流体の熱を低温流体へ回収して利用する場合
には、切換弁5を切り換えて、高温流体用配管4内を流
れる高温流体を高温流体用配管4→切換弁5→高温流体
用配管6→熱交換器3へ導く一方、切換弁9を切り換え
て、低温流体用配管8内を流れる低温流体を低温流体用
配管8→切換弁9→低温流体用配管11→熱交換器3へ
導き、高温流体用配管6と低温流体用配管11との間で
熱交換を行って、高温流体側の熱を低温流体側へ回収す
る。
At this time, in the thermoelectric power generation module 2, since the heat on the high temperature side is transferred to the low temperature side by heat transfer between solids, the temperature difference of the thermoelectric power generation module 2 is a straight line in FIG. 2 (solid line using high temperature heat storage body). As shown in FIG. 3, the thermoelectric generation module 2 is maintained substantially uniformly, and the power generation efficiency of the thermoelectric generation module 2 is improved. Further, since the heat transfer in the thermoelectric power generation module 2 is performed by the heat transfer between solids as described above, the heat transfer amount is smaller than that in the case where the heat transfer is performed by the convective heat transfer as in the conventional thermoelectric power generation device. The thermoelectric power generation module 2 is downsized as a result. (2) When the heat of the high temperature fluid is recovered and used as the low temperature fluid, the switching valve 5 is switched so that the high temperature fluid flowing in the high temperature fluid pipe 4 is connected to the high temperature fluid pipe 4 → the switching valve 5 → the high temperature fluid. Piping 6 → heat exchanger 3 while switching the switching valve 9 so that the low temperature fluid flowing in the low temperature fluid piping 8 is a low temperature fluid piping 8 → a switching valve 9 → a low temperature fluid piping 11 → a heat exchanger 3 The heat of the high temperature fluid side is recovered to the low temperature fluid side by exchanging heat between the high temperature fluid piping 6 and the low temperature fluid piping 11.

【0012】なお切換弁5、9を必要に応じて切り換え
て、熱電発電モジュール2による発電と熱交換器3によ
る熱回収とを同時に行うことも可能である。
It is also possible to switch the switching valves 5 and 9 as needed so that power generation by the thermoelectric power generation module 2 and heat recovery by the heat exchanger 3 can be performed simultaneously.

【0013】[0013]

【発明の効果】本発明の熱電発電装置は前記のように発
電する場合、切換弁5を切り換えて、高温流体用配管4
内を流れる高温流体を高温流体用配管4→切換弁5→熱
電発電モジュール2の高温蓄熱体1へ導き、所定の熱量
を同高温蓄熱体1に蓄熱して、この熱を発電時の加熱源
にする。そして発電時には、高温蓄熱体1に蓄えた熱に
より熱電発電モジュール2の一端部側を加熱するととも
に、低温流体用配管8内を流れる低温流体を低温流体用
配管8→切換弁9→低温流体用配管10へ導き、熱電発
電モジュール2の他端部を冷却して、熱電発電モジュー
ル2に温度差を生じさせる一方、高温側の熱を固体同士
の熱伝達により低温側へ伝えるので、熱電発電モジュー
ル2の温度差を図2の直線(高温蓄熱体使用の実線)に
示すように略均一に保持できて、熱電発電モジュール2
の発電効率を向上できる。
In the thermoelectric generator of the present invention, when the power is generated as described above, the switching valve 5 is switched so that the high temperature fluid pipe 4 can be operated.
The high-temperature fluid flowing inside is introduced into the high-temperature fluid pipe 4 → the switching valve 5 → the high-temperature heat storage body 1 of the thermoelectric power generation module 2, and a predetermined amount of heat is stored in the high-temperature heat storage body 1, and this heat is used as a heating source for power generation. To Then, at the time of power generation, the one end of the thermoelectric power generation module 2 is heated by the heat stored in the high temperature heat storage body 1, and the low temperature fluid flowing in the low temperature fluid pipe 8 is transferred to the low temperature fluid pipe 8 → the switching valve 9 → the low temperature fluid. Since the other end of the thermoelectric power generation module 2 is guided to the pipe 10 to cause a temperature difference in the thermoelectric power generation module 2, the heat of the high temperature side is transferred to the low temperature side by heat transfer between solids, so the thermoelectric power generation module The temperature difference of 2 can be maintained substantially evenly as shown by the straight line in FIG. 2 (solid line using high temperature heat storage body), and the thermoelectric power generation module 2
The power generation efficiency of can be improved.

【0014】また上記のように熱電発電モジュール2に
おける熱移動を固体同士の熱伝達により行うので、前記
従来の熱電発電装置のように熱移動を対流熱伝達により
行う場合に比べると、熱移動量を大きくでき、結果とし
て熱電発電モジュールを小型化できる。また高温流体の
熱を低温流体へ回収して利用する場合、切換弁5を切り
換えて、高温流体用配管4内を流れる高温流体を高温流
体用配管4→切換弁5→高温流体用配管6→熱交換器3
へ導く一方、切換弁9を切り換えて、低温流体用配管8
内を流れる低温流体を低温流体用配管8→切換弁9→低
温流体用配管11→熱交換器3へ導き、高温流体用配管
6と低温流体用配管11との間で熱交換を行うので、熱
交換器により高温側の熱を低温側へ必要に応じて回収で
きる。
Further, since the heat transfer in the thermoelectric power generation module 2 is performed by the heat transfer between solids as described above, the heat transfer amount is larger than that in the case where the heat transfer is performed by the convection heat transfer as in the conventional thermoelectric power generation device. Can be increased, and as a result, the thermoelectric power generation module can be downsized. When the heat of the high-temperature fluid is recovered and used as the low-temperature fluid, the switching valve 5 is switched so that the high-temperature fluid flowing in the high-temperature fluid pipe 4 is converted into the high-temperature fluid pipe 4 → the switching valve 5 → the high-temperature fluid pipe 6 → Heat exchanger 3
To the low temperature fluid pipe 8 while switching the switching valve 9
Since the low temperature fluid flowing inside is introduced into the low temperature fluid pipe 8 → the switching valve 9 → the low temperature fluid pipe 11 → the heat exchanger 3 and heat exchange is performed between the high temperature fluid pipe 6 and the low temperature fluid pipe 11, The heat exchanger can collect the heat on the high temperature side to the low temperature side as needed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱電発電装置の一実施形態を示す系統
図である。
FIG. 1 is a system diagram showing an embodiment of a thermoelectric generator of the present invention.

【図2】本発明の熱電発電装置及び従来の熱電発電装置
の熱電発電モジュールに生じる温度差を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a temperature difference that occurs in a thermoelectric power generation module of the present invention and a thermoelectric power generation module of a conventional thermoelectric power generation apparatus.

【図3】従来の熱電発電装置を示す系統図である。FIG. 3 is a system diagram showing a conventional thermoelectric generator.

【符号の説明】[Explanation of symbols]

1 高温蓄熱体 2 熱電発電モジュール 3 熱交換器 4 高温流体用配管 5 切換弁 6 高温流体用配管 7 高温流体用配管 8 低温流体用配管 9 切換弁 10 低温流体用配管 11 低温流体用配管 DESCRIPTION OF SYMBOLS 1 High temperature heat storage body 2 Thermoelectric power generation module 3 Heat exchanger 4 High temperature fluid piping 5 Switching valve 6 High temperature fluid piping 7 High temperature fluid piping 8 Low temperature fluid piping 9 Switching valve 10 Low temperature fluid piping 11 Low temperature fluid piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多田 進一 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 藤原 正隆 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 西野 仁 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shinichi Tada 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka, Osaka Gas Co., Ltd. (72) Masataka Fujiwara 4-chome, Hirano-cho, Chuo-ku, Osaka-shi, Osaka 1-2 No. 2 in Osaka Gas Co., Ltd. (72) Inventor Hitoshi Nishino 4-1-2 1-2 Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture Within Osaka Gas Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱電発電モジュール2の一端部を加熱
し、他端部を冷却して発電を行う熱電発電装置におい
て、前記熱電発電モジュール2の一端部に設けた高温蓄
熱体1と、熱交換器3と、高温流体用配管4と、同高温
流体用配管4に設けた切換弁5と、同切換弁5から上記
熱交換器3を貫通して延びた高温流体用配管6と、上記
切換弁5から延びて上記高温蓄熱体1を貫通するととも
に上記熱交換器3の流体流れ方向下流側で上記高温流体
用配管6に接続した高温流体用配管7と、低温流体用配
管8と、同低温流体用配管8に設けた切換弁9と、同切
換弁9から延びて上記熱電発電モジュール2の他端部側
を貫通した低温流体用配管10と、上記切換弁9から延
びて上記熱電発電モジュール2の他端部側の流体流れ方
向下流側で上記低温流体用配管10に接続するとともに
上記熱交換器3を貫通した低温流体用配管11とを具え
ていることを特徴とした熱電発電装置。
1. A thermoelectric power generator that heats one end of a thermoelectric power generation module 2 and cools the other end to generate electric power, and heat exchange with a high temperature heat storage body 1 provided at one end of the thermoelectric power generation module 2. Device 3, high temperature fluid pipe 4, switching valve 5 provided in the high temperature fluid pipe 4, high temperature fluid pipe 6 extending from the switching valve 5 through the heat exchanger 3, and the switching The high temperature fluid pipe 7 extending from the valve 5 and penetrating the high temperature heat storage body 1 and connected to the high temperature fluid pipe 6 on the downstream side in the fluid flow direction of the heat exchanger 3; The switching valve 9 provided in the pipe 8 for low temperature fluid, the pipe 10 for low temperature fluid which extends from the switching valve 9 and penetrates the other end side of the thermoelectric power generation module 2, and the thermoelectric generation which extends from the switching valve 9 The low temperature fluid is provided downstream of the other end of the module 2 in the fluid flow direction. A thermoelectric generator comprising: a low temperature fluid pipe 11 that is connected to the heat pipe 3 and penetrates the heat exchanger 3.
JP31810895A 1995-12-06 1995-12-06 Thermoelectric generator Expired - Fee Related JP3586505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31810895A JP3586505B2 (en) 1995-12-06 1995-12-06 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31810895A JP3586505B2 (en) 1995-12-06 1995-12-06 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JPH09163773A true JPH09163773A (en) 1997-06-20
JP3586505B2 JP3586505B2 (en) 2004-11-10

Family

ID=18095587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31810895A Expired - Fee Related JP3586505B2 (en) 1995-12-06 1995-12-06 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP3586505B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908960A2 (en) * 1997-10-07 1999-04-14 Seiko Instruments Inc. Electronic equipment power charging system
US6269645B1 (en) 1998-05-14 2001-08-07 Yyl Corporation Power plant
JP2007022452A (en) * 2005-07-20 2007-02-01 Toyota Motor Corp Heat recovery device
CN104836481A (en) * 2015-04-20 2015-08-12 洪莲 Method and system for supplying power to equipment using thermoelectric generation
JP2016158424A (en) * 2015-02-25 2016-09-01 千代田化工建設株式会社 Power generation system
CN110737290A (en) * 2019-11-06 2020-01-31 中国石化销售有限公司华南分公司 self-adaptive electric valve control system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908960A2 (en) * 1997-10-07 1999-04-14 Seiko Instruments Inc. Electronic equipment power charging system
EP0908960A3 (en) * 1997-10-07 2000-08-23 Seiko Instruments Inc. Electronic equipment power charging system
US6269645B1 (en) 1998-05-14 2001-08-07 Yyl Corporation Power plant
JP2007022452A (en) * 2005-07-20 2007-02-01 Toyota Motor Corp Heat recovery device
JP2016158424A (en) * 2015-02-25 2016-09-01 千代田化工建設株式会社 Power generation system
WO2016136246A1 (en) * 2015-02-25 2016-09-01 千代田化工建設株式会社 Power generation system
CN104836481A (en) * 2015-04-20 2015-08-12 洪莲 Method and system for supplying power to equipment using thermoelectric generation
CN110737290A (en) * 2019-11-06 2020-01-31 中国石化销售有限公司华南分公司 self-adaptive electric valve control system
CN110737290B (en) * 2019-11-06 2021-04-09 中国石油化工股份有限公司 Self-adaptive electric valve control system

Also Published As

Publication number Publication date
JP3586505B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
JP3941840B2 (en) Fuel preheating system for gas turbine engine
KR950019139A (en) Waste heat recovery system
US10400636B2 (en) Supercritical CO2 generation system applying plural heat sources
KR950704828A (en) RADIANT THERMAL INTEGRATION WITH REGENERATIVE HEATING IN A HIGH TEMPERATURE ELECTROCHEMICAL CONVERTER
MY134345A (en) Device for cooling coolant in a gas turbine (2) and gas and steam turbine with said device
KR20130087946A (en) Cover of latent heat exchanger having cooling line
JPH094510A (en) Combustion engine plant, supercharging combustion engine device for combustion engine plant and improving method of efficiency of combustion engine plant
KR950019081A (en) Method and apparatus for operating the gas turbine
JPH09163773A (en) Thermoelectric power generator
JP2010096495A (en) Combined cycle power generation plant
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP2001349634A (en) Low temperature waste gas driving and freezing system
JP3626798B2 (en) Thermoelectric power generation equipment
JP2013538311A (en) Gas turbine device with improved exergy recovery device
JP3784616B2 (en) Thermoelectric ratio control method for small capacity gas turbine cogeneration system
CN207706078U (en) Thermo-electric generation system
JP2001055906A (en) Combined power generating method and system therefor
JP2000009361A (en) Thermoelectric conversion system
JPH02303381A (en) Cogeneration facility
JPS63235650A (en) Thermoelectric combination feed system
KR102543573B1 (en) Thermoelectric generation and waste heat recovery system for fuel cell
RU97121547A (en) METHOD FOR OPERATING POWER INSTALLATION AND INSTALLATION FOR ITS IMPLEMENTATION
JP3631521B2 (en) Cogeneration system cooling water circuit equipment
JPH10132495A (en) Heat recovering apparatus
JPH11182975A (en) Absorption type cogeneration system utilizing waste

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees